-PYTHON=C:\Python32\python
-
all: build/top.sta
build/top.sta:
- cp top.sdc build/top.sdc
- $(PYTHON) build.py
-
+ ./build.py
+
load:
- cd build && quartus_pgm.exe -m jtag -c USB-Blaster[USB-0] -o "p;top.sof"
-
+ cd build && quartus_pgm -m jtag -c USB-Blaster[USB-0] -o "p;top.sof"
+
+
clean:
rm -rf build/*
+#!/usr/bin/env python3
+
+import os
from mibuild.platforms import de0nano
import top
soc = top.SoC()
# set pin constraints
- plat.request("led", obj=soc.led)
- plat.request("gpio_2", obj=soc.gpio_2)
+ plat.request("led", 0, obj=soc.led)
+ plat.request("serial", 0, obj=soc.uart2csr)
# set extra constraints
plat.add_platform_command("""
set_global_assignment -name FAMILY "Cyclone IV E"
set_global_assignment -name TOP_LEVEL_ENTITY "top"
set_global_assignment -name VERILOG_INPUT_VERSION SYSTEMVERILOG_2005
-set_global_assignment -name CYCLONEII_RESERVE_NCEO_AFTER_CONFIGURATION "USE AS REGULAR IO"
-set_global_assignment -name RESERVE_FLASH_NCE_AFTER_CONFIGURATION "USE AS REGULAR IO"
-set_global_assignment -name RESERVE_DATA0_AFTER_CONFIGURATION "USE AS REGULAR IO"
-set_global_assignment -name RESERVE_DATA1_AFTER_CONFIGURATION "USE AS REGULAR IO"
-set_global_assignment -name RESERVE_DCLK_AFTER_CONFIGURATION "USE AS REGULAR IO"
""")
plat.build_cmdline(soc.get_fragment())
# |_____|_|_|_| |___|_ | |____/|_|_ |_|_| |__,|_|
# |___| |___| |___|
#
-# Copyright 2012 / Florent Kermarrec / florent@enjoy-digital.fr
+# Copyright 2013 / Florent Kermarrec / florent@enjoy-digital.fr
#
-# miscope example on De0 Nano Board
-# ----------------------------------
+# miscope example on De0 Nano
+# ---------------------------
################################################################################
-#
-# In this example signals are generated in the FPGA.
-# We use miscope to record those signals and visualize them.
-#
-# Example architecture:
-# ----------------------
-# miscope Config --> Python Client (Host) --> Vcd Output
-# & Trig |
-# Arduino (Uart<-->Spi Bridge)
-# |
-# De0 Nano
-# |
-# +--------------------+-----------------------+
-# miIo Signal Generator miLa
-# Control of Signal Ramp, Sinus, Logic Analyzer
-# generator Square, ...
-###############################################################################
-
#==============================================================================
# I M P O R T
#==============================================================================
from migen.fhdl.structure import *
-from migen.fhdl.specials import Memory
-from migen.fhdl import verilog, autofragment
+from migen.fhdl.module import *
from migen.bus import csr
-from migen.bus.transactions import *
-from migen.bank import description, csrgen
-from migen.bank.description import *
-from miscope import trigger, recorder, miio, mila
-from miscope.bridges import spi2csr
+from miscope import miio
+from miscope.bridges import uart2csr
from timings import *
-from math import sin
-
#==============================================================================
# P A R A M E T E R S
#==============================================================================
#Timings Param
