/* Type of Basic Block aka. TBB */
typedef unsigned int TBB;
-/* We work in a poor-mans object oriented fashion, and carry an instance of
- this structure through all our 'methods'. It holds various arrays
- reflecting the (sub)structure of the flowgraph. Most of them are of type
- TBB and are also indexed by TBB. */
+namespace {
-struct dom_info
+/* This class holds various arrays reflecting the (sub)structure of the
+ flowgraph. Most of them are of type TBB and are also indexed by TBB. */
+
+class dom_info
{
+public:
+ dom_info (function *, cdi_direction);
+ ~dom_info ();
+ void calc_dfs_tree ();
+ void calc_idoms ();
+
+ inline basic_block get_idom (basic_block);
+private:
+ void calc_dfs_tree_nonrec (basic_block);
+ void compress (TBB);
+ TBB eval (TBB);
+ void link_roots (TBB, TBB);
+
/* The parent of a node in the DFS tree. */
- TBB *dfs_parent;
- /* For a node x key[x] is roughly the node nearest to the root from which
+ TBB *m_dfs_parent;
+ /* For a node x m_key[x] is roughly the node nearest to the root from which
exists a way to x only over nodes behind x. Such a node is also called
semidominator. */
- TBB *key;
- /* The value in path_min[x] is the node y on the path from x to the root of
- the tree x is in with the smallest key[y]. */
- TBB *path_min;
- /* bucket[x] points to the first node of the set of nodes having x as key. */
- TBB *bucket;
- /* And next_bucket[x] points to the next node. */
- TBB *next_bucket;
- /* After the algorithm is done, dom[x] contains the immediate dominator
+ TBB *m_key;
+ /* The value in m_path_min[x] is the node y on the path from x to the root of
+ the tree x is in with the smallest m_key[y]. */
+ TBB *m_path_min;
+ /* m_bucket[x] points to the first node of the set of nodes having x as
+ key. */
+ TBB *m_bucket;
+ /* And m_next_bucket[x] points to the next node. */
+ TBB *m_next_bucket;
+ /* After the algorithm is done, m_dom[x] contains the immediate dominator
of x. */
- TBB *dom;
+ TBB *m_dom;
/* The following few fields implement the structures needed for disjoint
sets. */
- /* set_chain[x] is the next node on the path from x to the representative
- of the set containing x. If set_chain[x]==0 then x is a root. */
- TBB *set_chain;
- /* set_size[x] is the number of elements in the set named by x. */
- unsigned int *set_size;
- /* set_child[x] is used for balancing the tree representing a set. It can
+ /* m_set_chain[x] is the next node on the path from x to the representative
+ of the set containing x. If m_set_chain[x]==0 then x is a root. */
+ TBB *m_set_chain;
+ /* m_set_size[x] is the number of elements in the set named by x. */
+ unsigned int *m_set_size;
+ /* m_set_child[x] is used for balancing the tree representing a set. It can
be understood as the next sibling of x. */
- TBB *set_child;
+ TBB *m_set_child;
- /* If b is the number of a basic block (BB->index), dfs_order[b] is the
+ /* If b is the number of a basic block (BB->index), m_dfs_order[b] is the
number of that node in DFS order counted from 1. This is an index
into most of the other arrays in this structure. */
- TBB *dfs_order;
+ TBB *m_dfs_order;
+ /* Points to last element in m_dfs_order array. */
+ TBB *m_dfs_last;
/* If x is the DFS-index of a node which corresponds with a basic block,
- dfs_to_bb[x] is that basic block. Note, that in our structure there are
- more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
- is true for every basic block bb, but not the opposite. */
- basic_block *dfs_to_bb;
