#include <signal.h>
#include <sys/syscall.h>
+#include <ucontext.h>
+#include <limits.h>
#define HANDLE_SEGV 1
-#undef HANDLE_FPE
+#define HANDLE_FPE 1
#define SIGNAL_HANDLER(_name) \
-static void _name (int, siginfo_t *, void *)
+static void _name (int, siginfo_t *_si __attribute__((unused)), \
+ ucontext_t *_uc __attribute__((unused)))
/* We no longer need to fiddle with the PSW address in the signal handler;
this is now all handled correctly in MD_FALLBACK_FRAME_STATE_FOR. */
#define MAKE_THROW_FRAME(_exception)
+/* According to the JVM spec, "if the dividend is the negative integer
+ of the smallest magnitude and the divisor is -1, then overflow occurs
+ and the result is equal to the dividend. Despite the overflow, no
+ exception occurs".
+
+ We handle this by inspecting the instruction which generated the signal,
+ and if dividend and divisor are as above, we simply return from the signal
+ handler. This causes execution to continue after the instruction.
+ Before returning, we the set result registers as expected. */
+
+#define HANDLE_DIVIDE_OVERFLOW \
+do \
+{ \
+ unsigned char *_eip = (unsigned char *) \
+ __builtin_extract_return_addr (_si->si_addr); \
+ unsigned long *_regs = _uc->uc_mcontext.gregs; \
+ int _r1, _r2, _d2, _x2, _b2; \
+ \
+ /* First, a couple of helper routines to decode instructions. */ \
+ struct _decode \
+ { \
+ /* Decode RR instruction format. */ \
+ static inline int _is_rr (unsigned char *_eip, \
+ unsigned char _op, \
+ int *_r1, int *_r2) \
+ { \
+ if (_eip[0] == _op) \
+ { \
+ *_r1 = _eip[1] >> 4; \
+ *_r2 = _eip[1] & 0xf; \
+ return 1; \
+ } \
+ return 0; \
+ } \
+ \
+ /* Decode RX instruction format. */ \
+ static inline int _is_rx (unsigned char *_eip, \
+ unsigned char _op, \
+ int *_r1, int *_d2, int *_x2, int *_b2) \
+ { \
+ if (_eip[0] == _op) \
+ { \
+ *_r1 = _eip[1] >> 4; \
+ *_x2 = _eip[1] & 0xf; \
+ *_b2 = _eip[2] >> 4; \
+ *_d2 = ((_eip[2] & 0xf) << 8) + _eip[3]; \
+ return 1; \
+ } \
+ return 0; \
+ } \
+ \
+ /* Decode RRE instruction format. */ \
+ static inline int _is_rre (unsigned char *_eip, \
+ unsigned char _op1, unsigned char _op2,\
+ int *_r1, int *_r2) \
+ { \
+ if (_eip[0] == _op1 && _eip[1] == _op2) \
+ { \
+ *_r1 = _eip[3] >> 4; \
+ *_r2 = _eip[3] & 0xf; \
+ return 1; \
+ } \
+ return 0; \
+ } \
+ \
+ /* Decode RXY instruction format. */ \
+ static inline int _is_rxy (unsigned char *_eip, \
+ unsigned char _op1, unsigned char _op2,\
+ int *_r1, int *_d2, int *_x2, int *_b2)\
+ { \
+ if (_eip[0] == _op1 && _eip[5] == _op2) \
+ { \
+ *_r1 = _eip[1] >> 4; \
+ *_x2 = _eip[1] & 0xf; \
+ *_b2 = _eip[2] >> 4; \
+ *_d2 = ((_eip[2] & 0xf) << 8) + _eip[3] + (_eip[4] << 12); \
+ /* We have a 20-bit signed displacement. */ \
+ *_d2 = (*_d2 ^ 0x80000) - 0x80000; \
+ return 1; \
+ } \
+ return 0; \
+ } \
+ \
+ /* Compute effective address. */ \
+ static inline unsigned long _eff (unsigned long *_regs, \
+ long _d, int _x, int _b) \
+ { \
+ return _d + (_x? _regs[_x] : 0) + (_b? _regs[_b] : 0); \
+ } \
+ }; \
+ \
+ \
+ /* DR r1,r2 */ \
+ if (_decode::_is_rr (_eip, 0x1d, &_r1, &_r2) \
+ && (int) _regs[_r1] == -1 && (int) _regs[_r1+1] == INT_MIN \
+ && (int) _regs[_r2] == -1) \
+ { \
+ _regs[_r1] &= ~0xffffffff; \
+ return; \
+ } \
+ \
+ /* D r1,d2(x2,b2) */ \
+ if (_decode::_is_rx (_eip, 0x5d, &_r1, &_d2, &_x2, &_b2) \
+ && (int) _regs[_r1] == -1 && (int) _regs[_r1+1] == INT_MIN \
+ && *(int *) _decode::_eff (_regs, _d2, _x2, _b2) == -1) \
+ { \
+ _regs[_r1] &= ~0xffffffff; \
+ return; \
+ } \
+ \
+ /* DSGR r1,r2 */ \
+ if (_decode::_is_rre (_eip, 0xb9, 0x0d, &_r1, &_r2) \
+ && (long) _regs[_r1+1] == LONG_MIN \
+ && (long) _regs[_r2] == -1L) \
+ { \
+ _regs[_r1] = 0; \
+ return; \
+ } \
+ \
+ /* DSGFR r1,r2 */ \
+ if (_decode::_is_rre (_eip, 0xb9, 0x1d, &_r1, &_r2) \
+ && (long) _regs[_r1+1] == LONG_MIN \
+ && (int) _regs[_r2] == -1) \
+ { \
+ _regs[_r1] = 0; \
+ return; \
+ } \
+ \
+ /* DSG r1,d2(x2,b2) */ \
+ if (_decode::_is_rxy (_eip, 0xe3, 0x0d, &_r1, &_d2, &_x2, &_b2) \
+ && (long) _regs[_r1+1] == LONG_MIN \
+ && *(long *) _decode::_eff (_regs, _d2, _x2, _b2) == -1L) \
+ { \
+ _regs[_r1] = 0; \
+ return; \
+ } \
+ \
+ /* DSGF r1,d2(x2,b2) */ \
+ if (_decode::_is_rxy (_eip, 0xe3, 0x1d, &_r1, &_d2, &_x2, &_b2) \
+ && (long) _regs[_r1+1] == LONG_MIN \
+ && *(int *) _decode::_eff (_regs, _d2, _x2, _b2) == -1) \
+ { \
+ _regs[_r1] = 0; \
+ return; \
+ } \
+ \
+} \
+while (0)
+
/* For an explanation why we cannot simply use sigaction to
install the handlers, see i386-signal.h. */
visible to us in a header file so we define it here. */
struct old_s390_kernel_sigaction {
- void (*k_sa_handler) (int, siginfo_t *, void *);
+ void (*k_sa_handler) (int, siginfo_t *, ucontext_t *);
unsigned long k_sa_mask;
unsigned long k_sa_flags;
void (*sa_restorer) (void);