# output from the ISA description (*.isa) files.
#
-parser_py = File('isa_parser.py')
+parser_files = Glob('isa_parser/*.py')
micro_asm_py = File('micro_asm.py')
# import ply here because SCons screws with sys.path when performing actions.
import ply
+arch_dir = Dir('.')
+
def run_parser(target, source, env):
# Add the current directory to the system path so we can import files.
- sys.path[0:0] = [ parser_py.dir.abspath ]
+ sys.path[0:0] = [ arch_dir.abspath ]
import isa_parser
parser = isa_parser.ISAParser(target[0].dir.abspath)
source_gen('generic_cpu_exec_%d.cc' % i)
# Actually create the builder.
- sources = [desc, parser_py, micro_asm_py]
+ sources = [desc, micro_asm_py] + parser_files
IsaDescBuilder(target=gen, source=sources, env=env)
return gen
+++ /dev/null
-# Copyright (c) 2014, 2016, 2018-2019 ARM Limited
-# All rights reserved
-#
-# The license below extends only to copyright in the software and shall
-# not be construed as granting a license to any other intellectual
-# property including but not limited to intellectual property relating
-# to a hardware implementation of the functionality of the software
-# licensed hereunder. You may use the software subject to the license
-# terms below provided that you ensure that this notice is replicated
-# unmodified and in its entirety in all distributions of the software,
-# modified or unmodified, in source code or in binary form.
-#
-# Copyright (c) 2003-2005 The Regents of The University of Michigan
-# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are
-# met: redistributions of source code must retain the above copyright
-# notice, this list of conditions and the following disclaimer;
-# redistributions in binary form must reproduce the above copyright
-# notice, this list of conditions and the following disclaimer in the
-# documentation and/or other materials provided with the distribution;
-# neither the name of the copyright holders nor the names of its
-# contributors may be used to endorse or promote products derived from
-# this software without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-from __future__ import with_statement, print_function
-import os
-import sys
-import re
-import inspect, traceback
-# get type names
-from types import *
-
-from m5.util.grammar import Grammar
-
-debug=False
-
-###################
-# Utility functions
-
-#
-# Indent every line in string 's' by two spaces
-# (except preprocessor directives).
-# Used to make nested code blocks look pretty.
-#
-def indent(s):
- return re.sub(r'(?m)^(?!#)', ' ', s)
-
-#
-# Munge a somewhat arbitrarily formatted piece of Python code
-# (e.g. from a format 'let' block) into something whose indentation
-# will get by the Python parser.
-#
-# The two keys here are that Python will give a syntax error if
-# there's any whitespace at the beginning of the first line, and that
-# all lines at the same lexical nesting level must have identical
-# indentation. Unfortunately the way code literals work, an entire
-# let block tends to have some initial indentation. Rather than
-# trying to figure out what that is and strip it off, we prepend 'if
-# 1:' to make the let code the nested block inside the if (and have
-# the parser automatically deal with the indentation for us).
-#
-# We don't want to do this if (1) the code block is empty or (2) the
-# first line of the block doesn't have any whitespace at the front.
-
-def fixPythonIndentation(s):
- # get rid of blank lines first
- s = re.sub(r'(?m)^\s*\n', '', s);
- if (s != '' and re.match(r'[ \t]', s[0])):
- s = 'if 1:\n' + s
- return s
-
-class ISAParserError(Exception):
- """Exception class for parser errors"""
- def __init__(self, first, second=None):
- if second is None:
- self.lineno = 0
- self.string = first
- else:
- self.lineno = first
- self.string = second
-
- def __str__(self):
- return self.string
-
-def error(*args):
- raise ISAParserError(*args)
-
-####################
-# Template objects.
-#
-# Template objects are format strings that allow substitution from
-# the attribute spaces of other objects (e.g. InstObjParams instances).
-
-labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
-
-class Template(object):
- def __init__(self, parser, t):
- self.parser = parser
- self.template = t
-
- def subst(self, d):
- myDict = None
-
- # Protect non-Python-dict substitutions (e.g. if there's a printf
- # in the templated C++ code)
- template = self.parser.protectNonSubstPercents(self.template)
-
- # Build a dict ('myDict') to use for the template substitution.
- # Start with the template namespace. Make a copy since we're
- # going to modify it.
- myDict = self.parser.templateMap.copy()
-
- if isinstance(d, InstObjParams):
- # If we're dealing with an InstObjParams object, we need
- # to be a little more sophisticated. The instruction-wide
- # parameters are already formed, but the parameters which
- # are only function wide still need to be generated.
- compositeCode = ''
-
- myDict.update(d.__dict__)
- # The "operands" and "snippets" attributes of the InstObjParams
- # objects are for internal use and not substitution.
- del myDict['operands']
- del myDict['snippets']
-
- snippetLabels = [l for l in labelRE.findall(template)
- if l in d.snippets]
-
- snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
- for s in snippetLabels])
-
- myDict.update(snippets)
-
- compositeCode = ' '.join(list(map(str, snippets.values())))
-
- # Add in template itself in case it references any
- # operands explicitly (like Mem)
- compositeCode += ' ' + template
-
- operands = SubOperandList(self.parser, compositeCode, d.operands)
-
- myDict['op_decl'] = operands.concatAttrStrings('op_decl')
- if operands.readPC or operands.setPC:
- myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
-
- # In case there are predicated register reads and write, declare
- # the variables for register indicies. It is being assumed that
- # all the operands in the OperandList are also in the
- # SubOperandList and in the same order. Otherwise, it is
- # expected that predication would not be used for the operands.
- if operands.predRead:
- myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
- if operands.predWrite:
- myDict['op_decl'] += 'M5_VAR_USED uint8_t _destIndex = 0;\n'
-
- is_src = lambda op: op.is_src
- is_dest = lambda op: op.is_dest
-
- myDict['op_src_decl'] = \
- operands.concatSomeAttrStrings(is_src, 'op_src_decl')
- myDict['op_dest_decl'] = \
- operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
- if operands.readPC:
- myDict['op_src_decl'] += \
- 'TheISA::PCState __parserAutoPCState;\n'
- if operands.setPC:
- myDict['op_dest_decl'] += \
- 'TheISA::PCState __parserAutoPCState;\n'
-
- myDict['op_rd'] = operands.concatAttrStrings('op_rd')
- if operands.readPC:
- myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
- myDict['op_rd']
-
- # Compose the op_wb string. If we're going to write back the
- # PC state because we changed some of its elements, we'll need to
- # do that as early as possible. That allows later uncoordinated
- # modifications to the PC to layer appropriately.
- reordered = list(operands.items)
- reordered.reverse()
- op_wb_str = ''
- pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
- for op_desc in reordered:
- if op_desc.isPCPart() and op_desc.is_dest:
- op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
- pcWbStr = ''
- else:
- op_wb_str = op_desc.op_wb + op_wb_str
- myDict['op_wb'] = op_wb_str
-
- elif isinstance(d, dict):
- # if the argument is a dictionary, we just use it.
- myDict.update(d)
- elif hasattr(d, '__dict__'):
- # if the argument is an object, we use its attribute map.
- myDict.update(d.__dict__)
- else:
- raise TypeError("Template.subst() arg must be or have dictionary")
- return template % myDict
-
- # Convert to string.
- def __str__(self):
- return self.template
-
-################
-# Format object.
-#
-# A format object encapsulates an instruction format. It must provide
-# a defineInst() method that generates the code for an instruction
-# definition.
-
-class Format(object):
- def __init__(self, id, params, code):
- self.id = id
- self.params = params
- label = 'def format ' + id
- self.user_code = compile(fixPythonIndentation(code), label, 'exec')
- param_list = ", ".join(params)
- f = '''def defInst(_code, _context, %s):
- my_locals = vars().copy()
- exec(_code, _context, my_locals)
- return my_locals\n''' % param_list
- c = compile(f, label + ' wrapper', 'exec')
- exec(c, globals())
- self.func = defInst
-
- def defineInst(self, parser, name, args, lineno):
- parser.updateExportContext()
- context = parser.exportContext.copy()
- if len(name):
- Name = name[0].upper()
- if len(name) > 1:
- Name += name[1:]
- context.update({ 'name' : name, 'Name' : Name })
- try:
- vars = self.func(self.user_code, context, *args[0], **args[1])
- except Exception as exc:
- if debug:
- raise
- error(lineno, 'error defining "%s": %s.' % (name, exc))
- for k in list(vars.keys()):
- if k not in ('header_output', 'decoder_output',
- 'exec_output', 'decode_block'):
- del vars[k]
- return GenCode(parser, **vars)
-
-# Special null format to catch an implicit-format instruction
-# definition outside of any format block.
-class NoFormat(object):
- def __init__(self):
- self.defaultInst = ''
-
- def defineInst(self, parser, name, args, lineno):
- error(lineno,
- 'instruction definition "%s" with no active format!' % name)
-
-###############
-# GenCode class
-#
-# The GenCode class encapsulates generated code destined for various
-# output files. The header_output and decoder_output attributes are
-# strings containing code destined for decoder.hh and decoder.cc
-# respectively. The decode_block attribute contains code to be
-# incorporated in the decode function itself (that will also end up in
-# decoder.cc). The exec_output attribute is the string of code for the
-# exec.cc file. The has_decode_default attribute is used in the decode block
-# to allow explicit default clauses to override default default clauses.
-
-class GenCode(object):
- # Constructor.
- def __init__(self, parser,
- header_output = '', decoder_output = '', exec_output = '',
- decode_block = '', has_decode_default = False):
- self.parser = parser
- self.header_output = header_output
- self.decoder_output = decoder_output
- self.exec_output = exec_output
- self.decode_block = decode_block
- self.has_decode_default = has_decode_default
-
- # Write these code chunks out to the filesystem. They will be properly
- # interwoven by the write_top_level_files().
- def emit(self):
- if self.header_output:
- self.parser.get_file('header').write(self.header_output)
- if self.decoder_output:
- self.parser.get_file('decoder').write(self.decoder_output)
- if self.exec_output:
- self.parser.get_file('exec').write(self.exec_output)
- if self.decode_block:
- self.parser.get_file('decode_block').write(self.decode_block)
-
- # Override '+' operator: generate a new GenCode object that
- # concatenates all the individual strings in the operands.
- def __add__(self, other):
- return GenCode(self.parser,
- self.header_output + other.header_output,
- self.decoder_output + other.decoder_output,
- self.exec_output + other.exec_output,
- self.decode_block + other.decode_block,
- self.has_decode_default or other.has_decode_default)
-
- # Prepend a string (typically a comment) to all the strings.
- def prepend_all(self, pre):
- self.header_output = pre + self.header_output
- self.decoder_output = pre + self.decoder_output
- self.decode_block = pre + self.decode_block
- self.exec_output = pre + self.exec_output
-
- # Wrap the decode block in a pair of strings (e.g., 'case foo:'
- # and 'break;'). Used to build the big nested switch statement.
- def wrap_decode_block(self, pre, post = ''):
- self.decode_block = pre + indent(self.decode_block) + post
-
-#####################################################################
-#
-# Bitfield Operator Support
-#
-#####################################################################
-
-bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
-
-bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
-bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
-
-def substBitOps(code):
- # first convert single-bit selectors to two-index form
- # i.e., <n> --> <n:n>
- code = bitOp1ArgRE.sub(r'<\1:\1>', code)
- # simple case: selector applied to ID (name)
- # i.e., foo<a:b> --> bits(foo, a, b)
- code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
- # if selector is applied to expression (ending in ')'),
- # we need to search backward for matching '('
- match = bitOpExprRE.search(code)
- while match:
- exprEnd = match.start()
- here = exprEnd - 1
- nestLevel = 1
- while nestLevel > 0:
- if code[here] == '(':
- nestLevel -= 1
- elif code[here] == ')':
- nestLevel += 1
- here -= 1
- if here < 0:
- sys.exit("Didn't find '('!")
- exprStart = here+1
- newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
- match.group(1), match.group(2))
- code = code[:exprStart] + newExpr + code[match.end():]
- match = bitOpExprRE.search(code)
- return code
-
-
-#####################################################################
-#
-# Code Parser
-#
-# The remaining code is the support for automatically extracting
-# instruction characteristics from pseudocode.
-#
-#####################################################################
-
-# Force the argument to be a list. Useful for flags, where a caller
-# can specify a singleton flag or a list of flags. Also usful for
-# converting tuples to lists so they can be modified.
-def makeList(arg):
- if isinstance(arg, list):
- return arg
- elif isinstance(arg, tuple):
- return list(arg)
- elif not arg:
- return []
- else:
- return [ arg ]
-
-class Operand(object):
- '''Base class for operand descriptors. An instance of this class
- (or actually a class derived from this one) represents a specific
- operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
- derived classes encapsulates the traits of a particular operand
- type (e.g., "32-bit integer register").'''
-
- def buildReadCode(self, func = None):
- subst_dict = {"name": self.base_name,
- "func": func,
- "reg_idx": self.reg_spec,
- "ctype": self.ctype}
- if hasattr(self, 'src_reg_idx'):
- subst_dict['op_idx'] = self.src_reg_idx
- code = self.read_code % subst_dict
- return '%s = %s;\n' % (self.base_name, code)
-
- def buildWriteCode(self, func = None):
- subst_dict = {"name": self.base_name,
- "func": func,
- "reg_idx": self.reg_spec,
- "ctype": self.ctype,
- "final_val": self.base_name}
- if hasattr(self, 'dest_reg_idx'):
- subst_dict['op_idx'] = self.dest_reg_idx
- code = self.write_code % subst_dict
- return '''
- {
- %s final_val = %s;
- %s;
- if (traceData) { traceData->setData(final_val); }
- }''' % (self.dflt_ctype, self.base_name, code)
-
- def __init__(self, parser, full_name, ext, is_src, is_dest):
- self.full_name = full_name
- self.ext = ext
- self.is_src = is_src
- self.is_dest = is_dest
- # The 'effective extension' (eff_ext) is either the actual
- # extension, if one was explicitly provided, or the default.
- if ext:
- self.eff_ext = ext
- elif hasattr(self, 'dflt_ext'):
- self.eff_ext = self.dflt_ext
-
- if hasattr(self, 'eff_ext'):
- self.ctype = parser.operandTypeMap[self.eff_ext]
-
- # Finalize additional fields (primarily code fields). This step
- # is done separately since some of these fields may depend on the
- # register index enumeration that hasn't been performed yet at the
- # time of __init__(). The register index enumeration is affected
- # by predicated register reads/writes. Hence, we forward the flags
- # that indicate whether or not predication is in use.
- def finalize(self, predRead, predWrite):
- self.flags = self.getFlags()
- self.constructor = self.makeConstructor(predRead, predWrite)
- self.op_decl = self.makeDecl()
-
- if self.is_src:
- self.op_rd = self.makeRead(predRead)
- self.op_src_decl = self.makeDecl()
- else:
- self.op_rd = ''
- self.op_src_decl = ''
-
- if self.is_dest:
- self.op_wb = self.makeWrite(predWrite)
- self.op_dest_decl = self.makeDecl()
- else:
- self.op_wb = ''
- self.op_dest_decl = ''
-
- def isMem(self):
- return 0
-
- def isReg(self):
- return 0
-
- def isFloatReg(self):
- return 0
-
- def isIntReg(self):
- return 0
-
- def isCCReg(self):
- return 0
-
- def isControlReg(self):
- return 0
-
- def isVecReg(self):
- return 0
-
- def isVecElem(self):
- return 0
-
- def isVecPredReg(self):
- return 0
-
- def isPCState(self):
- return 0
-
- def isPCPart(self):
- return self.isPCState() and self.reg_spec
-
- def hasReadPred(self):
- return self.read_predicate != None
-
- def hasWritePred(self):
- return self.write_predicate != None
-
- def getFlags(self):
- # note the empty slice '[:]' gives us a copy of self.flags[0]
- # instead of a reference to it
- my_flags = self.flags[0][:]
- if self.is_src:
- my_flags += self.flags[1]
- if self.is_dest:
- my_flags += self.flags[2]
- return my_flags
-
- def makeDecl(self):
- # Note that initializations in the declarations are solely
- # to avoid 'uninitialized variable' errors from the compiler.