+ m_dfs_to_bb[x] is that basic block. Note, that in our structure there are
+ more nodes that basic blocks, so only
+ m_dfs_to_bb[m_dfs_order[bb->index]]==bb is true for every basic block bb,
+ but not the opposite. */
+ basic_block *m_dfs_to_bb;
/* This is the next free DFS number when creating the DFS tree. */
- unsigned int dfsnum;
- /* The number of nodes in the DFS tree (==dfsnum-1). */
- unsigned int nodes;
+ unsigned int m_dfsnum;
+ /* The number of nodes in the DFS tree (==m_dfsnum-1). */
+ unsigned int m_nodes;
/* Blocks with bits set here have a fake edge to EXIT. These are used
to turn a DFS forest into a proper tree. */
- bitmap fake_exit_edge;
+ bitmap m_fake_exit_edge;
+
+ /* Number of basic blocks in the function being compiled. */
+ size_t m_n_basic_blocks;
+
+ /* True, if we are computing postdominators (rather than dominators). */
+ bool m_reverse;
+
+ /* Start block (the entry block for forward problem, exit block for backward
+ problem). */
+ basic_block m_start_block;
+ /* Ending block. */
+ basic_block m_end_block;
};
-static void init_dom_info (struct dom_info *, enum cdi_direction);
-static void free_dom_info (struct dom_info *);
-static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
-static void calc_dfs_tree (struct dom_info *, bool);
-static void compress (struct dom_info *, TBB);
-static TBB eval (struct dom_info *, TBB);
-static void link_roots (struct dom_info *, TBB, TBB);
-static void calc_idoms (struct dom_info *, bool);
-void debug_dominance_info (enum cdi_direction);
-void debug_dominance_tree (enum cdi_direction, basic_block);
-
-/* Helper macro for allocating and initializing an array,
- for aesthetic reasons. */
-#define init_ar(var, type, num, content) \
- do \
- { \
- unsigned int i = 1; /* Catch content == i. */ \
- if (! (content)) \
- (var) = XCNEWVEC (type, num); \
- else \
- { \
- (var) = XNEWVEC (type, (num)); \
- for (i = 0; i < num; i++) \
- (var)[i] = (content); \
- } \
- } \
- while (0)
-
-/* Allocate all needed memory in a pessimistic fashion (so we round up).
- This initializes the contents of DI, which already must be allocated. */
+} // anonymous namespace
-static void
-init_dom_info (struct dom_info *di, enum cdi_direction dir)
+void debug_dominance_info (cdi_direction);
+void debug_dominance_tree (cdi_direction, basic_block);
+
+/* Allocate and zero-initialize NUM elements of type T (T must be a
+ POD-type). Note: after transition to C++11 or later,
+ `x = new_zero_array <T> (num);' can be replaced with
+ `x = new T[num] {};'. */
+
+template<typename T>
+inline T *new_zero_array (size_t num)
+{
+ T *result = new T[num];
+ memset (result, 0, sizeof (T) * num);
+ return result;
+}
+
+/* Allocate all needed memory in a pessimistic fashion (so we round up). */
+
+dom_info::dom_info (function *fn, cdi_direction dir)
{
/* We need memory for n_basic_blocks nodes. */
- unsigned int num = n_basic_blocks_for_fn (cfun);
- init_ar (di->dfs_parent, TBB, num, 0);
- init_ar (di->path_min, TBB, num, i);
- init_ar (di->key, TBB, num, i);
- init_ar (di->dom, TBB, num, 0);
+ size_t num = m_n_basic_blocks = n_basic_blocks_for_fn (fn);
+ m_dfs_parent = new_zero_array <TBB> (num);
+ m_dom = new_zero_array <TBB> (num);
+
+ m_path_min = new TBB[num];
+ m_key = new TBB[num];
+ m_set_size = new unsigned int[num];
+ for (size_t i = 0; i < num; i++)
+ {
+ m_path_min[i] = m_key[i] = i;
+ m_set_size[i] = 1;
+ }
- init_ar (di->bucket, TBB, num, 0);
- init_ar (di->next_bucket, TBB, num, 0);