clk_freq = 50*MHz
-clk_period_ns = clk_freq*ns
-n = t2n(clk_period_ns)
-
-# Bus Width
-trig0_width = 16
-dat0_width = 16
-
-trig1_width = 32
-dat1_width = 32
-
-# Record Size
-record_size = 4096
# Csr Addr
MIIO0_ADDR = 0x0000
-MILA0_ADDR = 0x0200
-MILA1_ADDR = 0x0600
#==============================================================================
-# M I S C O P E E X A M P L E
+# M I S C O P E E X A M P L E
#==============================================================================
-class SoC:
+class SoC(Module):
def __init__(self):
# migIo0
- self.miIo0 = miio.MiIo(MIIO0_ADDR, 8, "IO")
-
- # migLa0
- self.term0 = trigger.Term(trig0_width)
- self.trigger0 = trigger.Trigger(trig0_width, [self.term0])
- self.recorder0 = recorder.Recorder(dat0_width, record_size)
-
- self.miLa0 = mila.MiLa(MILA0_ADDR, self.trigger0, self.recorder0)
-
- # migLa1
- self.term1 = trigger.Term(trig1_width)
- self.trigger1 = trigger.Trigger(trig1_width, [self.term1])
- self.recorder1 = recorder.Recorder(dat1_width, record_size)
+ self.submodules.miIo0 = miio.MiIo(MIIO0_ADDR, 8, "IO")
- self.miLa1 = mila.MiLa(MILA1_ADDR, self.trigger1, self.recorder1)
-
- # Spi2Csr
- self.spi2csr0 = spi2csr.Spi2Csr(16,8)
+ # Uart2Csr
+ self.submodules.uart2csr = uart2csr.Uart2Csr(clk_freq, 115200)
# Csr Interconnect
- self.csrcon0 = csr.Interconnect(self.spi2csr0.csr,
+ self.submodules.csrcon = csr.Interconnect(self.uart2csr.csr,
[
- self.miIo0.bank.bus,
- self.miLa0.trigger.bank.bus,
- self.miLa0.recorder.bank.bus,
- self.miLa1.trigger.bank.bus,
- self.miLa1.recorder.bank.bus
+ self.miIo0.bank.bus
])
-
- self.clk50 = Signal()
- self.led = Signal(8)
- self.gpio_2 = Signal(13)
- self.key = Signal(2)
- self.cd_sys = ClockDomain("sys")
-
- def get_fragment(self):
- comb = []
- sync = []
-
- #
- # Signal Generator
- #
-
- # Counter
- cnt_gen = Signal(8)
- sync += [
- cnt_gen.eq(cnt_gen+1)
- ]
-
- # Square
- square_gen = Signal(8)
- sync += [
- If(cnt_gen[7],
- square_gen.eq(255)
- ).Else(
- square_gen.eq(0)
- )
- ]
-
- sinus = [int(128*sin((2*3.1415)/256*(x+1)))+128 for x in range(256)]
- sinus_re = Signal()
- sinus_gen = Signal(8)
- comb +=[sinus_re.eq(1)]
- sinus_mem = Memory(8, 256, init = sinus)
- sinus_port = sinus_mem.get_port(has_re=True)
- comb += [
- sinus_port.adr.eq(cnt_gen),
- sinus_port.re.eq(sinus_re),
- sinus_gen.eq(sinus_port.dat_r)
- ]
+ self.led = Signal()
- # Signal Selection
- sig_gen = Signal(8)
- comb += [
- If(self.miIo0.o == 0,
- sig_gen.eq(cnt_gen)
- ).Elif(self.miIo0.o == 1,
- sig_gen.eq(square_gen)
- ).Elif(self.miIo0.o == 2,
- sig_gen.eq(sinus_gen)
- ).Else(
- sig_gen.eq(0)
- )
- ]
+ ###
# Led
- comb += [self.led.eq(self.miIo0.o[:8])]
-
-
- # MigLa0 input
- comb += [
- self.miLa0.trig.eq(sig_gen),
- self.miLa0.dat.eq(sig_gen)
- ]
-
- # MigLa1 input
- comb += [
- self.miLa1.trig[:8].eq(self.spi2csr0.csr.dat_w),
- self.miLa1.trig[8:24].eq(self.spi2csr0.csr.adr),
- self.miLa1.trig[24].eq(self.spi2csr0.csr.we),
- self.miLa1.dat[:8].eq(self.spi2csr0.csr.dat_w),
- self.miLa1.dat[8:24].eq(self.spi2csr0.csr.adr),
- self.miLa1.dat[24].eq(self.spi2csr0.csr.we)
- ]
-
- # Spi2Csr