- return self.ctype + ' ' + self.base_name + ' = 0;\n';
-
-
-src_reg_constructor = '\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s);'
-dst_reg_constructor = '\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s);'
-
-
-class IntRegOperand(Operand):
- reg_class = 'IntRegClass'
-
- def isReg(self):
- return 1
-
- def isIntReg(self):
- return 1
-
- def makeConstructor(self, predRead, predWrite):
- c_src = ''
- c_dest = ''
-
- if self.is_src:
- c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
- if self.hasReadPred():
- c_src = '\n\tif (%s) {%s\n\t}' % \
- (self.read_predicate, c_src)
-
- if self.is_dest:
- c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
- c_dest += '\n\t_numIntDestRegs++;'
- if self.hasWritePred():
- c_dest = '\n\tif (%s) {%s\n\t}' % \
- (self.write_predicate, c_dest)
-
- return c_src + c_dest
-
- def makeRead(self, predRead):
- if (self.ctype == 'float' or self.ctype == 'double'):
- error('Attempt to read integer register as FP')
- if self.read_code != None:
- return self.buildReadCode('readIntRegOperand')
-
- int_reg_val = ''
- if predRead:
- int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
- if self.hasReadPred():
- int_reg_val = '(%s) ? %s : 0' % \
- (self.read_predicate, int_reg_val)
- else:
- int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
-
- return '%s = %s;\n' % (self.base_name, int_reg_val)
-
- def makeWrite(self, predWrite):
- if (self.ctype == 'float' or self.ctype == 'double'):
- error('Attempt to write integer register as FP')
- if self.write_code != None:
- return self.buildWriteCode('setIntRegOperand')
-
- if predWrite:
- wp = 'true'
- if self.hasWritePred():
- wp = self.write_predicate
-
- wcond = 'if (%s)' % (wp)
- windex = '_destIndex++'
- else:
- wcond = ''
- windex = '%d' % self.dest_reg_idx
-
- wb = '''
- %s
- {
- %s final_val = %s;
- xc->setIntRegOperand(this, %s, final_val);\n
- if (traceData) { traceData->setData(final_val); }
- }''' % (wcond, self.ctype, self.base_name, windex)
-
- return wb
-
-class FloatRegOperand(Operand):
- reg_class = 'FloatRegClass'
-
- def isReg(self):
- return 1
-
- def isFloatReg(self):
- return 1
-
- def makeConstructor(self, predRead, predWrite):
- c_src = ''
- c_dest = ''
-
- if self.is_src:
- c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
-
- if self.is_dest:
- c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
- c_dest += '\n\t_numFPDestRegs++;'
-
- return c_src + c_dest
-
- def makeRead(self, predRead):
- if self.read_code != None:
- return self.buildReadCode('readFloatRegOperandBits')
-
- if predRead:
- rindex = '_sourceIndex++'
- else:
- rindex = '%d' % self.src_reg_idx
-
- code = 'xc->readFloatRegOperandBits(this, %s)' % rindex
- if self.ctype == 'float':
- code = 'bitsToFloat32(%s)' % code
- elif self.ctype == 'double':
- code = 'bitsToFloat64(%s)' % code
- return '%s = %s;\n' % (self.base_name, code)
-
- def makeWrite(self, predWrite):
- if self.write_code != None:
- return self.buildWriteCode('setFloatRegOperandBits')
-
- if predWrite:
- wp = '_destIndex++'
- else:
- wp = '%d' % self.dest_reg_idx
-
- val = 'final_val'
- if self.ctype == 'float':
- val = 'floatToBits32(%s)' % val
- elif self.ctype == 'double':
- val = 'floatToBits64(%s)' % val
-
- wp = 'xc->setFloatRegOperandBits(this, %s, %s);' % (wp, val)
-
- wb = '''
- {
- %s final_val = %s;
- %s\n
- if (traceData) { traceData->setData(final_val); }
- }''' % (self.ctype, self.base_name, wp)
- return wb
-
-class VecRegOperand(Operand):
- reg_class = 'VecRegClass'
-
- def __init__(self, parser, full_name, ext, is_src, is_dest):
- Operand.__init__(self, parser, full_name, ext, is_src, is_dest)
- self.elemExt = None
- self.parser = parser
-
- def isReg(self):
- return 1
-
- def isVecReg(self):
- return 1
-
- def makeDeclElem(self, elem_op):
- (elem_name, elem_ext) = elem_op
- (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
- if elem_ext:
- ext = elem_ext
- else:
- ext = dflt_elem_ext
- ctype = self.parser.operandTypeMap[ext]
- return '\n\t%s %s = 0;' % (ctype, elem_name)
-
- def makeDecl(self):
- if not self.is_dest and self.is_src:
- c_decl = '\t/* Vars for %s*/' % (self.base_name)
- if hasattr(self, 'active_elems'):
- if self.active_elems:
- for elem in self.active_elems:
- c_decl += self.makeDeclElem(elem)
- return c_decl + '\t/* End vars for %s */\n' % (self.base_name)
- else:
- return ''
-
- def makeConstructor(self, predRead, predWrite):
- c_src = ''
- c_dest = ''
-
- numAccessNeeded = 1
-
- if self.is_src:
- c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
-
- if self.is_dest:
- c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
- c_dest += '\n\t_numVecDestRegs++;'
-
- return c_src + c_dest
-
- # Read destination register to write
- def makeReadWElem(self, elem_op):
- (elem_name, elem_ext) = elem_op
- (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
- if elem_ext:
- ext = elem_ext
- else:
- ext = dflt_elem_ext
- ctype = self.parser.operandTypeMap[ext]
- c_read = '\t\t%s& %s = %s[%s];\n' % \
- (ctype, elem_name, self.base_name, elem_spec)
- return c_read
-
- def makeReadW(self, predWrite):
- func = 'getWritableVecRegOperand'
- if self.read_code != None:
- return self.buildReadCode(func)
-
- if predWrite:
- rindex = '_destIndex++'
- else:
- rindex = '%d' % self.dest_reg_idx
-
- c_readw = '\t\t%s& tmp_d%s = xc->%s(this, %s);\n'\
- % ('TheISA::VecRegContainer', rindex, func, rindex)
- if self.elemExt:
- c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name,
- rindex, self.parser.operandTypeMap[self.elemExt])
- if self.ext:
- c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name,
- rindex, self.parser.operandTypeMap[self.ext])
- if hasattr(self, 'active_elems'):
- if self.active_elems:
- for elem in self.active_elems:
- c_readw += self.makeReadWElem(elem)
- return c_readw
-
- # Normal source operand read
- def makeReadElem(self, elem_op, name):
- (elem_name, elem_ext) = elem_op
- (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
-
- if elem_ext:
- ext = elem_ext
- else:
- ext = dflt_elem_ext
- ctype = self.parser.operandTypeMap[ext]
- c_read = '\t\t%s = %s[%s];\n' % \
- (elem_name, name, elem_spec)
- return c_read
-
- def makeRead(self, predRead):
- func = 'readVecRegOperand'
- if self.read_code != None:
- return self.buildReadCode(func)
-
- if predRead:
- rindex = '_sourceIndex++'
- else:
- rindex = '%d' % self.src_reg_idx
-
- name = self.base_name
- if self.is_dest and self.is_src:
- name += '_merger'
-
- c_read = '\t\t%s& tmp_s%s = xc->%s(this, %s);\n' \
- % ('const TheISA::VecRegContainer', rindex, func, rindex)
- # If the parser has detected that elements are being access, create
- # the appropriate view
- if self.elemExt:
- c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \
- (name, rindex, self.parser.operandTypeMap[self.elemExt])
- if self.ext:
- c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \
- (name, rindex, self.parser.operandTypeMap[self.ext])
- if hasattr(self, 'active_elems'):
- if self.active_elems:
- for elem in self.active_elems:
- c_read += self.makeReadElem(elem, name)
- return c_read
-
- def makeWrite(self, predWrite):
- func = 'setVecRegOperand'
- if self.write_code != None:
- return self.buildWriteCode(func)
-
- wb = '''
- if (traceData) {
- traceData->setData(tmp_d%d);
- }
- ''' % self.dest_reg_idx
- return wb
-
- def finalize(self, predRead, predWrite):
- super(VecRegOperand, self).finalize(predRead, predWrite)
- if self.is_dest:
- self.op_rd = self.makeReadW(predWrite) + self.op_rd
-
-class VecElemOperand(Operand):
- reg_class = 'VecElemClass'
-
- def isReg(self):
- return 1
-
- def isVecElem(self):
- return 1
-
- def makeDecl(self):
- if self.is_dest and not self.is_src:
- return '\n\t%s %s;' % (self.ctype, self.base_name)
- else:
- return ''
-
- def makeConstructor(self, predRead, predWrite):
- c_src = ''
- c_dest = ''
-
- numAccessNeeded = 1
-
- if self.is_src:
- c_src = ('\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s, %s);' %
- (self.reg_class, self.reg_spec, self.elem_spec))
-
- if self.is_dest:
- c_dest = ('\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s, %s);' %
- (self.reg_class, self.reg_spec, self.elem_spec))
- c_dest += '\n\t_numVecElemDestRegs++;'
- return c_src + c_dest
-
- def makeRead(self, predRead):
- c_read = 'xc->readVecElemOperand(this, %d)' % self.src_reg_idx
-
- if self.ctype == 'float':
- c_read = 'bitsToFloat32(%s)' % c_read
- elif self.ctype == 'double':
- c_read = 'bitsToFloat64(%s)' % c_read
-
- return '\n\t%s %s = %s;\n' % (self.ctype, self.base_name, c_read)
-
- def makeWrite(self, predWrite):
- if self.ctype == 'float':
- c_write = 'floatToBits32(%s)' % self.base_name
- elif self.ctype == 'double':
- c_write = 'floatToBits64(%s)' % self.base_name
- else:
- c_write = self.base_name
-
- c_write = ('\n\txc->setVecElemOperand(this, %d, %s);' %
- (self.dest_reg_idx, c_write))
-
- return c_write
-
-class VecPredRegOperand(Operand):
- reg_class = 'VecPredRegClass'
-
- def __init__(self, parser, full_name, ext, is_src, is_dest):
- Operand.__init__(self, parser, full_name, ext, is_src, is_dest)
- self.parser = parser
-
- def isReg(self):
- return 1
-
- def isVecPredReg(self):
- return 1
-
- def makeDecl(self):
- return ''
-
- def makeConstructor(self, predRead, predWrite):
- c_src = ''
- c_dest = ''
-
- if self.is_src:
- c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
-
- if self.is_dest:
- c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
- c_dest += '\n\t_numVecPredDestRegs++;'
-
- return c_src + c_dest
-
- def makeRead(self, predRead):
- func = 'readVecPredRegOperand'
- if self.read_code != None:
- return self.buildReadCode(func)
-
- if predRead:
- rindex = '_sourceIndex++'
- else:
- rindex = '%d' % self.src_reg_idx
-
- c_read = '\t\t%s& tmp_s%s = xc->%s(this, %s);\n' % (
- 'const TheISA::VecPredRegContainer', rindex, func, rindex)
- if self.ext:
- c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % (
- self.base_name, rindex,
- self.parser.operandTypeMap[self.ext])
- return c_read
-
- def makeReadW(self, predWrite):
- func = 'getWritableVecPredRegOperand'
- if self.read_code != None:
- return self.buildReadCode(func)
-
- if predWrite:
- rindex = '_destIndex++'
- else:
- rindex = '%d' % self.dest_reg_idx
-
- c_readw = '\t\t%s& tmp_d%s = xc->%s(this, %s);\n' % (
- 'TheISA::VecPredRegContainer', rindex, func, rindex)
- if self.ext:
- c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (
- self.base_name, rindex,
- self.parser.operandTypeMap[self.ext])
- return c_readw
-
- def makeWrite(self, predWrite):
- func = 'setVecPredRegOperand'
- if self.write_code != None:
- return self.buildWriteCode(func)
-
- wb = '''
- if (traceData) {
- traceData->setData(tmp_d%d);
- }
- ''' % self.dest_reg_idx
- return wb
-
- def finalize(self, predRead, predWrite):
- super(VecPredRegOperand, self).finalize(predRead, predWrite)
- if self.is_dest:
- self.op_rd = self.makeReadW(predWrite) + self.op_rd
-
-class CCRegOperand(Operand):
- reg_class = 'CCRegClass'
-
- def isReg(self):
- return 1
-
- def isCCReg(self):
- return 1
-
- def makeConstructor(self, predRead, predWrite):
- c_src = ''
- c_dest = ''
-
- if self.is_src:
- c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
- if self.hasReadPred():
- c_src = '\n\tif (%s) {%s\n\t}' % \
- (self.read_predicate, c_src)
-
- if self.is_dest:
- c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
- c_dest += '\n\t_numCCDestRegs++;'
- if self.hasWritePred():
- c_dest = '\n\tif (%s) {%s\n\t}' % \
- (self.write_predicate, c_dest)
-
- return c_src + c_dest
-
- def makeRead(self, predRead):
- if (self.ctype == 'float' or self.ctype == 'double'):
- error('Attempt to read condition-code register as FP')
- if self.read_code != None:
- return self.buildReadCode('readCCRegOperand')
-
- int_reg_val = ''
- if predRead:
- int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
- if self.hasReadPred():
- int_reg_val = '(%s) ? %s : 0' % \
- (self.read_predicate, int_reg_val)
- else:
- int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
-
- return '%s = %s;\n' % (self.base_name, int_reg_val)
-
- def makeWrite(self, predWrite):
- if (self.ctype == 'float' or self.ctype == 'double'):
- error('Attempt to write condition-code register as FP')
- if self.write_code != None:
- return self.buildWriteCode('setCCRegOperand')
-
- if predWrite:
- wp = 'true'
- if self.hasWritePred():
- wp = self.write_predicate
-
- wcond = 'if (%s)' % (wp)
- windex = '_destIndex++'
- else:
- wcond = ''
- windex = '%d' % self.dest_reg_idx
-
- wb = '''
- %s
- {
- %s final_val = %s;
- xc->setCCRegOperand(this, %s, final_val);\n
- if (traceData) { traceData->setData(final_val); }
- }''' % (wcond, self.ctype, self.base_name, windex)
-
- return wb
-
-class ControlRegOperand(Operand):
- reg_class = 'MiscRegClass'
-
- def isReg(self):
- return 1
-
- def isControlReg(self):
- return 1
-
- def makeConstructor(self, predRead, predWrite):
- c_src = ''
- c_dest = ''
-
- if self.is_src:
- c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
-
- if self.is_dest:
- c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
-
- return c_src + c_dest
-
- def makeRead(self, predRead):
- bit_select = 0
- if (self.ctype == 'float' or self.ctype == 'double'):
- error('Attempt to read control register as FP')
- if self.read_code != None:
- return self.buildReadCode('readMiscRegOperand')
-
- if predRead:
- rindex = '_sourceIndex++'
- else:
- rindex = '%d' % self.src_reg_idx
-
- return '%s = xc->readMiscRegOperand(this, %s);\n' % \
- (self.base_name, rindex)
-
- def makeWrite(self, predWrite):
- if (self.ctype == 'float' or self.ctype == 'double'):
- error('Attempt to write control register as FP')
- if self.write_code != None:
- return self.buildWriteCode('setMiscRegOperand')
-
- if predWrite:
- windex = '_destIndex++'
- else:
- windex = '%d' % self.dest_reg_idx
-
- wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
- (windex, self.base_name)
- wb += 'if (traceData) { traceData->setData(%s); }' % \
- self.base_name
-
- return wb
-
-class MemOperand(Operand):
- def isMem(self):
- return 1
-
- def makeConstructor(self, predRead, predWrite):
- return ''
-
- def makeDecl(self):
- # Declare memory data variable.