+ m_bucket = new_zero_array <TBB> (num);
+ m_next_bucket = new_zero_array <TBB> (num);
- init_ar (di->set_chain, TBB, num, 0);
- init_ar (di->set_size, unsigned int, num, 1);
- init_ar (di->set_child, TBB, num, 0);
+ m_set_chain = new_zero_array <TBB> (num);
+ m_set_child = new_zero_array <TBB> (num);
- init_ar (di->dfs_order, TBB,
- (unsigned int) last_basic_block_for_fn (cfun) + 1, 0);
- init_ar (di->dfs_to_bb, basic_block, num, 0);
+ unsigned last_bb_index = last_basic_block_for_fn (fn);
+ m_dfs_order = new_zero_array <TBB> (last_bb_index + 1);
+ m_dfs_last = &m_dfs_order[last_bb_index];
+ m_dfs_to_bb = new_zero_array <basic_block> (num);
- di->dfsnum = 1;
- di->nodes = 0;
+ m_dfsnum = 1;
+ m_nodes = 0;
switch (dir)
{
case CDI_DOMINATORS:
- di->fake_exit_edge = NULL;
+ m_reverse = false;
+ m_fake_exit_edge = NULL;
+ m_start_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
+ m_end_block = EXIT_BLOCK_PTR_FOR_FN (fn);
break;
case CDI_POST_DOMINATORS:
- di->fake_exit_edge = BITMAP_ALLOC (NULL);
+ m_reverse = true;
+ m_fake_exit_edge = BITMAP_ALLOC (NULL);
+ m_start_block = EXIT_BLOCK_PTR_FOR_FN (fn);
+ m_end_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
break;
default:
gcc_unreachable ();
- break;
}
}
-#undef init_ar
+inline basic_block
+dom_info::get_idom (basic_block bb)
+{
+ TBB d = m_dom[m_dfs_order[bb->index]];
+ return m_dfs_to_bb[d];
+}
/* Map dominance calculation type to array index used for various
dominance information arrays. This version is simple -- it will need
to be modified, obviously, if additional values are added to
cdi_direction. */
-static unsigned int
-dom_convert_dir_to_idx (enum cdi_direction dir)
+static inline unsigned int
+dom_convert_dir_to_idx (cdi_direction dir)
{
gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
return dir - 1;
}
-/* Free all allocated memory in DI, but not DI itself. */
+/* Free all allocated memory in dom_info. */
-static void
-free_dom_info (struct dom_info *di)
+dom_info::~dom_info ()
{
- free (di->dfs_parent);
- free (di->path_min);
- free (di->key);
- free (di->dom);
- free (di->bucket);
- free (di->next_bucket);
- free (di->set_chain);
- free (di->set_size);
- free (di->set_child);
- free (di->dfs_order);
- free (di->dfs_to_bb);
- BITMAP_FREE (di->fake_exit_edge);
+ delete[] m_dfs_parent;
+ delete[] m_path_min;
+ delete[] m_key;
+ delete[] m_dom;
+ delete[] m_bucket;
+ delete[] m_next_bucket;
+ delete[] m_set_chain;
+ delete[] m_set_size;
+ delete[] m_set_child;
+ delete[] m_dfs_order;
+ delete[] m_dfs_to_bb;
+ BITMAP_FREE (m_fake_exit_edge);
}
-/* The nonrecursive variant of creating a DFS tree. DI is our working
- structure, BB the starting basic block for this tree and REVERSE
- is true, if predecessors should be visited instead of successors of a
- node. After this is done all nodes reachable from BB were visited, have
- assigned their dfs number and are linked together to form a tree. */
+/* The nonrecursive variant of creating a DFS tree. BB is the starting basic
+ block for this tree and m_reverse is true, if predecessors should be visited
+ instead of successors of a node. After this is done all nodes reachable
+ from BB were visited, have assigned their dfs number and are linked together
+ to form a tree. */
-static void
-calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
+void
+dom_info::calc_dfs_tree_nonrec (basic_block bb)
{
- /* We call this _only_ if bb is not already visited. */
- edge e;
- TBB child_i, my_i = 0;
- edge_iterator *stack;