- self.spi2csr0.spi_clk = self.gpio_2[0]
- self.spi2csr0.spi_cs_n = self.gpio_2[1]
- self.spi2csr0.spi_mosi = self.gpio_2[2]
- self.spi2csr0.spi_miso = self.gpio_2[3]
-
- #
- # Clocking / Reset
- #
- comb += [
- self.cd_sys.clk.eq(self.clk50),
- self.cd_sys.rst.eq(~self.key[0])
- ]
-
- frag = autofragment.from_attributes(self)
- frag += Fragment(comb, sync)
- return frag
\ No newline at end of file
+ self.comb += self.led.eq(self.miIo0.o[0])
\ No newline at end of file
+++ /dev/null
-PYTHON=C:\Python32\python
-
-all: build/top.sta
-
-build/top.sta:
- cp top.sdc build/top.sdc
- $(PYTHON) build.py
-
-load:
- cd build && quartus_pgm.exe -m jtag -c USB-Blaster[USB-0] -o "p;top.sof"
-
-clean:
- rm -rf build/*
-
-.PHONY: load clean
+++ /dev/null
-import os
-from mibuild.platforms import de1
-from mibuild.altera_quartus import _add_period_constraint
-import top
-
-def main():
- plat = de1.Platform()
- soc = top.SoC()
-
- # set pin constraints
- plat.request("clk50", obj=soc.clk50)
- plat.request("key", obj=soc.key)
- plat.request("ledg", obj=soc.led)
- plat.request("gpio_0", obj=soc.gpio_0)
-
- # set extra constraints
- plat.add_platform_command("""
-set_global_assignment -name FAMILY "Cyclone IV E"
-set_global_assignment -name TOP_LEVEL_ENTITY "top"
-set_global_assignment -name VERILOG_INPUT_VERSION SYSTEMVERILOG_2005
-set_global_assignment -name CYCLONEII_RESERVE_NCEO_AFTER_CONFIGURATION "USE AS REGULAR IO"
-set_global_assignment -name RESERVE_FLASH_NCE_AFTER_CONFIGURATION "USE AS REGULAR IO"
-set_global_assignment -name RESERVE_DATA0_AFTER_CONFIGURATION "USE AS REGULAR IO"
-set_global_assignment -name RESERVE_DATA1_AFTER_CONFIGURATION "USE AS REGULAR IO"
-set_global_assignment -name RESERVE_DCLK_AFTER_CONFIGURATION "USE AS REGULAR IO"
-""")
-
- _add_period_constraint(plat, "sys_clk", 20.0)
- cd = dict()
- cd["sys"] = soc.cd_sys
- plat.build_cmdline(soc.get_fragment(), clock_domains=cd)
-
-if __name__ == "__main__":
- main()
\ No newline at end of file
+++ /dev/null
-from miscope import trigger, recorder, miIo
-from miscope.bridges.spi2csr.tools.uart2Spi import *
-
-#==============================================================================
-# P A R A M E T E R S
-#==============================================================================
-# Bus Width
-trig_width = 16
-dat_width = 16
-
-# Record Size
-record_size = 1024
-
-csr = Uart2Spi(1,115200)
-
-# Csr Addr
-MIIO_ADDR = 0x0000
-
-# Miscope Configuration
-# miIo
-miIo0 = miIo.MiIo(MIIO_ADDR, 8, "IO", csr)
-
-def led_anim0():
- for i in range(10):
- miIo0.write(0xA5)
- time.sleep(0.1)
- miIo0.write(0x5A)
- time.sleep(0.1)
-
-def led_anim1():
- #Led <<
- for j in range(4):
- ledData = 1
- for i in range(8):
- miIo0.write(ledData)
- time.sleep(i*i*0.0020)
- ledData = (ledData<<1)
- #Led >>
- ledData = 128
- for i in range(8):
- miIo0.write(ledData)
- time.sleep(i*i*0.0020)
- ledData = (ledData>>1)
-
-#==============================================================================
-# T E S T M I G I O
-#==============================================================================
-
-print("- Small Led Animation...")