- return '%s %s = {};\n' % (self.ctype, self.base_name)
-
- def makeRead(self, predRead):
- if self.read_code != None:
- return self.buildReadCode()
- return ''
-
- def makeWrite(self, predWrite):
- if self.write_code != None:
- return self.buildWriteCode()
- return ''
-
-class PCStateOperand(Operand):
- def makeConstructor(self, predRead, predWrite):
- return ''
-
- def makeRead(self, predRead):
- if self.reg_spec:
- # A component of the PC state.
- return '%s = __parserAutoPCState.%s();\n' % \
- (self.base_name, self.reg_spec)
- else:
- # The whole PC state itself.
- return '%s = xc->pcState();\n' % self.base_name
-
- def makeWrite(self, predWrite):
- if self.reg_spec:
- # A component of the PC state.
- return '__parserAutoPCState.%s(%s);\n' % \
- (self.reg_spec, self.base_name)
- else:
- # The whole PC state itself.
- return 'xc->pcState(%s);\n' % self.base_name
-
- def makeDecl(self):
- ctype = 'TheISA::PCState'
- if self.isPCPart():
- ctype = self.ctype
- # Note that initializations in the declarations are solely
- # to avoid 'uninitialized variable' errors from the compiler.
- return '%s %s = 0;\n' % (ctype, self.base_name)
-
- def isPCState(self):
- return 1
-
-class OperandList(object):
- '''Find all the operands in the given code block. Returns an operand
- descriptor list (instance of class OperandList).'''
- def __init__(self, parser, code):
- self.items = []
- self.bases = {}
- # delete strings and comments so we don't match on operands inside
- for regEx in (stringRE, commentRE):
- code = regEx.sub('', code)
- # search for operands
- next_pos = 0
- while 1:
- match = parser.operandsRE().search(code, next_pos)
- if not match:
- # no more matches: we're done
- break
- op = match.groups()
- # regexp groups are operand full name, base, and extension
- (op_full, op_base, op_ext) = op
- # If is a elem operand, define or update the corresponding
- # vector operand
- isElem = False
- if op_base in parser.elemToVector:
- isElem = True
- elem_op = (op_base, op_ext)
- op_base = parser.elemToVector[op_base]
- op_ext = '' # use the default one
- # if the token following the operand is an assignment, this is
- # a destination (LHS), else it's a source (RHS)
- is_dest = (assignRE.match(code, match.end()) != None)
- is_src = not is_dest
-
- # see if we've already seen this one
- op_desc = self.find_base(op_base)
- if op_desc:
- if op_ext and op_ext != '' and op_desc.ext != op_ext:
- error ('Inconsistent extensions for operand %s: %s - %s' \
- % (op_base, op_desc.ext, op_ext))
- op_desc.is_src = op_desc.is_src or is_src
- op_desc.is_dest = op_desc.is_dest or is_dest
- if isElem:
- (elem_base, elem_ext) = elem_op
- found = False
- for ae in op_desc.active_elems:
- (ae_base, ae_ext) = ae
- if ae_base == elem_base:
- if ae_ext != elem_ext:
- error('Inconsistent extensions for elem'
- ' operand %s' % elem_base)
- else:
- found = True
- if not found:
- op_desc.active_elems.append(elem_op)
- else:
- # new operand: create new descriptor
- op_desc = parser.operandNameMap[op_base](parser,
- op_full, op_ext, is_src, is_dest)
- # if operand is a vector elem, add the corresponding vector
- # operand if not already done
- if isElem:
- op_desc.elemExt = elem_op[1]
- op_desc.active_elems = [elem_op]
- self.append(op_desc)
- # start next search after end of current match
- next_pos = match.end()
- self.sort()
- # enumerate source & dest register operands... used in building
- # constructor later
- self.numSrcRegs = 0
- self.numDestRegs = 0
- self.numFPDestRegs = 0
- self.numIntDestRegs = 0
- self.numVecDestRegs = 0
- self.numVecPredDestRegs = 0
- self.numCCDestRegs = 0
- self.numMiscDestRegs = 0
- self.memOperand = None
-
- # Flags to keep track if one or more operands are to be read/written
- # conditionally.
- self.predRead = False
- self.predWrite = False
-
- for op_desc in self.items:
- if op_desc.isReg():
- if op_desc.is_src:
- op_desc.src_reg_idx = self.numSrcRegs
- self.numSrcRegs += 1
- if op_desc.is_dest:
- op_desc.dest_reg_idx = self.numDestRegs
- self.numDestRegs += 1
- if op_desc.isFloatReg():
- self.numFPDestRegs += 1
- elif op_desc.isIntReg():
- self.numIntDestRegs += 1
- elif op_desc.isVecReg():
- self.numVecDestRegs += 1
- elif op_desc.isVecPredReg():
- self.numVecPredDestRegs += 1
- elif op_desc.isCCReg():
- self.numCCDestRegs += 1
- elif op_desc.isControlReg():
- self.numMiscDestRegs += 1
- elif op_desc.isMem():
- if self.memOperand:
- error("Code block has more than one memory operand.")
- self.memOperand = op_desc
-
- # Check if this operand has read/write predication. If true, then
- # the microop will dynamically index source/dest registers.
- self.predRead = self.predRead or op_desc.hasReadPred()
- self.predWrite = self.predWrite or op_desc.hasWritePred()
-
- if parser.maxInstSrcRegs < self.numSrcRegs:
- parser.maxInstSrcRegs = self.numSrcRegs
- if parser.maxInstDestRegs < self.numDestRegs:
- parser.maxInstDestRegs = self.numDestRegs
- if parser.maxMiscDestRegs < self.numMiscDestRegs:
- parser.maxMiscDestRegs = self.numMiscDestRegs
-
- # now make a final pass to finalize op_desc fields that may depend
- # on the register enumeration
- for op_desc in self.items:
- op_desc.finalize(self.predRead, self.predWrite)
-
- def __len__(self):
- return len(self.items)
-
- def __getitem__(self, index):
- return self.items[index]
-
- def append(self, op_desc):
- self.items.append(op_desc)
- self.bases[op_desc.base_name] = op_desc
-
- def find_base(self, base_name):
- # like self.bases[base_name], but returns None if not found
- # (rather than raising exception)
- return self.bases.get(base_name)
-
- # internal helper function for concat[Some]Attr{Strings|Lists}
- def __internalConcatAttrs(self, attr_name, filter, result):
- for op_desc in self.items:
- if filter(op_desc):
- result += getattr(op_desc, attr_name)
- return result
-
- # return a single string that is the concatenation of the (string)
- # values of the specified attribute for all operands
- def concatAttrStrings(self, attr_name):
- return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
-
- # like concatAttrStrings, but only include the values for the operands
- # for which the provided filter function returns true
- def concatSomeAttrStrings(self, filter, attr_name):
- return self.__internalConcatAttrs(attr_name, filter, '')
-
- # return a single list that is the concatenation of the (list)
- # values of the specified attribute for all operands
- def concatAttrLists(self, attr_name):
- return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
-
- # like concatAttrLists, but only include the values for the operands
- # for which the provided filter function returns true
- def concatSomeAttrLists(self, filter, attr_name):
- return self.__internalConcatAttrs(attr_name, filter, [])
-
- def sort(self):
- self.items.sort(key=lambda a: a.sort_pri)
-
-class SubOperandList(OperandList):
- '''Find all the operands in the given code block. Returns an operand
- descriptor list (instance of class OperandList).'''
- def __init__(self, parser, code, requestor_list):
- self.items = []
- self.bases = {}
- # delete strings and comments so we don't match on operands inside
- for regEx in (stringRE, commentRE):
- code = regEx.sub('', code)
- # search for operands
- next_pos = 0
- while 1:
- match = parser.operandsRE().search(code, next_pos)
- if not match:
- # no more matches: we're done
- break
- op = match.groups()
- # regexp groups are operand full name, base, and extension
- (op_full, op_base, op_ext) = op
- # If is a elem operand, define or update the corresponding
- # vector operand
- if op_base in parser.elemToVector:
- elem_op = op_base
- op_base = parser.elemToVector[elem_op]
- # find this op in the requestor list
- op_desc = requestor_list.find_base(op_base)
- if not op_desc:
- error('Found operand %s which is not in the requestor list!'
- % op_base)
- else:
- # See if we've already found this operand
- op_desc = self.find_base(op_base)
- if not op_desc:
- # if not, add a reference to it to this sub list
- self.append(requestor_list.bases[op_base])
-
- # start next search after end of current match
- next_pos = match.end()
- self.sort()
- self.memOperand = None
- # Whether the whole PC needs to be read so parts of it can be accessed
- self.readPC = False
- # Whether the whole PC needs to be written after parts of it were
- # changed
- self.setPC = False
- # Whether this instruction manipulates the whole PC or parts of it.
- # Mixing the two is a bad idea and flagged as an error.
- self.pcPart = None
-
- # Flags to keep track if one or more operands are to be read/written
- # conditionally.
- self.predRead = False
- self.predWrite = False
-
- for op_desc in self.items:
- if op_desc.isPCPart():
- self.readPC = True
- if op_desc.is_dest:
- self.setPC = True
-
- if op_desc.isPCState():
- if self.pcPart is not None:
- if self.pcPart and not op_desc.isPCPart() or \
- not self.pcPart and op_desc.isPCPart():
- error("Mixed whole and partial PC state operands.")
- self.pcPart = op_desc.isPCPart()
-
- if op_desc.isMem():
- if self.memOperand:
- error("Code block has more than one memory operand.")
- self.memOperand = op_desc
-
- # Check if this operand has read/write predication. If true, then
- # the microop will dynamically index source/dest registers.
- self.predRead = self.predRead or op_desc.hasReadPred()
- self.predWrite = self.predWrite or op_desc.hasWritePred()
-
-# Regular expression object to match C++ strings
-stringRE = re.compile(r'"([^"\\]|\\.)*"')
-
-# Regular expression object to match C++ comments
-# (used in findOperands())
-commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
- re.DOTALL | re.MULTILINE)
-
-# Regular expression object to match assignment statements (used in
-# findOperands()). If the code immediately following the first
-# appearance of the operand matches this regex, then the operand
-# appears to be on the LHS of an assignment, and is thus a
-# destination. basically we're looking for an '=' that's not '=='.
-# The heinous tangle before that handles the case where the operand
-# has an array subscript.
-assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE)
-
-def makeFlagConstructor(flag_list):
- if len(flag_list) == 0:
- return ''
- # filter out repeated flags
- flag_list.sort()
- i = 1
- while i < len(flag_list):
- if flag_list[i] == flag_list[i-1]:
- del flag_list[i]
- else:
- i += 1
- pre = '\n\tflags['
- post = '] = true;'
- code = pre + (post + pre).join(flag_list) + post
- return code
-
-# Assume all instruction flags are of the form 'IsFoo'
-instFlagRE = re.compile(r'Is.*')
-
-# OpClass constants end in 'Op' except No_OpClass
-opClassRE = re.compile(r'.*Op|No_OpClass')
-
-class InstObjParams(object):
- def __init__(self, parser, mnem, class_name, base_class = '',
- snippets = {}, opt_args = []):
- self.mnemonic = mnem
- self.class_name = class_name
- self.base_class = base_class
- if not isinstance(snippets, dict):
- snippets = {'code' : snippets}
- compositeCode = ' '.join(list(map(str, snippets.values())))
- self.snippets = snippets
-
- self.operands = OperandList(parser, compositeCode)
-
- # The header of the constructor declares the variables to be used
- # in the body of the constructor.
- header = ''
- header += '\n\t_numSrcRegs = 0;'
- header += '\n\t_numDestRegs = 0;'
- header += '\n\t_numFPDestRegs = 0;'
- header += '\n\t_numVecDestRegs = 0;'
- header += '\n\t_numVecElemDestRegs = 0;'
- header += '\n\t_numVecPredDestRegs = 0;'
- header += '\n\t_numIntDestRegs = 0;'
- header += '\n\t_numCCDestRegs = 0;'
-
- self.constructor = header + \
- self.operands.concatAttrStrings('constructor')
-
- self.flags = self.operands.concatAttrLists('flags')
-
- self.op_class = None
-
- # Optional arguments are assumed to be either StaticInst flags
- # or an OpClass value. To avoid having to import a complete
- # list of these values to match against, we do it ad-hoc
- # with regexps.
- for oa in opt_args:
- if instFlagRE.match(oa):
- self.flags.append(oa)
- elif opClassRE.match(oa):
- self.op_class = oa
- else:
- error('InstObjParams: optional arg "%s" not recognized '
- 'as StaticInst::Flag or OpClass.' % oa)
-
- # Make a basic guess on the operand class if not set.
- # These are good enough for most cases.
- if not self.op_class:
- if 'IsStore' in self.flags:
- # The order matters here: 'IsFloating' and 'IsInteger' are
- # usually set in FP instructions because of the base
- # register
- if 'IsFloating' in self.flags:
- self.op_class = 'FloatMemWriteOp'
- else:
- self.op_class = 'MemWriteOp'
- elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
- # The order matters here: 'IsFloating' and 'IsInteger' are
- # usually set in FP instructions because of the base
- # register
- if 'IsFloating' in self.flags:
- self.op_class = 'FloatMemReadOp'
- else:
- self.op_class = 'MemReadOp'
- elif 'IsFloating' in self.flags:
- self.op_class = 'FloatAddOp'
- elif 'IsVector' in self.flags:
- self.op_class = 'SimdAddOp'
- else:
- self.op_class = 'IntAluOp'
-
- # add flag initialization to contructor here to include
- # any flags added via opt_args
- self.constructor += makeFlagConstructor(self.flags)
-
- # if 'IsFloating' is set, add call to the FP enable check
- # function (which should be provided by isa_desc via a declare)
- # if 'IsVector' is set, add call to the Vector enable check
- # function (which should be provided by isa_desc via a declare)
- if 'IsFloating' in self.flags:
- self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
- elif 'IsVector' in self.flags:
- self.fp_enable_check = 'fault = checkVecEnableFault(xc);'
- else:
- self.fp_enable_check = ''
-
-##############
-# Stack: a simple stack object. Used for both formats (formatStack)
-# and default cases (defaultStack). Simply wraps a list to give more
-# stack-like syntax and enable initialization with an argument list
-# (as opposed to an argument that's a list).
-
-class Stack(list):
- def __init__(self, *items):
- list.__init__(self, items)
-
- def push(self, item):
- self.append(item);
-
- def top(self):
- return self[-1]
-
-# Format a file include stack backtrace as a string
-def backtrace(filename_stack):
- fmt = "In file included from %s:"
- return "\n".join([fmt % f for f in filename_stack])
-
-
-#######################
-#
-# LineTracker: track filenames along with line numbers in PLY lineno fields
-# PLY explicitly doesn't do anything with 'lineno' except propagate
-# it. This class lets us tie filenames with the line numbers with a
-# minimum of disruption to existing increment code.
-#
-
-class LineTracker(object):
- def __init__(self, filename, lineno=1):
- self.filename = filename
- self.lineno = lineno
-
- # Overload '+=' for increments. We need to create a new object on
- # each update else every token ends up referencing the same
- # constantly incrementing instance.