- edge_iterator ei, einext;
- int sp;
- /* Start block (the entry block for forward problem, exit block for backward
- problem). */
- basic_block en_block;
- /* Ending block. */
- basic_block ex_block;
-
- stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
- sp = 0;
+ edge_iterator *stack = new edge_iterator[m_n_basic_blocks + 1];
+ int sp = 0;
- /* Initialize our border blocks, and the first edge. */
- if (reverse)
- {
- ei = ei_start (bb->preds);
- en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
- ex_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
- }
- else
- {
- ei = ei_start (bb->succs);
- en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
- ex_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
- }
+ /* Initialize the first edge. */
+ edge_iterator ei = m_reverse ? ei_start (bb->preds)
+ : ei_start (bb->succs);
/* When the stack is empty we break out of this loop. */
while (1)
{
basic_block bn;
+ edge_iterator einext;
/* This loop traverses edges e in depth first manner, and fills the
stack. */
while (!ei_end_p (ei))
{
- e = ei_edge (ei);
+ edge e = ei_edge (ei);
/* Deduce from E the current and the next block (BB and BN), and the
next edge. */
- if (reverse)
+ if (m_reverse)
{
bn = e->src;
/* If the next node BN is either already visited or a border
block the current edge is useless, and simply overwritten
with the next edge out of the current node. */
- if (bn == ex_block || di->dfs_order[bn->index])
+ if (bn == m_end_block || m_dfs_order[bn->index])
{
ei_next (&ei);
continue;
else
{
bn = e->dest;
- if (bn == ex_block || di->dfs_order[bn->index])
+ if (bn == m_end_block || m_dfs_order[bn->index])
{
ei_next (&ei);
continue;
einext = ei_start (bn->succs);
}
- gcc_assert (bn != en_block);
+ gcc_assert (bn != m_start_block);
/* Fill the DFS tree info calculatable _before_ recursing. */
- if (bb != en_block)
- my_i = di->dfs_order[bb->index];
+ TBB my_i;
+ if (bb != m_start_block)
+ my_i = m_dfs_order[bb->index];
else
- my_i = di->dfs_order[last_basic_block_for_fn (cfun)];
- child_i = di->dfs_order[bn->index] = di->dfsnum++;
- di->dfs_to_bb[child_i] = bn;
- di->dfs_parent[child_i] = my_i;
+ my_i = *m_dfs_last;
+ TBB child_i = m_dfs_order[bn->index] = m_dfsnum++;
+ m_dfs_to_bb[child_i] = bn;
+ m_dfs_parent[child_i] = my_i;
/* Save the current point in the CFG on the stack, and recurse. */
stack[sp++] = ei;
descendants or the tree depth. */
ei_next (&ei);
}
- free (stack);
+ delete[] stack;
}
-/* The main entry for calculating the DFS tree or forest. DI is our working
- structure and REVERSE is true, if we are interested in the reverse flow
- graph. In that case the result is not necessarily a tree but a forest,
- because there may be nodes from which the EXIT_BLOCK is unreachable. */
+/* The main entry for calculating the DFS tree or forest. m_reverse is true,
+ if we are interested in the reverse flow graph. In that case the result is
+ not necessarily a tree but a forest, because there may be nodes from which
+ the EXIT_BLOCK is unreachable. */
-static void
-calc_dfs_tree (struct dom_info *di, bool reverse)
+void
+dom_info::calc_dfs_tree ()
{
- /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
- basic_block begin = (reverse
- ? EXIT_BLOCK_PTR_FOR_FN (cfun) : ENTRY_BLOCK_PTR_FOR_FN (cfun));
- di->dfs_order[last_basic_block_for_fn (cfun)] = di->dfsnum;
- di->dfs_to_bb[di->dfsnum] = begin;
- di->dfsnum++;
+ *m_dfs_last = m_dfsnum;
+ m_dfs_to_bb[m_dfsnum] = m_start_block;
+ m_dfsnum++;