-led_anim0()
-time.sleep(1)
-led_anim1()
-time.sleep(1)
-
-print("- Read Switch: ",end=' ')
-print(miIo0.read())
-
-
+++ /dev/null
-from miscope import trigger, recorder, miIo, miLa
-from miscope.tools.truthtable import *
-from miscope.tools.vcd import *
-from miscope.bridges.spi2csr.tools.uart2Spi import *
-
-#==============================================================================
-# P A R A M E T E R S
-#==============================================================================
-# Bus Width
-trig_width = 16
-dat_width = 16
-
-# Record Size
-record_size = 4096
-
-# Csr Addr
-MIIO_ADDR = 0x0000
-MILA_ADDR = 0x0200
-
-csr = Uart2Spi(1, 115200, debug=False)
-
-# MiScope Configuration
-# miIo0
-miIo0 = miIo.MigIo(MIIO_ADDR, 8, "IO",csr)
-
-# miLa0
-term0 = trigger.Term(trig_width)
-trigger0 = trigger.Trigger(trig_width, [term0])
-recorder0 = recorder.Recorder(dat_width, record_size)
-
-miLa0 = miLa.MiLa(MILA_ADDR, trigger0, recorder0, csr)
-
-#==============================================================================
-# T E S T M I G L A
-#==============================================================================
-dat_vcd = []
-recorder0.size(1024)
-
-def capture(size):
- global trigger0
- global recorder0
- global dat_vcd
- sum_tt = gen_truth_table("term0")
- miLa0.trig.sum.write(sum_tt)
- miLa0.rec.reset()
- miLa0.rec.offset(0)
- miLa0.rec.arm()
- print("-Recorder [Armed]")
- print("-Waiting Trigger...", end = ' ')
- while(not miLa0.rec.is_done()):
- time.sleep(0.1)
- print("[Done]")
-
- print("-Receiving Data...", end = ' ')
- sys.stdout.flush()
- dat_vcd += miLa0.rec.read(size)
- print("[Done]")
-
-print("Capturing Ramp..")
-print("----------------------")
-term0.write(0x0000,0xFFFF)
-csr.write(0x0000, 0)
-capture(1024)
-
-print("Capturing Square..")
-print("----------------------")
-term0.write(0x0000,0xFFFF)
-csr.write(0x0000, 1)
-capture(1024)
-
-print("Capturing Sinus..")
-print("----------------------")
-term0.write(0x0080,0xFFFF)
-csr.write(0x0000, 2)
-capture(1024)
-
-myvcd = Vcd()
-myvcd.add(Var("wire", 16, "trig_dat", dat_vcd))
-myvcd.write("test_MiLa_0.vcd")
\ No newline at end of file
+++ /dev/null
-from miscope import trigger, recorder, miIo, miLa
-from miscope.tools.truthtable import *
-from miscope.tools.vcd import *
-from miscope.bridges.spi2csr.tools.uart2Spi import *
-
-#==============================================================================
-# P A R A M E T E R S
-#==============================================================================
-# Bus Width
-trig_width = 32
-dat_width = 32
-
-# Record Size
-record_size = 4096
-
-# Csr Addr
-MIIO0_ADDR = 0x0000
-MILA1_ADDR = 0x0600
-
-csr = Uart2Spi(1, 115200, debug=False)
-
-# MiScope Configuration
-# miIo0
-miIo0 = miIo.MigIo(MIIO0_ADDR, 8, "IO",csr)
-
-# miLa1
-term1 = trigger.Term(trig_width)
-trigger1 = trigger.Trigger(trig_width, [term1])
-recorder1 = recorder.Recorder(dat_width, record_size)
-
-miLa1 = miLa.MiLa(MILA1_ADDR, trigger1, recorder1, csr)
-
-#==============================================================================
-# T E S T M I G L A
-#==============================================================================
