*/
#include "kernel/yosys.h"
+#include "kernel/mem.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
}
};
-bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode)
+bool replace_memory(Mem &orig_mem, const rules_t &rules, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode)
{
- Module *module = cell->module;
+ // We will modify ports — make a copy of the structure.
+ Mem mem(orig_mem);
+ Module *module = mem.module;
auto portinfos = bram.make_portinfos();
int dup_count = 1;
log(" Mapping to bram type %s (variant %d):\n", log_id(bram.name), bram.variant);
// bram.dump_config();
- int mem_size = cell->getParam(ID::SIZE).as_int();
- int mem_abits = cell->getParam(ID::ABITS).as_int();
- int mem_width = cell->getParam(ID::WIDTH).as_int();
- // int mem_offset = cell->getParam(ID::OFFSET).as_int();
-
- bool cell_init = !SigSpec(cell->getParam(ID::INIT)).is_fully_undef();
+ bool cell_init = !mem.inits.empty();
vector<Const> initdata;
if (cell_init) {
- Const initparam = cell->getParam(ID::INIT);
- initdata.reserve(mem_size);
- for (int i=0; i < mem_size; i++)
- initdata.push_back(initparam.extract(mem_width*i, mem_width, State::Sx));
+ Const initparam = mem.get_init_data();
+ initdata.reserve(mem.size);
+ for (int i=0; i < mem.size; i++)
+ initdata.push_back(initparam.extract(mem.width*i, mem.width, State::Sx));
}
- int wr_ports = cell->getParam(ID::WR_PORTS).as_int();
- auto wr_clken = SigSpec(cell->getParam(ID::WR_CLK_ENABLE));
- auto wr_clkpol = SigSpec(cell->getParam(ID::WR_CLK_POLARITY));
- wr_clken.extend_u0(wr_ports);
- wr_clkpol.extend_u0(wr_ports);
-
- SigSpec wr_en = cell->getPort(ID::WR_EN);
- SigSpec wr_clk = cell->getPort(ID::WR_CLK);
- SigSpec wr_data = cell->getPort(ID::WR_DATA);
- SigSpec wr_addr = cell->getPort(ID::WR_ADDR);
-
- int rd_ports = cell->getParam(ID::RD_PORTS).as_int();
- auto rd_clken = SigSpec(cell->getParam(ID::RD_CLK_ENABLE));
- auto rd_clkpol = SigSpec(cell->getParam(ID::RD_CLK_POLARITY));
- auto rd_transp = SigSpec(cell->getParam(ID::RD_TRANSPARENT));
- rd_clken.extend_u0(rd_ports);
- rd_clkpol.extend_u0(rd_ports);
- rd_transp.extend_u0(rd_ports);
-
- SigSpec rd_en = cell->getPort(ID::RD_EN);
- SigSpec rd_clk = cell->getPort(ID::RD_CLK);
- SigSpec rd_data = cell->getPort(ID::RD_DATA);
- SigSpec rd_addr = cell->getPort(ID::RD_ADDR);
-
- if (match.shuffle_enable && bram.dbits >= portinfos.at(match.shuffle_enable - 'A').enable*2 && portinfos.at(match.shuffle_enable - 'A').enable > 0 && wr_ports > 0)
+ if (match.shuffle_enable && bram.dbits >= portinfos.at(match.shuffle_enable - 'A').enable*2 && portinfos.at(match.shuffle_enable - 'A').enable > 0 && !mem.wr_ports.empty())
{
int bucket_size = bram.dbits / portinfos.at(match.shuffle_enable - 'A').enable;
log(" Shuffle bit order to accommodate enable buckets of size %d..\n", bucket_size);
std::vector<SigSpec> old_wr_data;
std::vector<SigSpec> old_rd_data;
- for (int i = 0; i < wr_ports; i++) {
- old_wr_en.push_back(wr_en.extract(i*mem_width, mem_width));
- old_wr_data.push_back(wr_data.extract(i*mem_width, mem_width));
+ for (auto &port : mem.wr_ports) {
+ old_wr_en.push_back(port.en);
+ old_wr_data.push_back(port.data);
}
- for (int i = 0; i < rd_ports; i++)
- old_rd_data.push_back(rd_data.extract(i*mem_width, mem_width));