- def __iadd__(self, incr):
- return LineTracker(self.filename, self.lineno + incr)
-
- def __str__(self):
- return "%s:%d" % (self.filename, self.lineno)
-
- # In case there are places where someone really expects a number
- def __int__(self):
- return self.lineno
-
-
-#######################
-#
-# ISA Parser
-# parses ISA DSL and emits C++ headers and source
-#
-
-class ISAParser(Grammar):
- def __init__(self, output_dir):
- super(ISAParser, self).__init__()
- self.output_dir = output_dir
-
- self.filename = None # for output file watermarking/scaremongering
-
- # variable to hold templates
- self.templateMap = {}
-
- # variable to hold operands
- self.operandNameMap = {}
-
- # Regular expressions for working with operands
- self._operandsRE = None
- self._operandsWithExtRE = None
-
- # This dictionary maps format name strings to Format objects.
- self.formatMap = {}
-
- # Track open files and, if applicable, how many chunks it has been
- # split into so far.
- self.files = {}
- self.splits = {}
-
- # isa_name / namespace identifier from namespace declaration.
- # before the namespace declaration, None.
- self.isa_name = None
- self.namespace = None
-
- # The format stack.
- self.formatStack = Stack(NoFormat())
-
- # The default case stack.
- self.defaultStack = Stack(None)
-
- # Stack that tracks current file and line number. Each
- # element is a tuple (filename, lineno) that records the
- # *current* filename and the line number in the *previous*
- # file where it was included.
- self.fileNameStack = Stack()
-
- symbols = ('makeList', 're')
- self.exportContext = dict([(s, eval(s)) for s in symbols])
-
- self.maxInstSrcRegs = 0
- self.maxInstDestRegs = 0
- self.maxMiscDestRegs = 0
-
- def operandsRE(self):
- if not self._operandsRE:
- self.buildOperandREs()
- return self._operandsRE
-
- def operandsWithExtRE(self):
- if not self._operandsWithExtRE:
- self.buildOperandREs()
- return self._operandsWithExtRE
-
- def __getitem__(self, i): # Allow object (self) to be
- return getattr(self, i) # passed to %-substitutions
-
- # Change the file suffix of a base filename:
- # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
- def suffixize(self, s, sec):
- extn = re.compile('(\.[^\.]+)$') # isolate extension
- if self.namespace:
- return extn.sub(r'-ns\1.inc', s) # insert some text on either side
- else:
- return extn.sub(r'-g\1.inc', s)
-
- # Get the file object for emitting code into the specified section
- # (header, decoder, exec, decode_block).
- def get_file(self, section):
- if section == 'decode_block':
- filename = 'decode-method.cc.inc'
- else:
- if section == 'header':
- file = 'decoder.hh'
- else:
- file = '%s.cc' % section
- filename = self.suffixize(file, section)
- try:
- return self.files[filename]
- except KeyError: pass
-
- f = self.open(filename)
- self.files[filename] = f
-
- # The splittable files are the ones with many independent
- # per-instruction functions - the decoder's instruction constructors
- # and the instruction execution (execute()) methods. These both have
- # the suffix -ns.cc.inc, meaning they are within the namespace part
- # of the ISA, contain object-emitting C++ source, and are included
- # into other top-level files. These are the files that need special
- # #define's to allow parts of them to be compiled separately. Rather
- # than splitting the emissions into separate files, the monolithic
- # output of the ISA parser is maintained, but the value (or lack
- # thereof) of the __SPLIT definition during C preprocessing will
- # select the different chunks. If no 'split' directives are used,
- # the cpp emissions have no effect.
- if re.search('-ns.cc.inc$', filename):
- print('#if !defined(__SPLIT) || (__SPLIT == 1)', file=f)
- self.splits[f] = 1
- # ensure requisite #include's
- elif filename == 'decoder-g.hh.inc':
- print('#include "base/bitfield.hh"', file=f)
-
- return f
-
- # Weave together the parts of the different output sections by
- # #include'ing them into some very short top-level .cc/.hh files.
- # These small files make it much clearer how this tool works, since
- # you directly see the chunks emitted as files that are #include'd.
- def write_top_level_files(self):
- # decoder header - everything depends on this
- file = 'decoder.hh'
- with self.open(file) as f:
- f.write('#ifndef __ARCH_%(isa)s_GENERATED_DECODER_HH__\n'
- '#define __ARCH_%(isa)s_GENERATED_DECODER_HH__\n\n' %
- {'isa': self.isa_name.upper()})
- fn = 'decoder-g.hh.inc'
- assert(fn in self.files)
- f.write('#include "%s"\n' % fn)
-
- fn = 'decoder-ns.hh.inc'
- assert(fn in self.files)
- f.write('namespace %s {\n#include "%s"\n}\n'
- % (self.namespace, fn))
- f.write('\n#endif // __ARCH_%s_GENERATED_DECODER_HH__\n' %
- self.isa_name.upper())
-
- # decoder method - cannot be split
- file = 'decoder.cc'
- with self.open(file) as f:
- fn = 'base/compiler.hh'
- f.write('#include "%s"\n' % fn)
-
- fn = 'decoder-g.cc.inc'
- assert(fn in self.files)
- f.write('#include "%s"\n' % fn)
-
- fn = 'decoder.hh'
- f.write('#include "%s"\n' % fn)
-
- fn = 'decode-method.cc.inc'
- # is guaranteed to have been written for parse to complete
- f.write('#include "%s"\n' % fn)
-
- extn = re.compile('(\.[^\.]+)$')
-
- # instruction constructors
- splits = self.splits[self.get_file('decoder')]
- file_ = 'inst-constrs.cc'
- for i in range(1, splits+1):
- if splits > 1:
- file = extn.sub(r'-%d\1' % i, file_)
- else:
- file = file_
- with self.open(file) as f:
- fn = 'decoder-g.cc.inc'
- assert(fn in self.files)
- f.write('#include "%s"\n' % fn)
-
- fn = 'decoder.hh'
- f.write('#include "%s"\n' % fn)
-
- fn = 'decoder-ns.cc.inc'
- assert(fn in self.files)
- print('namespace %s {' % self.namespace, file=f)
- if splits > 1:
- print('#define __SPLIT %u' % i, file=f)
- print('#include "%s"' % fn, file=f)
- print('}', file=f)
-
- # instruction execution
- splits = self.splits[self.get_file('exec')]
- for i in range(1, splits+1):
- file = 'generic_cpu_exec.cc'
- if splits > 1:
- file = extn.sub(r'_%d\1' % i, file)
- with self.open(file) as f:
- fn = 'exec-g.cc.inc'
- assert(fn in self.files)
- f.write('#include "%s"\n' % fn)
- f.write('#include "cpu/exec_context.hh"\n')
- f.write('#include "decoder.hh"\n')
-
- fn = 'exec-ns.cc.inc'
- assert(fn in self.files)
- print('namespace %s {' % self.namespace, file=f)
- if splits > 1:
- print('#define __SPLIT %u' % i, file=f)
- print('#include "%s"' % fn, file=f)
- print('}', file=f)
-
- # max_inst_regs.hh
- self.update('max_inst_regs.hh',
- '''namespace %(namespace)s {
- const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
- const int MaxInstDestRegs = %(maxInstDestRegs)d;
- const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
-
- scaremonger_template ='''// DO NOT EDIT
-// This file was automatically generated from an ISA description:
-// %(filename)s
-
-''';
-
- #####################################################################
- #
- # Lexer
- #
- # The PLY lexer module takes two things as input:
- # - A list of token names (the string list 'tokens')
- # - A regular expression describing a match for each token. The
- # regexp for token FOO can be provided in two ways:
- # - as a string variable named t_FOO
- # - as the doc string for a function named t_FOO. In this case,
- # the function is also executed, allowing an action to be
- # associated with each token match.
- #
- #####################################################################
-
- # Reserved words. These are listed separately as they are matched
- # using the same regexp as generic IDs, but distinguished in the
- # t_ID() function. The PLY documentation suggests this approach.
- reserved = (
- 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
- 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
- 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
- )
-
- # List of tokens. The lex module requires this.
- tokens = reserved + (
- # identifier
- 'ID',
-
- # integer literal
- 'INTLIT',
-
- # string literal
- 'STRLIT',
-
- # code literal
- 'CODELIT',
-
- # ( ) [ ] { } < > , ; . : :: *
- 'LPAREN', 'RPAREN',
- 'LBRACKET', 'RBRACKET',
- 'LBRACE', 'RBRACE',
- 'LESS', 'GREATER', 'EQUALS',
- 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
- 'ASTERISK',
-
- # C preprocessor directives
- 'CPPDIRECTIVE'
-
- # The following are matched but never returned. commented out to
- # suppress PLY warning
- # newfile directive
- # 'NEWFILE',
-
- # endfile directive
- # 'ENDFILE'
- )
-
- # Regular expressions for token matching
- t_LPAREN = r'\('
- t_RPAREN = r'\)'
- t_LBRACKET = r'\['
- t_RBRACKET = r'\]'
- t_LBRACE = r'\{'
- t_RBRACE = r'\}'
- t_LESS = r'\<'
- t_GREATER = r'\>'
- t_EQUALS = r'='
- t_COMMA = r','
- t_SEMI = r';'
- t_DOT = r'\.'
- t_COLON = r':'
- t_DBLCOLON = r'::'
- t_ASTERISK = r'\*'
-
- # Identifiers and reserved words
- reserved_map = { }
- for r in reserved:
- reserved_map[r.lower()] = r
-
- def t_ID(self, t):
- r'[A-Za-z_]\w*'
- t.type = self.reserved_map.get(t.value, 'ID')
- return t
-
- # Integer literal
- def t_INTLIT(self, t):
- r'-?(0x[\da-fA-F]+)|\d+'
- try:
- t.value = int(t.value,0)
- except ValueError:
- error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
- t.value = 0
- return t
-
- # String literal. Note that these use only single quotes, and
- # can span multiple lines.
- def t_STRLIT(self, t):
- r"(?m)'([^'])+'"
- # strip off quotes
- t.value = t.value[1:-1]
- t.lexer.lineno += t.value.count('\n')
- return t
-
-
- # "Code literal"... like a string literal, but delimiters are
- # '{{' and '}}' so they get formatted nicely under emacs c-mode
- def t_CODELIT(self, t):
- r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
- # strip off {{ & }}
- t.value = t.value[2:-2]
- t.lexer.lineno += t.value.count('\n')
- return t
-
- def t_CPPDIRECTIVE(self, t):
- r'^\#[^\#].*\n'
- t.lexer.lineno += t.value.count('\n')
- return t
-
- def t_NEWFILE(self, t):
- r'^\#\#newfile\s+"[^"]*"\n'
- self.fileNameStack.push(t.lexer.lineno)
- t.lexer.lineno = LineTracker(t.value[11:-2])
-
- def t_ENDFILE(self, t):
- r'^\#\#endfile\n'
- t.lexer.lineno = self.fileNameStack.pop()
-
- #
- # The functions t_NEWLINE, t_ignore, and t_error are
- # special for the lex module.
- #
-
- # Newlines
- def t_NEWLINE(self, t):
- r'\n+'
- t.lexer.lineno += t.value.count('\n')
-
- # Comments
- def t_comment(self, t):
- r'//.*'
-
- # Completely ignored characters
- t_ignore = ' \t\x0c'
-
- # Error handler
- def t_error(self, t):
- error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
- t.skip(1)
-
- #####################################################################
- #
- # Parser
- #
- # Every function whose name starts with 'p_' defines a grammar
- # rule. The rule is encoded in the function's doc string, while
- # the function body provides the action taken when the rule is
- # matched. The argument to each function is a list of the values
- # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
- # symbols on the RHS. For tokens, the value is copied from the
- # t.value attribute provided by the lexer. For non-terminals, the
- # value is assigned by the producing rule; i.e., the job of the
- # grammar rule function is to set the value for the non-terminal
- # on the LHS (by assigning to t[0]).
- #####################################################################
-
- # The LHS of the first grammar rule is used as the start symbol
- # (in this case, 'specification'). Note that this rule enforces
- # that there will be exactly one namespace declaration, with 0 or
- # more global defs/decls before and after it. The defs & decls
- # before the namespace decl will be outside the namespace; those
- # after will be inside. The decoder function is always inside the
- # namespace.
- def p_specification(self, t):
- 'specification : opt_defs_and_outputs top_level_decode_block'
-
- for f in self.splits.keys():
- f.write('\n#endif\n')
-
- for f in self.files.values(): # close ALL the files;
- f.close() # not doing so can cause compilation to fail
-
- self.write_top_level_files()
-
- t[0] = True
-
- # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
- # output statements. Its productions do the hard work of eventually
- # instantiating a GenCode, which are generally emitted (written to disk)
- # as soon as possible, except for the decode_block, which has to be
- # accumulated into one large function of nested switch/case blocks.
- def p_opt_defs_and_outputs_0(self, t):
- 'opt_defs_and_outputs : empty'
-
- def p_opt_defs_and_outputs_1(self, t):
- 'opt_defs_and_outputs : defs_and_outputs'
-
- def p_defs_and_outputs_0(self, t):
- 'defs_and_outputs : def_or_output'
-
- def p_defs_and_outputs_1(self, t):
- 'defs_and_outputs : defs_and_outputs def_or_output'
-
- # The list of possible definition/output statements.
- # They are all processed as they are seen.
- def p_def_or_output(self, t):
- '''def_or_output : name_decl
- | def_format
- | def_bitfield
- | def_bitfield_struct
- | def_template
- | def_operand_types
- | def_operands
- | output
- | global_let
- | split'''
-
- # Utility function used by both invocations of splitting - explicit
- # 'split' keyword and split() function inside "let {{ }};" blocks.
- def split(self, sec, write=False):
- assert(sec != 'header' and "header cannot be split")
-
- f = self.get_file(sec)
- self.splits[f] += 1
- s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
- if write:
- f.write(s)
- else:
- return s
-
- # split output file to reduce compilation time
- def p_split(self, t):
- 'split : SPLIT output_type SEMI'
- assert(self.isa_name and "'split' not allowed before namespace decl")
-
- self.split(t[2], True)
-
- def p_output_type(self, t):
- '''output_type : DECODER
- | HEADER
- | EXEC'''
- t[0] = t[1]
-
- # ISA name declaration looks like "namespace <foo>;"
- def p_name_decl(self, t):
- 'name_decl : NAMESPACE ID SEMI'
- assert(self.isa_name == None and "Only 1 namespace decl permitted")
- self.isa_name = t[2]
- self.namespace = t[2] + 'Inst'
-
- # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
- # directly to the appropriate output section.
-
- # Massage output block by substituting in template definitions and
- # bit operators. We handle '%'s embedded in the string that don't
- # indicate template substitutions by doubling them first so that the
- # format operation will reduce them back to single '%'s.
- def process_output(self, s):
- s = self.protectNonSubstPercents(s)
- return substBitOps(s % self.templateMap)
-
- def p_output(self, t):
- 'output : OUTPUT output_type CODELIT SEMI'
- kwargs = { t[2]+'_output' : self.process_output(t[3]) }
- GenCode(self, **kwargs).emit()
-
- def make_split(self):
- def _split(sec):
- return self.split(sec)
- return _split
-
- # global let blocks 'let {{...}}' (Python code blocks) are
- # executed directly when seen. Note that these execute in a
- # special variable context 'exportContext' to prevent the code
- # from polluting this script's namespace.
- def p_global_let(self, t):
- 'global_let : LET CODELIT SEMI'
- self.updateExportContext()
- self.exportContext["header_output"] = ''
- self.exportContext["decoder_output"] = ''
- self.exportContext["exec_output"] = ''
- self.exportContext["decode_block"] = ''
- self.exportContext["split"] = self.make_split()
- split_setup = '''
-def wrap(func):
- def split(sec):
- globals()[sec + '_output'] += func(sec)
- return split
-split = wrap(split)
-del wrap
-'''
- # This tricky setup (immediately above) allows us to just write
- # (e.g.) "split('exec')" in the Python code and the split #ifdef's
- # will automatically be added to the exec_output variable. The inner
- # Python execution environment doesn't know about the split points,
- # so we carefully inject and wrap a closure that can retrieve the
- # next split's #define from the parser and add it to the current
- # emission-in-progress.