-dat_vcd = []
-recorder1.size(1024)
-
-term1.write(0x0100005A,0x0100005A)
-sum_tt = gen_truth_table("term1")
-miLa1.trig.sum.write(sum_tt)
-miLa1.rec.reset()
-miLa1.rec.offset(256)
-miLa1.rec.arm()
-
-print("-Recorder [Armed]")
-print("-Waiting Trigger...", end = ' ')
-csr.write(0x0000,0x5A)
-while(not miLa1.rec.is_done()):
- time.sleep(0.1)
-print("[Done]")
-
-print("-Receiving Data...", end = ' ')
-sys.stdout.flush()
-dat_vcd += miLa1.rec.read(1024)
-print("[Done]")
-
-myvcd = Vcd()
-myvcd.add(Var("wire", 8, "csr_dat_w", get_bits(dat_vcd, 32, 0, 8)))
-myvcd.add(Var("wire", 16, "csr_adr", get_bits(dat_vcd, 32, 8, 24)))
-myvcd.add(Var("wire", 1, "csr_we", get_bits(dat_vcd, 32, 24)))
-myvcd.write("test_MiLa_1.vcd")
\ No newline at end of file
+++ /dev/null
-from math import ceil
-
-Hz = 1
-KHz = 10**3
-MHz = 10**6
-GHz = 10**9
-
-s = 1
-ms = 1/KHz
-us = 1/MHz
-ns = 1/GHz
-
-class t2n:
- def __init__(self, clk_period_ns):
- self.clk_period_ns = clk_period_ns
- self.clk_period_us = clk_period_ns*(MHz/GHz)
- self.clk_period_ms = clk_period_ns*(KHz/GHz)
- def ns(self,t,margin=True):
- if margin:
- t += self.clk_period_ns/2
- return ceil(t/self.clk_period_ns)
- def us(self,t,margin=True):
- if margin:
- t += self.clk_period_us/2
- return ceil(t/self.clk_period_us)
- def ms(self,t,margin=True):
- if margin:
- t += self.clk_period_ms/2
- return ceil(t/self.clk_period_ms)
\ No newline at end of file
+++ /dev/null
-################################################################################
-# _____ _ ____ _ _ _ _
-# | __|___ |_|___ _ _ | \|_|___|_| |_ ___| |
-# | __| | | | . | | | | | | | . | | _| .'| |
-# |_____|_|_|_| |___|_ | |____/|_|_ |_|_| |__,|_|
-# |___| |___| |___|
-#
-# Copyright 2012 / Florent Kermarrec / florent@enjoy-digital.fr
-#
-# miscope Example on De1 Board
-# ----------------------------------
-################################################################################
-#
-# In this example signals are generated in the FPGA.
-# We use miscope to record those signals and visualize them.
-#
-# Example architecture:
-# ----------------------
-# miscope Config --> Python Client (Host) --> Vcd Output
-# & Trig |
-# Arduino (Uart<-->Spi Bridge)
-# |
-# De1
-# |
-# +--------------------+-----------------------+
-# miIo Signal Generator miLa
-# Control of Signal Ramp, Sinus, Logic Analyzer
-# generator Square, ...
-###############################################################################
-
-
-#==============================================================================
-# I M P O R T
-#==============================================================================
-from migen.fhdl.structure import *
-from migen.fhdl.specials import Memory
-from migen.fhdl import verilog, autofragment
-from migen.bus import csr
-from migen.bus.transactions import *
-from migen.bank import description, csrgen
-from migen.bank.description import *
-
-from miscope import trigger, recorder, miio, mila
-from miscope.bridges import spi2csr
-
-from timings import *
-
-from math import sin
-
-#==============================================================================
-# P A R A M E T E R S