+ for (auto &port : mem.rd_ports)
+ old_rd_data.push_back(port.data);
// analyze enable structure
std::vector<SigSpec> en_order;
dict<SigSpec, vector<int>> bits_wr_en;
- for (int i = 0; i < mem_width; i++) {
+ for (int i = 0; i < mem.width; i++) {
SigSpec sig;
- for (int j = 0; j < wr_ports; j++)
- sig.append(old_wr_en[j][i]);
+ for (auto &port : mem.wr_ports)
+ sig.append(port.en[i]);
if (bits_wr_en.count(sig) == 0)
en_order.push_back(sig);
bits_wr_en[sig].push_back(i);
std::vector<int> shuffle_map;
if (cell_init)
- new_initdata.resize(mem_size);
+ new_initdata.resize(mem.size);
for (auto &it : en_order)
{
SigBit fillbit;
for (int i = 0; i < GetSize(bits); i++) {
- for (int j = 0; j < wr_ports; j++) {
+ for (int j = 0; j < GetSize(mem.wr_ports); j++) {
new_wr_en[j].append(old_wr_en[j][bits[i]]);
new_wr_data[j].append(old_wr_data[j][bits[i]]);
fillbit = old_wr_en[j][bits[i]];
}
- for (int j = 0; j < rd_ports; j++)
+ for (int j = 0; j < GetSize(mem.rd_ports); j++)
new_rd_data[j].append(old_rd_data[j][bits[i]]);
if (cell_init) {
- for (int j = 0; j < mem_size; j++)
+ for (int j = 0; j < mem.size; j++)
new_initdata[j].push_back(initdata[j][bits[i]]);
}
shuffle_map.push_back(bits[i]);
}
for (int i = 0; i < fillbits; i++) {
- for (int j = 0; j < wr_ports; j++) {
+ for (int j = 0; j < GetSize(mem.wr_ports); j++) {
new_wr_en[j].append(fillbit);
new_wr_data[j].append(State::S0);
}
- for (int j = 0; j < rd_ports; j++)
+ for (int j = 0; j < GetSize(mem.rd_ports); j++)
new_rd_data[j].append(State::Sx);
if (cell_init) {
- for (int j = 0; j < mem_size; j++)
+ for (int j = 0; j < mem.size; j++)
new_initdata[j].push_back(State::Sx);
}
shuffle_map.push_back(-1);
// update mem_*, wr_*, and rd_* variables
- mem_width = GetSize(new_wr_en.front());
- wr_en = SigSpec(0, wr_ports * mem_width);
- wr_data = SigSpec(0, wr_ports * mem_width);
- rd_data = SigSpec(0, rd_ports * mem_width);
+ mem.width = GetSize(new_wr_en.front());
- for (int i = 0; i < wr_ports; i++) {
- wr_en.replace(i*mem_width, new_wr_en[i]);
- wr_data.replace(i*mem_width, new_wr_data[i]);
+ for (int i = 0; i < GetSize(mem.wr_ports); i++) {
+ auto &port = mem.wr_ports[i];
+ port.en = new_wr_en[i];
+ port.data = new_wr_data[i];
}
- for (int i = 0; i < rd_ports; i++)
- rd_data.replace(i*mem_width, new_rd_data[i]);
+ for (int i = 0; i < GetSize(mem.rd_ports); i++) {
+ auto &port = mem.rd_ports[i];
+ port.data = new_rd_data[i];
+ }
if (cell_init) {
- for (int i = 0; i < mem_size; i++)
+ for (int i = 0; i < mem.size; i++)
initdata[i] = Const(new_initdata[i]);
}
}
// assign write ports
pair<SigBit, bool> wr_clkdom;
- for (int cell_port_i = 0, bram_port_i = 0; cell_port_i < wr_ports; cell_port_i++)
+ for (int cell_port_i = 0, bram_port_i = 0; cell_port_i < GetSize(mem.wr_ports); cell_port_i++)
{
- bool clken = wr_clken[cell_port_i] == State::S1;
- bool clkpol = wr_clkpol[cell_port_i] == State::S1;
- SigBit clksig = wr_clk[cell_port_i];
+ auto &port = mem.wr_ports[cell_port_i];
- pair<SigBit, bool> clkdom(clksig, clkpol);
- if (!clken)
+ pair<SigBit, bool> clkdom(port.clk, port.clk_polarity);
+ if (!port.clk_enable)
clkdom = pair<SigBit, bool>(State::S1, false);
wr_clkdom = clkdom;
log(" Write port #%d is in clock domain %s%s.\n",