- calc_dfs_tree_nonrec (di, begin, reverse);
+ calc_dfs_tree_nonrec (m_start_block);
- if (reverse)
+ if (m_reverse)
{
/* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
They are reverse-unreachable. In the dom-case we disallow such
basic_block b;
bool saw_unconnected = false;
- FOR_EACH_BB_REVERSE_FN (b, cfun)
+ FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
{
if (EDGE_COUNT (b->succs) > 0)
{
- if (di->dfs_order[b->index] == 0)
+ if (m_dfs_order[b->index] == 0)
saw_unconnected = true;
continue;
}
- bitmap_set_bit (di->fake_exit_edge, b->index);
- di->dfs_order[b->index] = di->dfsnum;
- di->dfs_to_bb[di->dfsnum] = b;
- di->dfs_parent[di->dfsnum] =
- di->dfs_order[last_basic_block_for_fn (cfun)];
- di->dfsnum++;
- calc_dfs_tree_nonrec (di, b, reverse);
+ bitmap_set_bit (m_fake_exit_edge, b->index);
+ m_dfs_order[b->index] = m_dfsnum;
+ m_dfs_to_bb[m_dfsnum] = b;
+ m_dfs_parent[m_dfsnum] = *m_dfs_last;
+ m_dfsnum++;
+ calc_dfs_tree_nonrec (b);
}
if (saw_unconnected)
{
- FOR_EACH_BB_REVERSE_FN (b, cfun)
+ FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
{
- basic_block b2;
- if (di->dfs_order[b->index])
+ if (m_dfs_order[b->index])
continue;
- b2 = dfs_find_deadend (b);
- gcc_checking_assert (di->dfs_order[b2->index] == 0);
- bitmap_set_bit (di->fake_exit_edge, b2->index);
- di->dfs_order[b2->index] = di->dfsnum;
- di->dfs_to_bb[di->dfsnum] = b2;
- di->dfs_parent[di->dfsnum] =
- di->dfs_order[last_basic_block_for_fn (cfun)];
- di->dfsnum++;
- calc_dfs_tree_nonrec (di, b2, reverse);
- gcc_checking_assert (di->dfs_order[b->index]);
+ basic_block b2 = dfs_find_deadend (b);
+ gcc_checking_assert (m_dfs_order[b2->index] == 0);
+ bitmap_set_bit (m_fake_exit_edge, b2->index);
+ m_dfs_order[b2->index] = m_dfsnum;
+ m_dfs_to_bb[m_dfsnum] = b2;
+ m_dfs_parent[m_dfsnum] = *m_dfs_last;
+ m_dfsnum++;
+ calc_dfs_tree_nonrec (b2);
+ gcc_checking_assert (m_dfs_order[b->index]);
}
}
}
- di->nodes = di->dfsnum - 1;
+ m_nodes = m_dfsnum - 1;
/* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
- gcc_assert (di->nodes == (unsigned int) n_basic_blocks_for_fn (cfun) - 1);
+ gcc_assert (m_nodes == (unsigned int) m_n_basic_blocks - 1);
}
/* Compress the path from V to the root of its set and update path_min at the
in and path_min[V] is the node with the smallest key[] value on the path
from V to that root. */
-static void
-compress (struct dom_info *di, TBB v)
+void
+dom_info::compress (TBB v)
{
/* Btw. It's not worth to unrecurse compress() as the depth is usually not
greater than 5 even for huge graphs (I've not seen call depth > 4).
Also performance wise compress() ranges _far_ behind eval(). */
- TBB parent = di->set_chain[v];
- if (di->set_chain[parent])
+ TBB parent = m_set_chain[v];
+ if (m_set_chain[parent])
{
- compress (di, parent);
- if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
- di->path_min[v] = di->path_min[parent];
- di->set_chain[v] = di->set_chain[parent];
+ compress (parent);
+ if (m_key[m_path_min[parent]] < m_key[m_path_min[v]])
+ m_path_min[v] = m_path_min[parent];
+ m_set_chain[v] = m_set_chain[parent];
}
}
changed since the last call). Returns the node with the smallest key[]
value on the path from V to the root. */
-static inline TBB
-eval (struct dom_info *di, TBB v)
+inline TBB
+dom_info::eval (TBB v)
{
/* The representative of the set V is in, also called root (as the set
representation is a tree). */
- TBB rep = di->set_chain[v];
+ TBB rep = m_set_chain[v];
/* V itself is the root. */
if (!rep)