-#==============================================================================
-
-#Timings Param
-clk_freq = 50*MHz
-clk_period_ns = clk_freq*ns
-n = t2n(clk_period_ns)
-
-# Bus Width
-trig0_width = 16
-dat0_width = 16
-
-trig1_width = 32
-dat1_width = 32
-
-# Record Size
-record_size = 4096
-
-# Csr Addr
-MIIO0_ADDR = 0x0000
-MILA0_ADDR = 0x0200
-MILA1_ADDR = 0x0600
-
-#==============================================================================
-# M I S C O P E E X A M P L E
-#==============================================================================
-class SoC:
- def __init__(self):
- # migIo0
- self.miIo0 = miio.MiIo(MIIO0_ADDR, 8, "IO")
-
- # migLa0
- self.term0 = trigger.Term(trig0_width)
- self.trigger0 = trigger.Trigger(trig0_width, [self.term0])
- self.recorder0 = recorder.Recorder(dat0_width, record_size)
-
- self.miLa0 = mila.MiLa(MILA0_ADDR, self.trigger0, self.recorder0)
-
- # migLa1
- self.term1 = trigger.Term(trig1_width)
- self.trigger1 = trigger.Trigger(trig1_width, [self.term1])
- self.recorder1 = recorder.Recorder(dat1_width, record_size)
-
- self.miLa1 = mila.MiLa(MILA1_ADDR, self.trigger1, self.recorder1)
-
- # Spi2Csr
- self.spi2csr0 = spi2csr.Spi2Csr(16,8)
-
- # Csr Interconnect
- self.csrcon0 = csr.Interconnect(self.spi2csr0.csr,
- [
- self.miIo0.bank.bus,
- self.miLa0.trigger.bank.bus,
- self.miLa0.recorder.bank.bus,
- self.miLa1.trigger.bank.bus,
- self.miLa1.recorder.bank.bus
- ])
-
- self.clk50 = Signal()
- self.led = Signal(8)
- self.gpio_0 = Signal(36)
- self.key = Signal(4)
- self.cd_sys = ClockDomain("sys")
-
- def get_fragment(self):
- comb = []
- sync = []
-
- #
- # Signal Generator
- #
-
- # Counter
- cnt_gen = Signal(8)
- sync += [
- cnt_gen.eq(cnt_gen+1)
- ]
-
- # Square
- square_gen = Signal(8)
- sync += [
- If(cnt_gen[7],
- square_gen.eq(255)
- ).Else(
- square_gen.eq(0)
- )
- ]
-
- sinus = [int(128*sin((2*3.1415)/256*(x+1)))+128 for x in range(256)]
- sinus_re = Signal()
- sinus_gen = Signal(8)
- comb +=[sinus_re.eq(1)]
- sinus_mem = Memory(8, 256, init = sinus)
- sinus_port = sinus_mem.get_port(has_re=True)
- comb += [
- sinus_port.adr.eq(cnt_gen),
- sinus_port.re.eq(sinus_re),
- sinus_gen.eq(sinus_port.dat_r)
- ]
-
- # Signal Selection
- sig_gen = Signal(8)
- comb += [
- If(self.miIo0.o == 0,
- sig_gen.eq(cnt_gen)
- ).Elif(self.miIo0.o == 1,
- sig_gen.eq(square_gen)
- ).Elif(self.miIo0.o == 2,
- sig_gen.eq(sinus_gen)
- ).Else(
- sig_gen.eq(0)
- )
- ]
-
- # Led
- comb += [self.led.eq(self.miIo0.o[:8])]
-
-
- # MigLa0 input
- comb += [
- self.miLa0.trig.eq(sig_gen),
- self.miLa0.dat.eq(sig_gen)
- ]
-
- # MigLa1 input
- comb += [
- self.miLa1.trig[:8].eq(self.spi2csr0.csr.dat_w),
- self.miLa1.trig[8:24].eq(self.spi2csr0.csr.adr),
- self.miLa1.trig[24].eq(self.spi2csr0.csr.we),
- self.miLa1.dat[:8].eq(self.spi2csr0.csr.dat_w),
- self.miLa1.dat[8:24].eq(self.spi2csr0.csr.adr),
- self.miLa1.dat[24].eq(self.spi2csr0.csr.we)
- ]
-
- # Spi2Csr
- self.spi2csr0.spi_clk = self.gpio_0[0]
- self.spi2csr0.spi_cs_n = self.gpio_0[1]
- self.spi2csr0.spi_mosi = self.gpio_0[2]
- self.spi2csr0.spi_miso = self.gpio_0[3]
-
- #
- # Clocking / Reset
- #
- comb += [
- self.cd_sys.clk.eq(self.clk50),