cell_port_i, clkdom.second ? "" : "!",
- clken ? log_signal(clkdom.first) : "~async~");
+ port.clk_enable ? log_signal(clkdom.first) : "~async~");
for (; bram_port_i < GetSize(portinfos); bram_port_i++)
{
skip_bram_wport:
continue;
- if (clken) {
+ if (port.clk_enable) {
if (pi.clocks == 0) {
log(" Bram port %c%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
log(" Bram port %c%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
- if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) {
+ if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != port.clk_polarity) {
log(" Bram port %c%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
SigSpec sig_en;
SigBit last_en_bit = State::S1;
- for (int i = 0; i < mem_width; i++) {
+ for (int i = 0; i < mem.width; i++) {
if (pi.enable && i % (bram.dbits / pi.enable) == 0) {
- last_en_bit = wr_en[i + cell_port_i*mem_width];
+ last_en_bit = port.en[i];
sig_en.append(last_en_bit);
}
- if (last_en_bit != wr_en[i + cell_port_i*mem_width]) {
+ if (last_en_bit != port.en[i]) {
log(" Bram port %c%d has incompatible enable structure.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
log(" Mapped to bram port %c%d.\n", pi.group + 'A', pi.index + 1);
pi.mapped_port = cell_port_i;
- if (clken) {
+ if (port.clk_enable) {
clock_domains[pi.clocks] = clkdom;
clock_polarities[pi.clkpol] = clkdom.second;
pi.sig_clock = clkdom.first;
}
pi.sig_en = sig_en;
- pi.sig_addr = wr_addr.extract(cell_port_i*mem_abits, mem_abits);
- pi.sig_data = wr_data.extract(cell_port_i*mem_width, mem_width);
+ pi.sig_addr = port.addr;
+ pi.sig_data = port.data;
bram_port_i++;
goto mapped_wr_port;
// assign read ports
- for (int cell_port_i = 0; cell_port_i < rd_ports; cell_port_i++)
+ for (int cell_port_i = 0; cell_port_i < GetSize(mem.rd_ports); cell_port_i++)
{
- bool clken = rd_clken[cell_port_i] == State::S1;
- bool clkpol = rd_clkpol[cell_port_i] == State::S1;
- bool transp = rd_transp[cell_port_i] == State::S1;
- SigBit clksig = rd_clk[cell_port_i];
+ auto &port = mem.rd_ports[cell_port_i];
+ bool transp = port.transparent;
- if (wr_ports == 0)
+ if (mem.wr_ports.empty())
transp = false;
- pair<SigBit, bool> clkdom(clksig, clkpol);
- if (!clken)
+ pair<SigBit, bool> clkdom(port.clk, port.clk_polarity);
+ if (!port.clk_enable)
clkdom = pair<SigBit, bool>(State::S1, false);
log(" Read port #%d is in clock domain %s%s.\n",
cell_port_i, clkdom.second ? "" : "!",
- clken ? log_signal(clkdom.first) : "~async~");
+ port.clk_enable ? log_signal(clkdom.first) : "~async~");
for (int bram_port_i = 0; bram_port_i < GetSize(portinfos); bram_port_i++)
{
skip_bram_rport:
continue;
- if (clken) {
+ if (port.clk_enable) {
if (pi.clocks == 0) {
if (match.make_outreg) {
pi.make_outreg = true;
log(" Bram port %c%d.%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
- if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) {
+ if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != port.clk_polarity) {
log(" Bram port %c%d.%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
- if (rd_en[cell_port_i] != State::S1 && pi.enable == 0) {
+ if (port.en != State::S1 && pi.enable == 0) {
log(" Bram port %c%d.%d has no read enable input.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