- return di->path_min[v];
+ return m_path_min[v];
/* Compress only if necessary. */
- if (di->set_chain[rep])
+ if (m_set_chain[rep])
{
- compress (di, v);
- rep = di->set_chain[v];
+ compress (v);
+ rep = m_set_chain[v];
}
- if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
- return di->path_min[v];
+ if (m_key[m_path_min[rep]] >= m_key[m_path_min[v]])
+ return m_path_min[v];
else
- return di->path_min[rep];
+ return m_path_min[rep];
}
/* This essentially merges the two sets of V and W, giving a single set with
balanced tree. Currently link(V,W) is only used with V being the parent
of W. */
-static void
-link_roots (struct dom_info *di, TBB v, TBB w)
+void
+dom_info::link_roots (TBB v, TBB w)
{
TBB s = w;
/* Rebalance the tree. */
- while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
+ while (m_key[m_path_min[w]] < m_key[m_path_min[m_set_child[s]]])
{
- if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
- >= 2 * di->set_size[di->set_child[s]])
+ if (m_set_size[s] + m_set_size[m_set_child[m_set_child[s]]]
+ >= 2 * m_set_size[m_set_child[s]])
{
- di->set_chain[di->set_child[s]] = s;
- di->set_child[s] = di->set_child[di->set_child[s]];
+ m_set_chain[m_set_child[s]] = s;
+ m_set_child[s] = m_set_child[m_set_child[s]];
}
else
{
- di->set_size[di->set_child[s]] = di->set_size[s];
- s = di->set_chain[s] = di->set_child[s];
+ m_set_size[m_set_child[s]] = m_set_size[s];
+ s = m_set_chain[s] = m_set_child[s];
}
}
- di->path_min[s] = di->path_min[w];
- di->set_size[v] += di->set_size[w];
- if (di->set_size[v] < 2 * di->set_size[w])
- std::swap (di->set_child[v], s);
+ m_path_min[s] = m_path_min[w];
+ m_set_size[v] += m_set_size[w];
+ if (m_set_size[v] < 2 * m_set_size[w])
+ std::swap (m_set_child[v], s);
/* Merge all subtrees. */
while (s)
{
- di->set_chain[s] = v;
- s = di->set_child[s];
+ m_set_chain[s] = v;
+ s = m_set_child[s];
}
}
-/* This calculates the immediate dominators (or post-dominators if REVERSE is
- true). DI is our working structure and should hold the DFS forest.
- On return the immediate dominator to node V is in di->dom[V]. */
+/* This calculates the immediate dominators (or post-dominators). THIS is our
+ working structure and should hold the DFS forest.
+ On return the immediate dominator to node V is in m_dom[V]. */
-static void
-calc_idoms (struct dom_info *di, bool reverse)
+void
+dom_info::calc_idoms ()
{
- TBB v, w, k, par;
- basic_block en_block;
- edge_iterator ei, einext;
-
- if (reverse)
- en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
- else
- en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
-
/* Go backwards in DFS order, to first look at the leafs. */
- v = di->nodes;
- while (v > 1)
+ for (TBB v = m_nodes; v > 1; v--)
{
- basic_block bb = di->dfs_to_bb[v];
+ basic_block bb = m_dfs_to_bb[v];
edge e;
- par = di->dfs_parent[v];
- k = v;
+ TBB par = m_dfs_parent[v];
+ TBB k = v;
- ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
+ edge_iterator ei = m_reverse ? ei_start (bb->succs)
+ : ei_start (bb->preds);
+ edge_iterator einext;
- if (reverse)
+ if (m_reverse)
{
/* If this block has a fake edge to exit, process that first. */
- if (bitmap_bit_p (di->fake_exit_edge, bb->index))
+ if (bitmap_bit_p (m_fake_exit_edge, bb->index))
{
einext = ei;
einext.index = 0;
semidominator. */
while (!ei_end_p (ei))
{
- TBB k1;
basic_block b;
+ TBB k1;
e = ei_edge (ei);
- b = (reverse) ? e->dest : e->src;
+ b = m_reverse ? e->dest : e->src;
einext = ei;
ei_next (&einext);