- self.cd_sys.rst.eq(~self.key[0])
- ]
-
- frag = autofragment.from_attributes(self)
- frag += Fragment(comb, sync)
- return frag
\ No newline at end of file
from migen.fhdl.structure import *
-from migen.genlib.misc import *
-from migen.genlib.cdc import *
+from migen.fhdl.module import *
from migen.bus import csr
+from migen.genlib.fsm import *
from miscope.bridges.uart2csr.uart import *
###
- uart = Uart(clk_freq, baud)
- self.specials +=uart
+ self.submodules.uart = UART(clk_freq, baud)
+ uart = self.uart
#
# In/Out
addr = Signal(32)
data = Signal(8)
+
+ # FSM
+ self.submodules.fsm = FSM("IDLE",
+ "GET_BL", "GET_ADDR",
+ "GET_DATA", "WRITE_CSR",
+ "READ_CSR", "SEND_DATA")
+
+ fsm = self.fsm
#
# Global
#
self.sync +=[
If(fsm.ongoing(fsm.IDLE), cnt.eq(0)
- ).Elif(uart_rx_ev, cnt.eq(cnt + 1)),
+ ).Elif(uart.rx_ev, cnt.eq(cnt + 1)),
sr.eq(Cat(uart.rx_dat, sr[0:24]))
]
- # FSM
- fsm = FSM("IDLE",
- "GET_BL", "GET_ADDR",
- "GET_DATA", "WRITE_CSR",
- "READ_CSR", "SEND_DATA")
# State done
get_bl_done = Signal()
# Idle
#
fsm.act(fsm.IDLE,
- If(uart.rx_ev and (uart.rx_dat == WRITE_CMD or uart.rx_dat == READ_CMD),
+ If(uart.rx_ev & ((uart.rx_dat == WRITE_CMD) | (uart.rx_dat == READ_CMD)),
fsm.next_state(fsm.GET_BL)
)
)
self.sync +=[
- If(fsm.ongoing(fsm.IDLE) and uart_rx_env,
+ If(fsm.ongoing(fsm.IDLE) & uart.rx_ev,
cmd.eq(uart.rx_dat)
)
)
)
- self.comb += get_bl_done.eq(uart_rx_ev and fsm.ongoing(fsm.GET_BL))
+ self.comb += get_bl_done.eq(uart.rx_ev & fsm.ongoing(fsm.GET_BL))
self.sync +=[
If(get_bl_done,
# Get address
#
fsm.act(fsm.GET_ADDR,
- If(get_addr_done and cmd == WRITE_CMD,
+ If(get_addr_done & (cmd == WRITE_CMD),
fsm.next_state(fsm.GET_DATA)
- ).Elif(get_addr_done and cmd == READ_CMD,
+ ).Elif(get_addr_done & (cmd == READ_CMD),
fsm.next_state(fsm.READ_CSR)
)
)
- self.comb += get_addr_done.eq(uart_rx_ev and rx_cnt == 4 and fsm.ongoing(fsm.GET_ADDR))
+ self.comb += get_addr_done.eq(uart.rx_ev & (cnt == 4) & fsm.ongoing(fsm.GET_ADDR))
self.sync +=[
If(get_addr_done,
addr.eq(sr)
- ).Elif(write_data_done or send_data_done,
+ ).Elif(get_data_done | send_data_done,
addr.eq(addr + 4)
)
]
)
)
- self.comb += get_data_done.eq(uart_rx_ev and fsm.ongoing(fsm.GET_DATA))
+ self.comb += get_data_done.eq(uart.rx_ev & fsm.ongoing(fsm.GET_DATA))
self.sync +=[
If(get_data_done,
# Send Data
#
fsm.act(fsm.SEND_DATA,
- If(send_data_done and (not burst_cnt),
+ If(send_data_done & (not burst_cnt),
fsm.next_state(fsm.IDLE)
).Elif(send_data_done,
fsm.next_state(fsm.READ_CSR)
)
self.comb += [
- uart.tx_dat.eq(csr.dat_r),
- uart.we.eq(fsm.entering(fsm.SEND_DATA)),
- send_data_done.eq(~uart.we or uart.tx_ev)
+ uart.tx_dat.eq(self.csr.dat_r),
+ uart.tx_we.eq(fsm.entering(fsm.SEND_DATA)),
+ send_data_done.eq(~uart.tx_we | uart.tx_ev)
]
#
self.sync +=[
self.csr.adr.eq(addr),
self.csr.dat_w.eq(data),
- If(fsm.ongoing(fsm.WRITE_CSR,
+ If(fsm.ongoing(fsm.WRITE_CSR),
self.csr.we.eq(1)
).Else(
self.csr.we.eq(0)
comb = []
if "I" in self.mode:
- comb += self.ireg.field.w.eq(self.i)
+ comb += [self.ireg.field.w.eq(self.i)]
if "O" in self.mode:
- comb += self.o.eq(self.oreg.field.r)
+ comb += [self.o.eq(self.oreg.field.r)]
return Fragment(comb) + self.bank.get_fragment()
#