- try:
- exec(split_setup+fixPythonIndentation(t[2]), self.exportContext)
- except Exception as exc:
- traceback.print_exc(file=sys.stdout)
- if debug:
- raise
- error(t.lineno(1), 'In global let block: %s' % exc)
- GenCode(self,
- header_output=self.exportContext["header_output"],
- decoder_output=self.exportContext["decoder_output"],
- exec_output=self.exportContext["exec_output"],
- decode_block=self.exportContext["decode_block"]).emit()
-
- # Define the mapping from operand type extensions to C++ types and
- # bit widths (stored in operandTypeMap).
- def p_def_operand_types(self, t):
- 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
- try:
- self.operandTypeMap = eval('{' + t[3] + '}')
- except Exception as exc:
- if debug:
- raise
- error(t.lineno(1),
- 'In def operand_types: %s' % exc)
-
- # Define the mapping from operand names to operand classes and
- # other traits. Stored in operandNameMap.
- def p_def_operands(self, t):
- 'def_operands : DEF OPERANDS CODELIT SEMI'
- if not hasattr(self, 'operandTypeMap'):
- error(t.lineno(1),
- 'error: operand types must be defined before operands')
- try:
- user_dict = eval('{' + t[3] + '}', self.exportContext)
- except Exception as exc:
- if debug:
- raise
- error(t.lineno(1), 'In def operands: %s' % exc)
- self.buildOperandNameMap(user_dict, t.lexer.lineno)
-
- # A bitfield definition looks like:
- # 'def [signed] bitfield <ID> [<first>:<last>]'
- # This generates a preprocessor macro in the output file.
- def p_def_bitfield_0(self, t):
- 'def_bitfield : DEF opt_signed ' \
- 'BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
- expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
- if (t[2] == 'signed'):
- expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- GenCode(self, header_output=hash_define).emit()
-
- # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
- def p_def_bitfield_1(self, t):
- 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
- expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
- if (t[2] == 'signed'):
- expr = 'sext<%d>(%s)' % (1, expr)
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- GenCode(self, header_output=hash_define).emit()
-
- # alternate form for structure member: 'def bitfield <ID> <ID>'
- def p_def_bitfield_struct(self, t):
- 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
- if (t[2] != ''):
- error(t.lineno(1),
- 'error: structure bitfields are always unsigned.')
- expr = 'machInst.%s' % t[5]
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- GenCode(self, header_output=hash_define).emit()
-
- def p_id_with_dot_0(self, t):
- 'id_with_dot : ID'
- t[0] = t[1]
-
- def p_id_with_dot_1(self, t):
- 'id_with_dot : ID DOT id_with_dot'
- t[0] = t[1] + t[2] + t[3]
-
- def p_opt_signed_0(self, t):
- 'opt_signed : SIGNED'
- t[0] = t[1]
-
- def p_opt_signed_1(self, t):
- 'opt_signed : empty'
- t[0] = ''
-
- def p_def_template(self, t):
- 'def_template : DEF TEMPLATE ID CODELIT SEMI'
- if t[3] in self.templateMap:
- print("warning: template %s already defined" % t[3])
- self.templateMap[t[3]] = Template(self, t[4])
-
- # An instruction format definition looks like
- # "def format <fmt>(<params>) {{...}};"
- def p_def_format(self, t):
- 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
- (id, params, code) = (t[3], t[5], t[7])
- self.defFormat(id, params, code, t.lexer.lineno)
-
- # The formal parameter list for an instruction format is a
- # possibly empty list of comma-separated parameters. Positional
- # (standard, non-keyword) parameters must come first, followed by
- # keyword parameters, followed by a '*foo' parameter that gets
- # excess positional arguments (as in Python). Each of these three
- # parameter categories is optional.
- #
- # Note that we do not support the '**foo' parameter for collecting
- # otherwise undefined keyword args. Otherwise the parameter list
- # is (I believe) identical to what is supported in Python.
- #
- # The param list generates a tuple, where the first element is a
- # list of the positional params and the second element is a dict
- # containing the keyword params.
- def p_param_list_0(self, t):
- 'param_list : positional_param_list COMMA nonpositional_param_list'
- t[0] = t[1] + t[3]
-
- def p_param_list_1(self, t):
- '''param_list : positional_param_list
- | nonpositional_param_list'''
- t[0] = t[1]
-
- def p_positional_param_list_0(self, t):
- 'positional_param_list : empty'
- t[0] = []
-
- def p_positional_param_list_1(self, t):
- 'positional_param_list : ID'
- t[0] = [t[1]]
-
- def p_positional_param_list_2(self, t):
- 'positional_param_list : positional_param_list COMMA ID'
- t[0] = t[1] + [t[3]]
-
- def p_nonpositional_param_list_0(self, t):
- 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
- t[0] = t[1] + t[3]
-
- def p_nonpositional_param_list_1(self, t):
- '''nonpositional_param_list : keyword_param_list
- | excess_args_param'''
- t[0] = t[1]
-
- def p_keyword_param_list_0(self, t):
- 'keyword_param_list : keyword_param'
- t[0] = [t[1]]
-
- def p_keyword_param_list_1(self, t):
- 'keyword_param_list : keyword_param_list COMMA keyword_param'
- t[0] = t[1] + [t[3]]
-
- def p_keyword_param(self, t):
- 'keyword_param : ID EQUALS expr'
- t[0] = t[1] + ' = ' + t[3].__repr__()
-
- def p_excess_args_param(self, t):
- 'excess_args_param : ASTERISK ID'
- # Just concatenate them: '*ID'. Wrap in list to be consistent
- # with positional_param_list and keyword_param_list.
- t[0] = [t[1] + t[2]]
-
- # End of format definition-related rules.
- ##############
-
- #
- # A decode block looks like:
- # decode <field1> [, <field2>]* [default <inst>] { ... }
- #
- def p_top_level_decode_block(self, t):
- 'top_level_decode_block : decode_block'
- codeObj = t[1]
- codeObj.wrap_decode_block('''
-StaticInstPtr
-%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
-{
- using namespace %(namespace)s;
-''' % self, '}')
-
- codeObj.emit()
-
- def p_decode_block(self, t):
- 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
- default_defaults = self.defaultStack.pop()
- codeObj = t[5]
- # use the "default defaults" only if there was no explicit
- # default statement in decode_stmt_list
- if not codeObj.has_decode_default:
- codeObj += default_defaults
- codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
- t[0] = codeObj
-
- # The opt_default statement serves only to push the "default
- # defaults" onto defaultStack. This value will be used by nested
- # decode blocks, and used and popped off when the current
- # decode_block is processed (in p_decode_block() above).
- def p_opt_default_0(self, t):
- 'opt_default : empty'
- # no default specified: reuse the one currently at the top of
- # the stack
- self.defaultStack.push(self.defaultStack.top())
- # no meaningful value returned
- t[0] = None
-
- def p_opt_default_1(self, t):
- 'opt_default : DEFAULT inst'
- # push the new default
- codeObj = t[2]
- codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
- self.defaultStack.push(codeObj)
- # no meaningful value returned
- t[0] = None
-
- def p_decode_stmt_list_0(self, t):
- 'decode_stmt_list : decode_stmt'
- t[0] = t[1]
-
- def p_decode_stmt_list_1(self, t):
- 'decode_stmt_list : decode_stmt decode_stmt_list'
- if (t[1].has_decode_default and t[2].has_decode_default):
- error(t.lineno(1), 'Two default cases in decode block')
- t[0] = t[1] + t[2]
-
- #
- # Decode statement rules
- #
- # There are four types of statements allowed in a decode block:
- # 1. Format blocks 'format <foo> { ... }'
- # 2. Nested decode blocks
- # 3. Instruction definitions.
- # 4. C preprocessor directives.
-
-
- # Preprocessor directives found in a decode statement list are
- # passed through to the output, replicated to all of the output
- # code streams. This works well for ifdefs, so we can ifdef out
- # both the declarations and the decode cases generated by an
- # instruction definition. Handling them as part of the grammar
- # makes it easy to keep them in the right place with respect to
- # the code generated by the other statements.
- def p_decode_stmt_cpp(self, t):
- 'decode_stmt : CPPDIRECTIVE'
- t[0] = GenCode(self, t[1], t[1], t[1], t[1])
-
- # A format block 'format <foo> { ... }' sets the default
- # instruction format used to handle instruction definitions inside
- # the block. This format can be overridden by using an explicit
- # format on the instruction definition or with a nested format
- # block.
- def p_decode_stmt_format(self, t):
- 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
- # The format will be pushed on the stack when 'push_format_id'
- # is processed (see below). Once the parser has recognized
- # the full production (though the right brace), we're done
- # with the format, so now we can pop it.
- self.formatStack.pop()
- t[0] = t[4]
-
- # This rule exists so we can set the current format (& push the
- # stack) when we recognize the format name part of the format
- # block.
- def p_push_format_id(self, t):
- 'push_format_id : ID'
- try:
- self.formatStack.push(self.formatMap[t[1]])
- t[0] = ('', '// format %s' % t[1])
- except KeyError:
- error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
-
- # Nested decode block: if the value of the current field matches
- # the specified constant(s), do a nested decode on some other field.
- def p_decode_stmt_decode(self, t):
- 'decode_stmt : case_list COLON decode_block'
- case_list = t[1]
- codeObj = t[3]
- # just wrap the decoding code from the block as a case in the
- # outer switch statement.
- codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list),
- 'M5_UNREACHABLE;\n')
- codeObj.has_decode_default = (case_list == ['default:'])
- t[0] = codeObj
-
- # Instruction definition (finally!).
- def p_decode_stmt_inst(self, t):
- 'decode_stmt : case_list COLON inst SEMI'
- case_list = t[1]
- codeObj = t[3]
- codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
- codeObj.has_decode_default = (case_list == ['default:'])
- t[0] = codeObj
-
- # The constant list for a decode case label must be non-empty, and must
- # either be the keyword 'default', or made up of one or more
- # comma-separated integer literals or strings which evaluate to
- # constants when compiled as C++.
- def p_case_list_0(self, t):
- 'case_list : DEFAULT'
- t[0] = ['default:']
-
- def prep_int_lit_case_label(self, lit):
- if lit >= 2**32:
- return 'case ULL(%#x): ' % lit
- else:
- return 'case %#x: ' % lit
-
- def prep_str_lit_case_label(self, lit):
- return 'case %s: ' % lit
-
- def p_case_list_1(self, t):
- 'case_list : INTLIT'
- t[0] = [self.prep_int_lit_case_label(t[1])]
-
- def p_case_list_2(self, t):
- 'case_list : STRLIT'
- t[0] = [self.prep_str_lit_case_label(t[1])]
-
- def p_case_list_3(self, t):
- 'case_list : case_list COMMA INTLIT'
- t[0] = t[1]
- t[0].append(self.prep_int_lit_case_label(t[3]))
-
- def p_case_list_4(self, t):
- 'case_list : case_list COMMA STRLIT'
- t[0] = t[1]
- t[0].append(self.prep_str_lit_case_label(t[3]))
-
- # Define an instruction using the current instruction format
- # (specified by an enclosing format block).
- # "<mnemonic>(<args>)"
- def p_inst_0(self, t):
- 'inst : ID LPAREN arg_list RPAREN'
- # Pass the ID and arg list to the current format class to deal with.
- currentFormat = self.formatStack.top()
- codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
- args = ','.join(list(map(str, t[3])))
- args = re.sub('(?m)^', '//', args)
- args = re.sub('^//', '', args)
- comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
- codeObj.prepend_all(comment)
- t[0] = codeObj
-
- # Define an instruction using an explicitly specified format:
- # "<fmt>::<mnemonic>(<args>)"
- def p_inst_1(self, t):
- 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
- try:
- format = self.formatMap[t[1]]
- except KeyError:
- error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
-
- codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
- comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
- codeObj.prepend_all(comment)
- t[0] = codeObj
-
- # The arg list generates a tuple, where the first element is a
- # list of the positional args and the second element is a dict
- # containing the keyword args.
- def p_arg_list_0(self, t):
- 'arg_list : positional_arg_list COMMA keyword_arg_list'
- t[0] = ( t[1], t[3] )
-
- def p_arg_list_1(self, t):
- 'arg_list : positional_arg_list'
- t[0] = ( t[1], {} )
-
- def p_arg_list_2(self, t):
- 'arg_list : keyword_arg_list'
- t[0] = ( [], t[1] )
-
- def p_positional_arg_list_0(self, t):
- 'positional_arg_list : empty'
- t[0] = []
-
- def p_positional_arg_list_1(self, t):
- 'positional_arg_list : expr'
- t[0] = [t[1]]
-
- def p_positional_arg_list_2(self, t):
- 'positional_arg_list : positional_arg_list COMMA expr'
- t[0] = t[1] + [t[3]]
-
- def p_keyword_arg_list_0(self, t):
- 'keyword_arg_list : keyword_arg'
- t[0] = t[1]
-
- def p_keyword_arg_list_1(self, t):
- 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
- t[0] = t[1]
- t[0].update(t[3])
-
- def p_keyword_arg(self, t):
- 'keyword_arg : ID EQUALS expr'
- t[0] = { t[1] : t[3] }
-
- #
- # Basic expressions. These constitute the argument values of
- # "function calls" (i.e. instruction definitions in the decode
- # block) and default values for formal parameters of format
- # functions.
- #
- # Right now, these are either strings, integers, or (recursively)
- # lists of exprs (using Python square-bracket list syntax). Note
- # that bare identifiers are trated as string constants here (since
- # there isn't really a variable namespace to refer to).
- #
- def p_expr_0(self, t):
- '''expr : ID
- | INTLIT
- | STRLIT
- | CODELIT'''
- t[0] = t[1]
-
- def p_expr_1(self, t):
- '''expr : LBRACKET list_expr RBRACKET'''
- t[0] = t[2]
-
- def p_list_expr_0(self, t):
- 'list_expr : expr'
- t[0] = [t[1]]
-
- def p_list_expr_1(self, t):
- 'list_expr : list_expr COMMA expr'
- t[0] = t[1] + [t[3]]
-
- def p_list_expr_2(self, t):
- 'list_expr : empty'
- t[0] = []
-
- #
- # Empty production... use in other rules for readability.
- #
- def p_empty(self, t):
- 'empty :'
- pass
-
- # Parse error handler. Note that the argument here is the
- # offending *token*, not a grammar symbol (hence the need to use
- # t.value)
- def p_error(self, t):
- if t:
- error(t.lexer.lineno, "syntax error at '%s'" % t.value)
- else:
- error("unknown syntax error")
-
- # END OF GRAMMAR RULES
-
- def updateExportContext(self):
-
- # create a continuation that allows us to grab the current parser
- def wrapInstObjParams(*args):
- return InstObjParams(self, *args)
- self.exportContext['InstObjParams'] = wrapInstObjParams
- self.exportContext.update(self.templateMap)
-
- def defFormat(self, id, params, code, lineno):
- '''Define a new format'''
-
- # make sure we haven't already defined this one
- if id in self.formatMap:
- error(lineno, 'format %s redefined.' % id)
-
- # create new object and store in global map
- self.formatMap[id] = Format(id, params, code)
-
- def protectNonSubstPercents(self, s):
- '''Protect any non-dict-substitution '%'s in a format string
- (i.e. those not followed by '(')'''
-
- return re.sub(r'%(?!\()', '%%', s)
-
- def buildOperandNameMap(self, user_dict, lineno):
- operand_name = {}
- for op_name, val in user_dict.items():
-
- # Check if extra attributes have been specified.
- if len(val) > 9:
- error(lineno, 'error: too many attributes for operand "%s"' %
- base_cls_name)
-
- # Pad val with None in case optional args are missing
- val += (None, None, None, None)
- base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
- read_code, write_code, read_predicate, write_predicate = val[:9]
-
- # Canonical flag structure is a triple of lists, where each list
- # indicates the set of flags implied by this operand always, when
- # used as a source, and when used as a dest, respectively.