skip_bram_rport_clkcheck:
if (read_transp.count(pi.transp) && read_transp.at(pi.transp) != transp) {
- if (match.make_transp && wr_ports <= 1) {
+ if (match.make_transp && GetSize(mem.wr_ports) <= 1) {
pi.make_transp = true;
if (pi.clocks != 0) {
- if (wr_ports == 1 && wr_clkdom != clkdom) {
+ if (GetSize(mem.wr_ports) == 1 && wr_clkdom != clkdom) {
log(" Bram port %c%d.%d cannot have soft transparency logic added as read and write clock domains differ.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
log(" Mapped to bram port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
pi.mapped_port = cell_port_i;
- if (clken) {
+ if (port.clk_enable) {
clock_domains[pi.clocks] = clkdom;
clock_polarities[pi.clkpol] = clkdom.second;
if (!pi.make_transp)
read_transp[pi.transp] = transp;
pi.sig_clock = clkdom.first;
- pi.sig_en = rd_en[cell_port_i];
+ pi.sig_en = port.en;
pi.effective_clkpol = clkdom.second;
}
- pi.sig_addr = rd_addr.extract(cell_port_i*mem_abits, mem_abits);
- pi.sig_data = rd_data.extract(cell_port_i*mem_width, mem_width);
+ pi.sig_addr = port.addr;
+ pi.sig_data = port.data;
if (grow_read_ports_cursor < cell_port_i) {
grow_read_ports_cursor = cell_port_i;
match_properties["dups"] = dup_count;
match_properties["waste"] = match_properties["dups"] * match_properties["bwaste"];
- int cells = ((mem_width + bram.dbits - 1) / bram.dbits) * ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits));
+ int cells = ((mem.width + bram.dbits - 1) / bram.dbits) * ((mem.size + (1 << bram.abits) - 1) / (1 << bram.abits));
match_properties["efficiency"] = (100 * match_properties["bits"]) / (dup_count * cells * bram.dbits * (1 << bram.abits));
- match_properties["dcells"] = ((mem_width + bram.dbits - 1) / bram.dbits);
- match_properties["acells"] = ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits));
+ match_properties["dcells"] = ((mem.width + bram.dbits - 1) / bram.dbits);
+ match_properties["acells"] = ((mem.size + (1 << bram.abits) - 1) / (1 << bram.abits));
match_properties["cells"] = match_properties["dcells"] * match_properties["acells"] * match_properties["dups"];
log(" Updated properties: dups=%d waste=%d efficiency=%d\n",
bool exists = std::get<0>(term);
IdString key = std::get<1>(term);
const Const &value = std::get<2>(term);
- auto it = cell->attributes.find(key);
- if (it == cell->attributes.end()) {
+ auto it = mem.attributes.find(key);
+ if (it == mem.attributes.end()) {
if (exists)
continue;
found = true;
dict<SigSpec, pair<SigSpec, SigSpec>> dout_cache;
- for (int grid_d = 0; grid_d*bram.dbits < mem_width; grid_d++)
+ for (int grid_d = 0; grid_d*bram.dbits < mem.width; grid_d++)
{
SigSpec mktr_wraddr, mktr_wrdata, mktr_wrdata_q;
vector<SigSpec> mktr_wren;
mktr_wrdata = module->addWire(NEW_ID, bram.dbits);
mktr_wrdata_q = module->addWire(NEW_ID, bram.dbits);
module->addDff(NEW_ID, make_transp_clk.first, mktr_wrdata, mktr_wrdata_q, make_transp_clk.second);
- for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
+ for (int grid_a = 0; grid_a*(1 << bram.abits) < mem.size; grid_a++)
mktr_wren.push_back(module->addWire(NEW_ID, make_transp_enbits));
}
- for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
+ for (int grid_a = 0; grid_a*(1 << bram.abits) < mem.size; grid_a++)