- if (b == en_block)
+ if (b == m_start_block)
{
do_fake_exit_edge:
- k1 = di->dfs_order[last_basic_block_for_fn (cfun)];
+ k1 = *m_dfs_last;
}
else
- k1 = di->dfs_order[b->index];
+ k1 = m_dfs_order[b->index];
/* Call eval() only if really needed. If k1 is above V in DFS tree,
then we know, that eval(k1) == k1 and key[k1] == k1. */
if (k1 > v)
- k1 = di->key[eval (di, k1)];
+ k1 = m_key[eval (k1)];
if (k1 < k)
k = k1;
ei = einext;
}
- di->key[v] = k;
- link_roots (di, par, v);
- di->next_bucket[v] = di->bucket[k];
- di->bucket[k] = v;
+ m_key[v] = k;
+ link_roots (par, v);
+ m_next_bucket[v] = m_bucket[k];
+ m_bucket[k] = v;
/* Transform semidominators into dominators. */
- for (w = di->bucket[par]; w; w = di->next_bucket[w])
+ for (TBB w = m_bucket[par]; w; w = m_next_bucket[w])
{
- k = eval (di, w);
- if (di->key[k] < di->key[w])
- di->dom[w] = k;
+ k = eval (w);
+ if (m_key[k] < m_key[w])
+ m_dom[w] = k;
else
- di->dom[w] = par;
+ m_dom[w] = par;
}
/* We don't need to cleanup next_bucket[]. */
- di->bucket[par] = 0;
- v--;
+ m_bucket[par] = 0;
}
/* Explicitly define the dominators. */
- di->dom[1] = 0;
- for (v = 2; v <= di->nodes; v++)
- if (di->dom[v] != di->key[v])
- di->dom[v] = di->dom[di->dom[v]];
+ m_dom[1] = 0;
+ for (TBB v = 2; v <= m_nodes; v++)
+ if (m_dom[v] != m_key[v])
+ m_dom[v] = m_dom[m_dom[v]];
}
/* Assign dfs numbers starting from NUM to NODE and its sons. */
we want to compute dominators or postdominators. */
void
-calculate_dominance_info (enum cdi_direction dir)
+calculate_dominance_info (cdi_direction dir)
{
- struct dom_info di;
- basic_block b;
unsigned int dir_index = dom_convert_dir_to_idx (dir);
- bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
if (dom_computed[dir_index] == DOM_OK)
{
{
gcc_assert (!n_bbs_in_dom_tree[dir_index]);
+ basic_block b;
FOR_ALL_BB_FN (b, cfun)
{
b->dom[dir_index] = et_new_tree (b);
}
n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
- init_dom_info (&di, dir);
- calc_dfs_tree (&di, reverse);
- calc_idoms (&di, reverse);
+ dom_info di (cfun, dir);
+ di.calc_dfs_tree ();
+ di.calc_idoms ();
FOR_EACH_BB_FN (b, cfun)
{
- TBB d = di.dom[di.dfs_order[b->index]];
-
- if (di.dfs_to_bb[d])
- et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
+ if (basic_block d = di.get_idom (b))
+ et_set_father (b->dom[dir_index], d->dom[dir_index]);
}
- free_dom_info (&di);
dom_computed[dir_index] = DOM_NO_FAST_QUERY;
}
else
/* Verify invariants of dominator structure. */
DEBUG_FUNCTION void
-verify_dominators (enum cdi_direction dir)
+verify_dominators (cdi_direction dir)
{
- int err = 0;
- basic_block bb, imm_bb, imm_bb_correct;
- struct dom_info di;
- bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
-
gcc_assert (dom_info_available_p (dir));
- init_dom_info (&di, dir);
- calc_dfs_tree (&di, reverse);
- calc_idoms (&di, reverse);
+ dom_info di (cfun, dir);
+ di.calc_dfs_tree ();
+ di.calc_idoms ();
+ bool err = false;
+ basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
- imm_bb = get_immediate_dominator (dir, bb);
+ basic_block imm_bb = get_immediate_dominator (dir, bb);
if (!imm_bb)
{
error ("dominator of %d status unknown", bb->index);
- err = 1;
+ err = true;
}
- imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
+ basic_block imm_bb_correct = di.get_idom (bb);
if (imm_bb != imm_bb_correct)
{
error ("dominator of %d should be %d, not %d",
bb->index, imm_bb_correct->index, imm_bb->index);
- err = 1;
+ err = true;
}
}
- free_dom_info (&di);
gcc_assert (!err);
}