- # For simplicity this can be initialized using a variety of fairly
- # obvious shortcuts; we convert these to canonical form here.
- if not flags:
- # no flags specified (e.g., 'None')
- flags = ( [], [], [] )
- elif isinstance(flags, str):
- # a single flag: assumed to be unconditional
- flags = ( [ flags ], [], [] )
- elif isinstance(flags, list):
- # a list of flags: also assumed to be unconditional
- flags = ( flags, [], [] )
- elif isinstance(flags, tuple):
- # it's a tuple: it should be a triple,
- # but each item could be a single string or a list
- (uncond_flags, src_flags, dest_flags) = flags
- flags = (makeList(uncond_flags),
- makeList(src_flags), makeList(dest_flags))
-
- # Accumulate attributes of new operand class in tmp_dict
- tmp_dict = {}
- attrList = ['reg_spec', 'flags', 'sort_pri',
- 'read_code', 'write_code',
- 'read_predicate', 'write_predicate']
- if dflt_ext:
- dflt_ctype = self.operandTypeMap[dflt_ext]
- attrList.extend(['dflt_ctype', 'dflt_ext'])
- # reg_spec is either just a string or a dictionary
- # (for elems of vector)
- if isinstance(reg_spec, tuple):
- (reg_spec, elem_spec) = reg_spec
- if isinstance(elem_spec, str):
- attrList.append('elem_spec')
- else:
- assert(isinstance(elem_spec, dict))
- elems = elem_spec
- attrList.append('elems')
- for attr in attrList:
- tmp_dict[attr] = eval(attr)
- tmp_dict['base_name'] = op_name
-
- # New class name will be e.g. "IntReg_Ra"
- cls_name = base_cls_name + '_' + op_name
- # Evaluate string arg to get class object. Note that the
- # actual base class for "IntReg" is "IntRegOperand", i.e. we
- # have to append "Operand".
- try:
- base_cls = eval(base_cls_name + 'Operand')
- except NameError:
- error(lineno,
- 'error: unknown operand base class "%s"' % base_cls_name)
- # The following statement creates a new class called
- # <cls_name> as a subclass of <base_cls> with the attributes
- # in tmp_dict, just as if we evaluated a class declaration.
- operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
-
- self.operandNameMap.update(operand_name)
-
- def buildOperandREs(self):
- # Define operand variables.
- operands = list(self.operandNameMap.keys())
- # Add the elems defined in the vector operands and
- # build a map elem -> vector (used in OperandList)
- elem_to_vec = {}
- for op_name, op in self.operandNameMap.items():
- if hasattr(op, 'elems'):
- for elem in op.elems.keys():
- operands.append(elem)
- elem_to_vec[elem] = op_name
- self.elemToVector = elem_to_vec
- extensions = self.operandTypeMap.keys()
-
- operandsREString = r'''
- (?<!\w) # neg. lookbehind assertion: prevent partial matches
- ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
- (?!\w) # neg. lookahead assertion: prevent partial matches
- ''' % ('|'.join(operands), '|'.join(extensions))
-
- self._operandsRE = re.compile(operandsREString,
- re.MULTILINE | re.VERBOSE)
-
- # Same as operandsREString, but extension is mandatory, and only two
- # groups are returned (base and ext, not full name as above).
- # Used for subtituting '_' for '.' to make C++ identifiers.
- operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
- % ('|'.join(operands), '|'.join(extensions))
-
- self._operandsWithExtRE = \
- re.compile(operandsWithExtREString, re.MULTILINE)
-
- def substMungedOpNames(self, code):
- '''Munge operand names in code string to make legal C++
- variable names. This means getting rid of the type extension
- if any. Will match base_name attribute of Operand object.)'''
- return self.operandsWithExtRE().sub(r'\1', code)
-
- def mungeSnippet(self, s):
- '''Fix up code snippets for final substitution in templates.'''
- if isinstance(s, str):
- return self.substMungedOpNames(substBitOps(s))
- else:
- return s
-
- def open(self, name, bare=False):
- '''Open the output file for writing and include scary warning.'''
- filename = os.path.join(self.output_dir, name)
- f = open(filename, 'w')
- if f:
- if not bare:
- f.write(ISAParser.scaremonger_template % self)
- return f
-
- def update(self, file, contents):
- '''Update the output file only. Scons should handle the case when
- the new contents are unchanged using its built-in hash feature.'''
- f = self.open(file)
- f.write(contents)
- f.close()
-
- # This regular expression matches '##include' directives
- includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
- re.MULTILINE)
-
- def replace_include(self, matchobj, dirname):
- """Function to replace a matched '##include' directive with the
- contents of the specified file (with nested ##includes
- replaced recursively). 'matchobj' is an re match object
- (from a match of includeRE) and 'dirname' is the directory
- relative to which the file path should be resolved."""
-
- fname = matchobj.group('filename')
- full_fname = os.path.normpath(os.path.join(dirname, fname))
- contents = '##newfile "%s"\n%s\n##endfile\n' % \
- (full_fname, self.read_and_flatten(full_fname))
- return contents
-
- def read_and_flatten(self, filename):
- """Read a file and recursively flatten nested '##include' files."""
-
- current_dir = os.path.dirname(filename)
- try:
- contents = open(filename).read()
- except IOError:
- error('Error including file "%s"' % filename)
-
- self.fileNameStack.push(LineTracker(filename))
-
- # Find any includes and include them
- def replace(matchobj):
- return self.replace_include(matchobj, current_dir)
- contents = self.includeRE.sub(replace, contents)
-
- self.fileNameStack.pop()
- return contents
-
- AlreadyGenerated = {}
-
- def _parse_isa_desc(self, isa_desc_file):
- '''Read in and parse the ISA description.'''
-
- # The build system can end up running the ISA parser twice: once to
- # finalize the build dependencies, and then to actually generate
- # the files it expects (in src/arch/$ARCH/generated). This code
- # doesn't do anything different either time, however; the SCons
- # invocations just expect different things. Since this code runs
- # within SCons, we can just remember that we've already run and
- # not perform a completely unnecessary run, since the ISA parser's
- # effect is idempotent.
- if isa_desc_file in ISAParser.AlreadyGenerated:
- return
-
- # grab the last three path components of isa_desc_file
- self.filename = '/'.join(isa_desc_file.split('/')[-3:])
-
- # Read file and (recursively) all included files into a string.
- # PLY requires that the input be in a single string so we have to
- # do this up front.
- isa_desc = self.read_and_flatten(isa_desc_file)
-
- # Initialize lineno tracker
- self.lex.lineno = LineTracker(isa_desc_file)
-
- # Parse.
- self.parse_string(isa_desc)
-
- ISAParser.AlreadyGenerated[isa_desc_file] = None
-
- def parse_isa_desc(self, *args, **kwargs):
- try:
- self._parse_isa_desc(*args, **kwargs)
- except ISAParserError as e:
- print(backtrace(self.fileNameStack))
- print("At %s:" % e.lineno)
- print(e)
- sys.exit(1)
-
-# Called as script: get args from command line.
-# Args are: <isa desc file> <output dir>
-if __name__ == '__main__':
- ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])
--- /dev/null
+# Copyright 2020 Google, Inc.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are
+# met: redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer;
+# redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in the
+# documentation and/or other materials provided with the distribution;
+# neither the name of the copyright holders nor the names of its
+# contributors may be used to endorse or promote products derived from
+# this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+from .isa_parser import ISAParser
--- /dev/null
+# Copyright (c) 2014, 2016, 2018-2019 ARM Limited
+# All rights reserved
+#
+# The license below extends only to copyright in the software and shall
+# not be construed as granting a license to any other intellectual
+# property including but not limited to intellectual property relating
+# to a hardware implementation of the functionality of the software
+# licensed hereunder. You may use the software subject to the license
+# terms below provided that you ensure that this notice is replicated
+# unmodified and in its entirety in all distributions of the software,
+# modified or unmodified, in source code or in binary form.
+#
+# Copyright (c) 2003-2005 The Regents of The University of Michigan
+# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are
+# met: redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer;
+# redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in the
+# documentation and/or other materials provided with the distribution;
+# neither the name of the copyright holders nor the names of its
+# contributors may be used to endorse or promote products derived from
+# this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+from __future__ import with_statement, print_function
+import os
+import sys
+import re
+import inspect, traceback
+# get type names
+from types import *
+
+from m5.util.grammar import Grammar
+
+debug=False
+
+###################
+# Utility functions
+
+#
+# Indent every line in string 's' by two spaces
+# (except preprocessor directives).
+# Used to make nested code blocks look pretty.
+#
+def indent(s):
+ return re.sub(r'(?m)^(?!#)', ' ', s)
+
+#
+# Munge a somewhat arbitrarily formatted piece of Python code
+# (e.g. from a format 'let' block) into something whose indentation
+# will get by the Python parser.
+#
+# The two keys here are that Python will give a syntax error if
+# there's any whitespace at the beginning of the first line, and that
+# all lines at the same lexical nesting level must have identical
+# indentation. Unfortunately the way code literals work, an entire
+# let block tends to have some initial indentation. Rather than
+# trying to figure out what that is and strip it off, we prepend 'if
+# 1:' to make the let code the nested block inside the if (and have
+# the parser automatically deal with the indentation for us).
+#
+# We don't want to do this if (1) the code block is empty or (2) the
+# first line of the block doesn't have any whitespace at the front.
+
+def fixPythonIndentation(s):
+ # get rid of blank lines first
+ s = re.sub(r'(?m)^\s*\n', '', s);
+ if (s != '' and re.match(r'[ \t]', s[0])):
+ s = 'if 1:\n' + s
+ return s
+
+class ISAParserError(Exception):
+ """Exception class for parser errors"""
+ def __init__(self, first, second=None):
+ if second is None:
+ self.lineno = 0
+ self.string = first
+ else:
+ self.lineno = first
+ self.string = second
+
+ def __str__(self):
+ return self.string
+
+def error(*args):
+ raise ISAParserError(*args)
+
+####################
+# Template objects.
+#
+# Template objects are format strings that allow substitution from
+# the attribute spaces of other objects (e.g. InstObjParams instances).
+
+labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
+
+class Template(object):
+ def __init__(self, parser, t):
+ self.parser = parser
+ self.template = t
+
+ def subst(self, d):
+ myDict = None
+
+ # Protect non-Python-dict substitutions (e.g. if there's a printf
+ # in the templated C++ code)
+ template = self.parser.protectNonSubstPercents(self.template)
+
+ # Build a dict ('myDict') to use for the template substitution.
+ # Start with the template namespace. Make a copy since we're
+ # going to modify it.
+ myDict = self.parser.templateMap.copy()
+
+ if isinstance(d, InstObjParams):
+ # If we're dealing with an InstObjParams object, we need
+ # to be a little more sophisticated. The instruction-wide
+ # parameters are already formed, but the parameters which
+ # are only function wide still need to be generated.
+ compositeCode = ''
+
+ myDict.update(d.__dict__)
+ # The "operands" and "snippets" attributes of the InstObjParams
+ # objects are for internal use and not substitution.
+ del myDict['operands']
+ del myDict['snippets']
+
+ snippetLabels = [l for l in labelRE.findall(template)
+ if l in d.snippets]
+
+ snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
+ for s in snippetLabels])
+
+ myDict.update(snippets)
+
+ compositeCode = ' '.join(list(map(str, snippets.values())))
+
+ # Add in template itself in case it references any
+ # operands explicitly (like Mem)
+ compositeCode += ' ' + template
+
+ operands = SubOperandList(self.parser, compositeCode, d.operands)
+
+ myDict['op_decl'] = operands.concatAttrStrings('op_decl')
+ if operands.readPC or operands.setPC:
+ myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
+
+ # In case there are predicated register reads and write, declare
+ # the variables for register indicies. It is being assumed that
+ # all the operands in the OperandList are also in the
+ # SubOperandList and in the same order. Otherwise, it is
+ # expected that predication would not be used for the operands.
+ if operands.predRead:
+ myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
+ if operands.predWrite:
+ myDict['op_decl'] += 'M5_VAR_USED uint8_t _destIndex = 0;\n'
+
+ is_src = lambda op: op.is_src
+ is_dest = lambda op: op.is_dest
+
+ myDict['op_src_decl'] = \
+ operands.concatSomeAttrStrings(is_src, 'op_src_decl')
+ myDict['op_dest_decl'] = \
+ operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
+ if operands.readPC:
+ myDict['op_src_decl'] += \
+ 'TheISA::PCState __parserAutoPCState;\n'
+ if operands.setPC:
+ myDict['op_dest_decl'] += \
+ 'TheISA::PCState __parserAutoPCState;\n'
+
+ myDict['op_rd'] = operands.concatAttrStrings('op_rd')
+ if operands.readPC:
+ myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
+ myDict['op_rd']
+
+ # Compose the op_wb string. If we're going to write back the
+ # PC state because we changed some of its elements, we'll need to
+ # do that as early as possible. That allows later uncoordinated
+ # modifications to the PC to layer appropriately.
+ reordered = list(operands.items)
+ reordered.reverse()
+ op_wb_str = ''
+ pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
+ for op_desc in reordered:
+ if op_desc.isPCPart() and op_desc.is_dest:
+ op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
+ pcWbStr = ''
+ else:
+ op_wb_str = op_desc.op_wb + op_wb_str
+ myDict['op_wb'] = op_wb_str
+
+ elif isinstance(d, dict):
+ # if the argument is a dictionary, we just use it.
+ myDict.update(d)
+ elif hasattr(d, '__dict__'):
+ # if the argument is an object, we use its attribute map.
+ myDict.update(d.__dict__)
+ else:
+ raise TypeError("Template.subst() arg must be or have dictionary")
+ return template % myDict
+
+ # Convert to string.
+ def __str__(self):
+ return self.template
+
+################
+# Format object.
+#
+# A format object encapsulates an instruction format. It must provide
+# a defineInst() method that generates the code for an instruction
+# definition.
+
+class Format(object):
+ def __init__(self, id, params, code):
+ self.id = id
+ self.params = params
+ label = 'def format ' + id
+ self.user_code = compile(fixPythonIndentation(code), label, 'exec')
+ param_list = ", ".join(params)
+ f = '''def defInst(_code, _context, %s):
+ my_locals = vars().copy()
+ exec(_code, _context, my_locals)
+ return my_locals\n''' % param_list
+ c = compile(f, label + ' wrapper', 'exec')
+ exec(c, globals())
+ self.func = defInst
+
+ def defineInst(self, parser, name, args, lineno):
+ parser.updateExportContext()
+ context = parser.exportContext.copy()
+ if len(name):
+ Name = name[0].upper()
+ if len(name) > 1:
+ Name += name[1:]
+ context.update({ 'name' : name, 'Name' : Name })
+ try:
+ vars = self.func(self.user_code, context, *args[0], **args[1])
+ except Exception as exc:
+ if debug:
+ raise
+ error(lineno, 'error defining "%s": %s.' % (name, exc))
+ for k in list(vars.keys()):
+ if k not in ('header_output', 'decoder_output',
+ 'exec_output', 'decode_block'):
+ del vars[k]
+ return GenCode(parser, **vars)
+
+# Special null format to catch an implicit-format instruction
+# definition outside of any format block.
+class NoFormat(object):
+ def __init__(self):
+ self.defaultInst = ''
+
+ def defineInst(self, parser, name, args, lineno):
+ error(lineno,
+ 'instruction definition "%s" with no active format!' % name)
+
+###############
+# GenCode class
+#
+# The GenCode class encapsulates generated code destined for various
+# output files. The header_output and decoder_output attributes are
+# strings containing code destined for decoder.hh and decoder.cc
+# respectively. The decode_block attribute contains code to be
+# incorporated in the decode function itself (that will also end up in
+# decoder.cc). The exec_output attribute is the string of code for the
+# exec.cc file. The has_decode_default attribute is used in the decode block
+# to allow explicit default clauses to override default default clauses.