for (int dupidx = 0; dupidx < dup_count; dupidx++)
{
- Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", cell->name.c_str(), grid_d, grid_a, dupidx)), bram.name);
+ Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", mem.memid.c_str(), grid_d, grid_a, dupidx)), bram.name);
log(" Creating %s cell at grid position <%d %d %d>: %s\n", log_id(bram.name), grid_d, grid_a, dupidx, log_id(c));
for (auto &vp : variant_params)
}
}
- module->remove(cell);
+ mem.remove();
return true;
}
-void handle_cell(Cell *cell, const rules_t &rules)
+void handle_memory(Mem &mem, const rules_t &rules)
{
- log("Processing %s.%s:\n", log_id(cell->module), log_id(cell));
+ log("Processing %s.%s:\n", log_id(mem.module), log_id(mem.memid));
- bool cell_init = !SigSpec(cell->getParam(ID::INIT)).is_fully_undef();
+ bool cell_init = !mem.inits.empty();
dict<string, int> match_properties;
- match_properties["words"] = cell->getParam(ID::SIZE).as_int();
- match_properties["abits"] = cell->getParam(ID::ABITS).as_int();
- match_properties["dbits"] = cell->getParam(ID::WIDTH).as_int();
- match_properties["wports"] = cell->getParam(ID::WR_PORTS).as_int();
- match_properties["rports"] = cell->getParam(ID::RD_PORTS).as_int();
+ match_properties["words"] = mem.size;
+ match_properties["abits"] = ceil_log2(mem.size);
+ match_properties["dbits"] = mem.width;
+ match_properties["wports"] = GetSize(mem.wr_ports);
+ match_properties["rports"] = GetSize(mem.rd_ports);
match_properties["bits"] = match_properties["words"] * match_properties["dbits"];
match_properties["ports"] = match_properties["wports"] + match_properties["rports"];
bool exists = std::get<0>(term);
IdString key = std::get<1>(term);
const Const &value = std::get<2>(term);
- auto it = cell->attributes.find(key);
- if (it == cell->attributes.end()) {
+ auto it = mem.attributes.find(key);
+ if (it == mem.attributes.end()) {
if (exists)
continue;
found = true;
if (or_next_if_better && i+1 == GetSize(rules.matches) && vi+1 == GetSize(rules.brams.at(match.name)))
log_error("Found 'or_next_if_better' in last match rule.\n");
- if (!replace_cell(cell, rules, bram, match, match_properties, 1)) {
+ if (!replace_memory(mem, rules, bram, match, match_properties, 1)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
goto next_match_rule;
best_rule_cache.clear();
auto &best_bram = rules.brams.at(rules.matches.at(best_rule.first).name).at(best_rule.second);
- if (!replace_cell(cell, rules, best_bram, rules.matches.at(best_rule.first), match_properties, 2))
+ if (!replace_memory(mem, rules, best_bram, rules.matches.at(best_rule.first), match_properties, 2))
log_error("Mapping to bram type %s (variant %d) after pre-selection failed.\n", log_id(best_bram.name), best_bram.variant);
return;
}
- if (!replace_cell(cell, rules, bram, match, match_properties, 0)) {
+ if (!replace_memory(mem, rules, bram, match, match_properties, 0)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
goto next_match_rule;
extra_args(args, argidx, design);
for (auto mod : design->selected_modules())
- for (auto cell : mod->selected_cells())
- if (cell->type == ID($mem))
- handle_cell(cell, rules);
+ for (auto &mem : Mem::get_selected_memories(mod))
+ handle_memory(mem, rules);
}
} MemoryBramPass;