+
+class GenCode(object):
+ # Constructor.
+ def __init__(self, parser,
+ header_output = '', decoder_output = '', exec_output = '',
+ decode_block = '', has_decode_default = False):
+ self.parser = parser
+ self.header_output = header_output
+ self.decoder_output = decoder_output
+ self.exec_output = exec_output
+ self.decode_block = decode_block
+ self.has_decode_default = has_decode_default
+
+ # Write these code chunks out to the filesystem. They will be properly
+ # interwoven by the write_top_level_files().
+ def emit(self):
+ if self.header_output:
+ self.parser.get_file('header').write(self.header_output)
+ if self.decoder_output:
+ self.parser.get_file('decoder').write(self.decoder_output)
+ if self.exec_output:
+ self.parser.get_file('exec').write(self.exec_output)
+ if self.decode_block:
+ self.parser.get_file('decode_block').write(self.decode_block)
+
+ # Override '+' operator: generate a new GenCode object that
+ # concatenates all the individual strings in the operands.
+ def __add__(self, other):
+ return GenCode(self.parser,
+ self.header_output + other.header_output,
+ self.decoder_output + other.decoder_output,
+ self.exec_output + other.exec_output,
+ self.decode_block + other.decode_block,
+ self.has_decode_default or other.has_decode_default)
+
+ # Prepend a string (typically a comment) to all the strings.
+ def prepend_all(self, pre):
+ self.header_output = pre + self.header_output
+ self.decoder_output = pre + self.decoder_output
+ self.decode_block = pre + self.decode_block
+ self.exec_output = pre + self.exec_output
+
+ # Wrap the decode block in a pair of strings (e.g., 'case foo:'
+ # and 'break;'). Used to build the big nested switch statement.
+ def wrap_decode_block(self, pre, post = ''):
+ self.decode_block = pre + indent(self.decode_block) + post
+
+#####################################################################
+#
+# Bitfield Operator Support
+#
+#####################################################################
+
+bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
+
+bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
+bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
+
+def substBitOps(code):
+ # first convert single-bit selectors to two-index form
+ # i.e., <n> --> <n:n>
+ code = bitOp1ArgRE.sub(r'<\1:\1>', code)
+ # simple case: selector applied to ID (name)
+ # i.e., foo<a:b> --> bits(foo, a, b)
+ code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
+ # if selector is applied to expression (ending in ')'),
+ # we need to search backward for matching '('
+ match = bitOpExprRE.search(code)
+ while match:
+ exprEnd = match.start()
+ here = exprEnd - 1
+ nestLevel = 1
+ while nestLevel > 0:
+ if code[here] == '(':
+ nestLevel -= 1
+ elif code[here] == ')':
+ nestLevel += 1
+ here -= 1
+ if here < 0:
+ sys.exit("Didn't find '('!")
+ exprStart = here+1
+ newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
+ match.group(1), match.group(2))
+ code = code[:exprStart] + newExpr + code[match.end():]
+ match = bitOpExprRE.search(code)
+ return code
+
+
+#####################################################################
+#
+# Code Parser
+#
+# The remaining code is the support for automatically extracting
+# instruction characteristics from pseudocode.
+#
+#####################################################################
+
+# Force the argument to be a list. Useful for flags, where a caller
+# can specify a singleton flag or a list of flags. Also usful for
+# converting tuples to lists so they can be modified.
+def makeList(arg):
+ if isinstance(arg, list):
+ return arg
+ elif isinstance(arg, tuple):
+ return list(arg)
+ elif not arg:
+ return []
+ else:
+ return [ arg ]
+
+class Operand(object):
+ '''Base class for operand descriptors. An instance of this class
+ (or actually a class derived from this one) represents a specific
+ operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
+ derived classes encapsulates the traits of a particular operand
+ type (e.g., "32-bit integer register").'''
+
+ def buildReadCode(self, func = None):
+ subst_dict = {"name": self.base_name,
+ "func": func,
+ "reg_idx": self.reg_spec,
+ "ctype": self.ctype}
+ if hasattr(self, 'src_reg_idx'):
+ subst_dict['op_idx'] = self.src_reg_idx
+ code = self.read_code % subst_dict
+ return '%s = %s;\n' % (self.base_name, code)
+
+ def buildWriteCode(self, func = None):
+ subst_dict = {"name": self.base_name,
+ "func": func,
+ "reg_idx": self.reg_spec,
+ "ctype": self.ctype,
+ "final_val": self.base_name}
+ if hasattr(self, 'dest_reg_idx'):
+ subst_dict['op_idx'] = self.dest_reg_idx
+ code = self.write_code % subst_dict
+ return '''
+ {
+ %s final_val = %s;
+ %s;
+ if (traceData) { traceData->setData(final_val); }
+ }''' % (self.dflt_ctype, self.base_name, code)
+
+ def __init__(self, parser, full_name, ext, is_src, is_dest):
+ self.full_name = full_name
+ self.ext = ext
+ self.is_src = is_src
+ self.is_dest = is_dest
+ # The 'effective extension' (eff_ext) is either the actual
+ # extension, if one was explicitly provided, or the default.
+ if ext:
+ self.eff_ext = ext
+ elif hasattr(self, 'dflt_ext'):
+ self.eff_ext = self.dflt_ext
+
+ if hasattr(self, 'eff_ext'):
+ self.ctype = parser.operandTypeMap[self.eff_ext]
+
+ # Finalize additional fields (primarily code fields). This step
+ # is done separately since some of these fields may depend on the
+ # register index enumeration that hasn't been performed yet at the
+ # time of __init__(). The register index enumeration is affected
+ # by predicated register reads/writes. Hence, we forward the flags
+ # that indicate whether or not predication is in use.
+ def finalize(self, predRead, predWrite):
+ self.flags = self.getFlags()
+ self.constructor = self.makeConstructor(predRead, predWrite)
+ self.op_decl = self.makeDecl()
+
+ if self.is_src:
+ self.op_rd = self.makeRead(predRead)
+ self.op_src_decl = self.makeDecl()
+ else:
+ self.op_rd = ''
+ self.op_src_decl = ''
+
+ if self.is_dest:
+ self.op_wb = self.makeWrite(predWrite)
+ self.op_dest_decl = self.makeDecl()
+ else:
+ self.op_wb = ''
+ self.op_dest_decl = ''
+
+ def isMem(self):
+ return 0
+
+ def isReg(self):
+ return 0
+
+ def isFloatReg(self):
+ return 0
+
+ def isIntReg(self):
+ return 0
+
+ def isCCReg(self):
+ return 0
+
+ def isControlReg(self):
+ return 0
+
+ def isVecReg(self):
+ return 0
+
+ def isVecElem(self):
+ return 0
+
+ def isVecPredReg(self):
+ return 0
+
+ def isPCState(self):
+ return 0
+
+ def isPCPart(self):
+ return self.isPCState() and self.reg_spec
+
+ def hasReadPred(self):
+ return self.read_predicate != None
+
+ def hasWritePred(self):
+ return self.write_predicate != None
+
+ def getFlags(self):
+ # note the empty slice '[:]' gives us a copy of self.flags[0]
+ # instead of a reference to it
+ my_flags = self.flags[0][:]
+ if self.is_src:
+ my_flags += self.flags[1]
+ if self.is_dest:
+ my_flags += self.flags[2]
+ return my_flags
+
+ def makeDecl(self):
+ # Note that initializations in the declarations are solely
+ # to avoid 'uninitialized variable' errors from the compiler.
+ return self.ctype + ' ' + self.base_name + ' = 0;\n';
+
+
+src_reg_constructor = '\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s);'
+dst_reg_constructor = '\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s);'
+
+
+class IntRegOperand(Operand):
+ reg_class = 'IntRegClass'
+
+ def isReg(self):
+ return 1
+
+ def isIntReg(self):
+ return 1
+
+ def makeConstructor(self, predRead, predWrite):
+ c_src = ''
+ c_dest = ''
+
+ if self.is_src:
+ c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
+ if self.hasReadPred():
+ c_src = '\n\tif (%s) {%s\n\t}' % \
+ (self.read_predicate, c_src)
+
+ if self.is_dest:
+ c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
+ c_dest += '\n\t_numIntDestRegs++;'
+ if self.hasWritePred():
+ c_dest = '\n\tif (%s) {%s\n\t}' % \
+ (self.write_predicate, c_dest)
+
+ return c_src + c_dest
+
+ def makeRead(self, predRead):
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error('Attempt to read integer register as FP')
+ if self.read_code != None:
+ return self.buildReadCode('readIntRegOperand')
+
+ int_reg_val = ''
+ if predRead:
+ int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
+ if self.hasReadPred():
+ int_reg_val = '(%s) ? %s : 0' % \
+ (self.read_predicate, int_reg_val)
+ else:
+ int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
+
+ return '%s = %s;\n' % (self.base_name, int_reg_val)
+
+ def makeWrite(self, predWrite):
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error('Attempt to write integer register as FP')
+ if self.write_code != None:
+ return self.buildWriteCode('setIntRegOperand')
+
+ if predWrite:
+ wp = 'true'
+ if self.hasWritePred():
+ wp = self.write_predicate
+
+ wcond = 'if (%s)' % (wp)
+ windex = '_destIndex++'
+ else:
+ wcond = ''
+ windex = '%d' % self.dest_reg_idx
+
+ wb = '''
+ %s
+ {
+ %s final_val = %s;
+ xc->setIntRegOperand(this, %s, final_val);\n
+ if (traceData) { traceData->setData(final_val); }
+ }''' % (wcond, self.ctype, self.base_name, windex)
+
+ return wb
+
+class FloatRegOperand(Operand):
+ reg_class = 'FloatRegClass'
+
+ def isReg(self):
+ return 1
+
+ def isFloatReg(self):
+ return 1
+
+ def makeConstructor(self, predRead, predWrite):
+ c_src = ''
+ c_dest = ''
+
+ if self.is_src:
+ c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
+
+ if self.is_dest:
+ c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
+ c_dest += '\n\t_numFPDestRegs++;'
+
+ return c_src + c_dest
+
+ def makeRead(self, predRead):
+ if self.read_code != None:
+ return self.buildReadCode('readFloatRegOperandBits')
+
+ if predRead:
+ rindex = '_sourceIndex++'
+ else:
+ rindex = '%d' % self.src_reg_idx
+
+ code = 'xc->readFloatRegOperandBits(this, %s)' % rindex
+ if self.ctype == 'float':
+ code = 'bitsToFloat32(%s)' % code
+ elif self.ctype == 'double':
+ code = 'bitsToFloat64(%s)' % code
+ return '%s = %s;\n' % (self.base_name, code)
+
+ def makeWrite(self, predWrite):
+ if self.write_code != None:
+ return self.buildWriteCode('setFloatRegOperandBits')
+
+ if predWrite:
+ wp = '_destIndex++'
+ else:
+ wp = '%d' % self.dest_reg_idx
+
+ val = 'final_val'
+ if self.ctype == 'float':
+ val = 'floatToBits32(%s)' % val
+ elif self.ctype == 'double':
+ val = 'floatToBits64(%s)' % val
+
+ wp = 'xc->setFloatRegOperandBits(this, %s, %s);' % (wp, val)
+
+ wb = '''
+ {
+ %s final_val = %s;
+ %s\n
+ if (traceData) { traceData->setData(final_val); }
+ }''' % (self.ctype, self.base_name, wp)
+ return wb
+
+class VecRegOperand(Operand):
+ reg_class = 'VecRegClass'
+
+ def __init__(self, parser, full_name, ext, is_src, is_dest):
+ Operand.__init__(self, parser, full_name, ext, is_src, is_dest)
+ self.elemExt = None
+ self.parser = parser
+
+ def isReg(self):
+ return 1
+
+ def isVecReg(self):
+ return 1
+
+ def makeDeclElem(self, elem_op):
+ (elem_name, elem_ext) = elem_op
+ (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
+ if elem_ext:
+ ext = elem_ext
+ else:
+ ext = dflt_elem_ext
+ ctype = self.parser.operandTypeMap[ext]
+ return '\n\t%s %s = 0;' % (ctype, elem_name)
+
+ def makeDecl(self):
+ if not self.is_dest and self.is_src:
+ c_decl = '\t/* Vars for %s*/' % (self.base_name)
+ if hasattr(self, 'active_elems'):
+ if self.active_elems:
+ for elem in self.active_elems:
+ c_decl += self.makeDeclElem(elem)
+ return c_decl + '\t/* End vars for %s */\n' % (self.base_name)
+ else:
+ return ''
+
+ def makeConstructor(self, predRead, predWrite):
+ c_src = ''
+ c_dest = ''
+
+ numAccessNeeded = 1
+
+ if self.is_src:
+ c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
+
+ if self.is_dest:
+ c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
+ c_dest += '\n\t_numVecDestRegs++;'
+
+ return c_src + c_dest
+
+ # Read destination register to write
+ def makeReadWElem(self, elem_op):
+ (elem_name, elem_ext) = elem_op
+ (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
+ if elem_ext:
+ ext = elem_ext
+ else:
+ ext = dflt_elem_ext
+ ctype = self.parser.operandTypeMap[ext]
+ c_read = '\t\t%s& %s = %s[%s];\n' % \
+ (ctype, elem_name, self.base_name, elem_spec)
+ return c_read
+
+ def makeReadW(self, predWrite):
+ func = 'getWritableVecRegOperand'
+ if self.read_code != None:
+ return self.buildReadCode(func)
+
+ if predWrite:
+ rindex = '_destIndex++'
+ else:
+ rindex = '%d' % self.dest_reg_idx
+
+ c_readw = '\t\t%s& tmp_d%s = xc->%s(this, %s);\n'\
+ % ('TheISA::VecRegContainer', rindex, func, rindex)
+ if self.elemExt:
+ c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name,
+ rindex, self.parser.operandTypeMap[self.elemExt])
+ if self.ext:
+ c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name,
+ rindex, self.parser.operandTypeMap[self.ext])
+ if hasattr(self, 'active_elems'):
+ if self.active_elems:
+ for elem in self.active_elems:
+ c_readw += self.makeReadWElem(elem)
+ return c_readw
+
+ # Normal source operand read
+ def makeReadElem(self, elem_op, name):
+ (elem_name, elem_ext) = elem_op
+ (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
+
+ if elem_ext:
+ ext = elem_ext
+ else:
+ ext = dflt_elem_ext
+ ctype = self.parser.operandTypeMap[ext]
+ c_read = '\t\t%s = %s[%s];\n' % \
+ (elem_name, name, elem_spec)
+ return c_read
+
+ def makeRead(self, predRead):
+ func = 'readVecRegOperand'
+ if self.read_code != None:
+ return self.buildReadCode(func)
+
+ if predRead:
+ rindex = '_sourceIndex++'
+ else:
+ rindex = '%d' % self.src_reg_idx
+
+ name = self.base_name
+ if self.is_dest and self.is_src:
+ name += '_merger'
+
+ c_read = '\t\t%s& tmp_s%s = xc->%s(this, %s);\n' \
+ % ('const TheISA::VecRegContainer', rindex, func, rindex)
+ # If the parser has detected that elements are being access, create
+ # the appropriate view
+ if self.elemExt:
+ c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \
+ (name, rindex, self.parser.operandTypeMap[self.elemExt])
+ if self.ext:
+ c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \
+ (name, rindex, self.parser.operandTypeMap[self.ext])
+ if hasattr(self, 'active_elems'):
+ if self.active_elems:
+ for elem in self.active_elems:
+ c_read += self.makeReadElem(elem, name)
+ return c_read
+
+ def makeWrite(self, predWrite):
+ func = 'setVecRegOperand'
+ if self.write_code != None:
+ return self.buildWriteCode(func)
+
+ wb = '''
+ if (traceData) {
+ traceData->setData(tmp_d%d);
+ }
+ ''' % self.dest_reg_idx
+ return wb
+
+ def finalize(self, predRead, predWrite):
+ super(VecRegOperand, self).finalize(predRead, predWrite)
+ if self.is_dest:
+ self.op_rd = self.makeReadW(predWrite) + self.op_rd
+
+class VecElemOperand(Operand):
+ reg_class = 'VecElemClass'
+
+ def isReg(self):
+ return 1
+
+ def isVecElem(self):
+ return 1
+
+ def makeDecl(self):
+ if self.is_dest and not self.is_src:
+ return '\n\t%s %s;' % (self.ctype, self.base_name)
+ else:
+ return ''
+
+ def makeConstructor(self, predRead, predWrite):
+ c_src = ''
+ c_dest = ''
+
+ numAccessNeeded = 1
+
+ if self.is_src:
+ c_src = ('\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s, %s);' %
+ (self.reg_class, self.reg_spec, self.elem_spec))
+
+ if self.is_dest:
+ c_dest = ('\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s, %s);' %
+ (self.reg_class, self.reg_spec, self.elem_spec))
+ c_dest += '\n\t_numVecElemDestRegs++;'
+ return c_src + c_dest
+
+ def makeRead(self, predRead):
+ c_read = 'xc->readVecElemOperand(this, %d)' % self.src_reg_idx
+
+ if self.ctype == 'float':
+ c_read = 'bitsToFloat32(%s)' % c_read
+ elif self.ctype == 'double':
+ c_read = 'bitsToFloat64(%s)' % c_read
+
+ return '\n\t%s %s = %s;\n' % (self.ctype, self.base_name, c_read)
+
+ def makeWrite(self, predWrite):
+ if self.ctype == 'float':
+ c_write = 'floatToBits32(%s)' % self.base_name
+ elif self.ctype == 'double':
+ c_write = 'floatToBits64(%s)' % self.base_name
+ else:
+ c_write = self.base_name
+
+ c_write = ('\n\txc->setVecElemOperand(this, %d, %s);' %
+ (self.dest_reg_idx, c_write))
+
+ return c_write
+
+class VecPredRegOperand(Operand):
+ reg_class = 'VecPredRegClass'
+
+ def __init__(self, parser, full_name, ext, is_src, is_dest):
+ Operand.__init__(self, parser, full_name, ext, is_src, is_dest)
+ self.parser = parser
+
+ def isReg(self):
+ return 1
+
+ def isVecPredReg(self):
+ return 1
+
+ def makeDecl(self):
+ return ''
+
+ def makeConstructor(self, predRead, predWrite):
+ c_src = ''
+ c_dest = ''
+
+ if self.is_src:
+ c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
+
+ if self.is_dest:
+ c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
+ c_dest += '\n\t_numVecPredDestRegs++;'
+
+ return c_src + c_dest
+
+ def makeRead(self, predRead):
+ func = 'readVecPredRegOperand'
+ if self.read_code != None:
+ return self.buildReadCode(func)
+
+ if predRead:
+ rindex = '_sourceIndex++'
+ else:
+ rindex = '%d' % self.src_reg_idx
+
+ c_read = '\t\t%s& tmp_s%s = xc->%s(this, %s);\n' % (
+ 'const TheISA::VecPredRegContainer', rindex, func, rindex)
+ if self.ext:
+ c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % (
+ self.base_name, rindex,
+ self.parser.operandTypeMap[self.ext])
+ return c_read
+
+ def makeReadW(self, predWrite):
+ func = 'getWritableVecPredRegOperand'
+ if self.read_code != None:
+ return self.buildReadCode(func)
+
+ if predWrite:
+ rindex = '_destIndex++'
+ else:
+ rindex = '%d' % self.dest_reg_idx
+
+ c_readw = '\t\t%s& tmp_d%s = xc->%s(this, %s);\n' % (
+ 'TheISA::VecPredRegContainer', rindex, func, rindex)
+ if self.ext:
+ c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (
+ self.base_name, rindex,
+ self.parser.operandTypeMap[self.ext])
+ return c_readw
+
+ def makeWrite(self, predWrite):
+ func = 'setVecPredRegOperand'
+ if self.write_code != None:
+ return self.buildWriteCode(func)
+
+ wb = '''
+ if (traceData) {
+ traceData->setData(tmp_d%d);
+ }
+ ''' % self.dest_reg_idx
+ return wb
+
+ def finalize(self, predRead, predWrite):
+ super(VecPredRegOperand, self).finalize(predRead, predWrite)
+ if self.is_dest:
+ self.op_rd = self.makeReadW(predWrite) + self.op_rd
+
+class CCRegOperand(Operand):
+ reg_class = 'CCRegClass'
+
+ def isReg(self):
+ return 1
+
+ def isCCReg(self):
+ return 1
+
+ def makeConstructor(self, predRead, predWrite):
+ c_src = ''
+ c_dest = ''
+
+ if self.is_src:
+ c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
+ if self.hasReadPred():
+ c_src = '\n\tif (%s) {%s\n\t}' % \
+ (self.read_predicate, c_src)
+
+ if self.is_dest:
+ c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
+ c_dest += '\n\t_numCCDestRegs++;'
+ if self.hasWritePred():
+ c_dest = '\n\tif (%s) {%s\n\t}' % \
+ (self.write_predicate, c_dest)
+
+ return c_src + c_dest
+
+ def makeRead(self, predRead):
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error('Attempt to read condition-code register as FP')
+ if self.read_code != None:
+ return self.buildReadCode('readCCRegOperand')
+
+ int_reg_val = ''
+ if predRead:
+ int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
+ if self.hasReadPred():
+ int_reg_val = '(%s) ? %s : 0' % \
+ (self.read_predicate, int_reg_val)
+ else:
+ int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
+
+ return '%s = %s;\n' % (self.base_name, int_reg_val)
+
+ def makeWrite(self, predWrite):
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error('Attempt to write condition-code register as FP')
+ if self.write_code != None:
+ return self.buildWriteCode('setCCRegOperand')
+
+ if predWrite:
+ wp = 'true'
+ if self.hasWritePred():
+ wp = self.write_predicate
+
+ wcond = 'if (%s)' % (wp)
+ windex = '_destIndex++'
+ else:
+ wcond = ''
+ windex = '%d' % self.dest_reg_idx
+
+ wb = '''
+ %s
+ {
+ %s final_val = %s;
+ xc->setCCRegOperand(this, %s, final_val);\n
+ if (traceData) { traceData->setData(final_val); }
+ }''' % (wcond, self.ctype, self.base_name, windex)
+
+ return wb
+
+class ControlRegOperand(Operand):
+ reg_class = 'MiscRegClass'
+
+ def isReg(self):
+ return 1
+
+ def isControlReg(self):
+ return 1
+
+ def makeConstructor(self, predRead, predWrite):
+ c_src = ''
+ c_dest = ''
+
+ if self.is_src:
+ c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
+
+ if self.is_dest:
+ c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
+
+ return c_src + c_dest
+
+ def makeRead(self, predRead):
+ bit_select = 0
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error('Attempt to read control register as FP')
+ if self.read_code != None:
+ return self.buildReadCode('readMiscRegOperand')
+
+ if predRead:
+ rindex = '_sourceIndex++'
+ else:
+ rindex = '%d' % self.src_reg_idx
+
+ return '%s = xc->readMiscRegOperand(this, %s);\n' % \
+ (self.base_name, rindex)
+
+ def makeWrite(self, predWrite):
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error('Attempt to write control register as FP')
+ if self.write_code != None:
+ return self.buildWriteCode('setMiscRegOperand')
+
+ if predWrite:
+ windex = '_destIndex++'
+ else:
+ windex = '%d' % self.dest_reg_idx
+
+ wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
+ (windex, self.base_name)
+ wb += 'if (traceData) { traceData->setData(%s); }' % \
+ self.base_name
+
+ return wb
+
+class MemOperand(Operand):
+ def isMem(self):
+ return 1
+
+ def makeConstructor(self, predRead, predWrite):
+ return ''
+
+ def makeDecl(self):
+ # Declare memory data variable.
+ return '%s %s = {};\n' % (self.ctype, self.base_name)
+
+ def makeRead(self, predRead):
+ if self.read_code != None:
+ return self.buildReadCode()
+ return ''
+
+ def makeWrite(self, predWrite):
+ if self.write_code != None:
+ return self.buildWriteCode()
+ return ''
+
+class PCStateOperand(Operand):
+ def makeConstructor(self, predRead, predWrite):
+ return ''
+
+ def makeRead(self, predRead):
+ if self.reg_spec:
+ # A component of the PC state.
+ return '%s = __parserAutoPCState.%s();\n' % \
+ (self.base_name, self.reg_spec)
+ else:
+ # The whole PC state itself.
+ return '%s = xc->pcState();\n' % self.base_name
+
+ def makeWrite(self, predWrite):
+ if self.reg_spec:
+ # A component of the PC state.
+ return '__parserAutoPCState.%s(%s);\n' % \
+ (self.reg_spec, self.base_name)
+ else:
+ # The whole PC state itself.
+ return 'xc->pcState(%s);\n' % self.base_name
+
+ def makeDecl(self):
+ ctype = 'TheISA::PCState'
+ if self.isPCPart():
+ ctype = self.ctype
+ # Note that initializations in the declarations are solely
+ # to avoid 'uninitialized variable' errors from the compiler.
+ return '%s %s = 0;\n' % (ctype, self.base_name)
+
+ def isPCState(self):
+ return 1
+
+class OperandList(object):
+ '''Find all the operands in the given code block. Returns an operand
+ descriptor list (instance of class OperandList).'''
+ def __init__(self, parser, code):
+ self.items = []
+ self.bases = {}
+ # delete strings and comments so we don't match on operands inside
+ for regEx in (stringRE, commentRE):
+ code = regEx.sub('', code)
+ # search for operands
+ next_pos = 0
+ while 1:
+ match = parser.operandsRE().search(code, next_pos)
+ if not match:
+ # no more matches: we're done
+ break
+ op = match.groups()
+ # regexp groups are operand full name, base, and extension
+ (op_full, op_base, op_ext) = op
+ # If is a elem operand, define or update the corresponding
+ # vector operand
+ isElem = False
+ if op_base in parser.elemToVector:
+ isElem = True
+ elem_op = (op_base, op_ext)
+ op_base = parser.elemToVector[op_base]
+ op_ext = '' # use the default one
+ # if the token following the operand is an assignment, this is
+ # a destination (LHS), else it's a source (RHS)
+ is_dest = (assignRE.match(code, match.end()) != None)
+ is_src = not is_dest
+
+ # see if we've already seen this one
+ op_desc = self.find_base(op_base)
+ if op_desc:
+ if op_ext and op_ext != '' and op_desc.ext != op_ext:
+ error ('Inconsistent extensions for operand %s: %s - %s' \
+ % (op_base, op_desc.ext, op_ext))
+ op_desc.is_src = op_desc.is_src or is_src
+ op_desc.is_dest = op_desc.is_dest or is_dest
+ if isElem:
+ (elem_base, elem_ext) = elem_op
+ found = False
+ for ae in op_desc.active_elems:
+ (ae_base, ae_ext) = ae
+ if ae_base == elem_base:
+ if ae_ext != elem_ext:
+ error('Inconsistent extensions for elem'
+ ' operand %s' % elem_base)
+ else:
+ found = True
+ if not found:
+ op_desc.active_elems.append(elem_op)
+ else:
+ # new operand: create new descriptor
+ op_desc = parser.operandNameMap[op_base](parser,
+ op_full, op_ext, is_src, is_dest)
+ # if operand is a vector elem, add the corresponding vector
+ # operand if not already done
+ if isElem:
+ op_desc.elemExt = elem_op[1]
+ op_desc.active_elems = [elem_op]
+ self.append(op_desc)
+ # start next search after end of current match
+ next_pos = match.end()
+ self.sort()
+ # enumerate source & dest register operands... used in building
+ # constructor later
+ self.numSrcRegs = 0
+ self.numDestRegs = 0
+ self.numFPDestRegs = 0
+ self.numIntDestRegs = 0
+ self.numVecDestRegs = 0
+ self.numVecPredDestRegs = 0
+ self.numCCDestRegs = 0
+ self.numMiscDestRegs = 0
+ self.memOperand = None
+
+ # Flags to keep track if one or more operands are to be read/written
+ # conditionally.
+ self.predRead = False
+ self.predWrite = False
+
+ for op_desc in self.items:
+ if op_desc.isReg():
+ if op_desc.is_src:
+ op_desc.src_reg_idx = self.numSrcRegs
+ self.numSrcRegs += 1
+ if op_desc.is_dest:
+ op_desc.dest_reg_idx = self.numDestRegs
+ self.numDestRegs += 1
+ if op_desc.isFloatReg():
+ self.numFPDestRegs += 1
+ elif op_desc.isIntReg():
+ self.numIntDestRegs += 1
+ elif op_desc.isVecReg():
+ self.numVecDestRegs += 1
+ elif op_desc.isVecPredReg():
+ self.numVecPredDestRegs += 1
+ elif op_desc.isCCReg():
+ self.numCCDestRegs += 1
+ elif op_desc.isControlReg():
+ self.numMiscDestRegs += 1
+ elif op_desc.isMem():
+ if self.memOperand:
+ error("Code block has more than one memory operand.")
+ self.memOperand = op_desc
+
+ # Check if this operand has read/write predication. If true, then
+ # the microop will dynamically index source/dest registers.
+ self.predRead = self.predRead or op_desc.hasReadPred()
+ self.predWrite = self.predWrite or op_desc.hasWritePred()
+
+ if parser.maxInstSrcRegs < self.numSrcRegs:
+ parser.maxInstSrcRegs = self.numSrcRegs
+ if parser.maxInstDestRegs < self.numDestRegs:
+ parser.maxInstDestRegs = self.numDestRegs
+ if parser.maxMiscDestRegs < self.numMiscDestRegs:
+ parser.maxMiscDestRegs = self.numMiscDestRegs
+
+ # now make a final pass to finalize op_desc fields that may depend
+ # on the register enumeration
+ for op_desc in self.items:
+ op_desc.finalize(self.predRead, self.predWrite)
+
+ def __len__(self):
+ return len(self.items)
+
+ def __getitem__(self, index):
+ return self.items[index]
+
+ def append(self, op_desc):
+ self.items.append(op_desc)
+ self.bases[op_desc.base_name] = op_desc
+
+ def find_base(self, base_name):
+ # like self.bases[base_name], but returns None if not found
+ # (rather than raising exception)
+ return self.bases.get(base_name)
+
+ # internal helper function for concat[Some]Attr{Strings|Lists}
+ def __internalConcatAttrs(self, attr_name, filter, result):
+ for op_desc in self.items:
+ if filter(op_desc):
+ result += getattr(op_desc, attr_name)
+ return result
+
+ # return a single string that is the concatenation of the (string)
+ # values of the specified attribute for all operands
+ def concatAttrStrings(self, attr_name):
+ return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
+
+ # like concatAttrStrings, but only include the values for the operands
+ # for which the provided filter function returns true
+ def concatSomeAttrStrings(self, filter, attr_name):
+ return self.__internalConcatAttrs(attr_name, filter, '')
+
+ # return a single list that is the concatenation of the (list)
+ # values of the specified attribute for all operands
+ def concatAttrLists(self, attr_name):
+ return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
+
+ # like concatAttrLists, but only include the values for the operands
+ # for which the provided filter function returns true
+ def concatSomeAttrLists(self, filter, attr_name):
+ return self.__internalConcatAttrs(attr_name, filter, [])
+
+ def sort(self):
+ self.items.sort(key=lambda a: a.sort_pri)
+
+class SubOperandList(OperandList):
+ '''Find all the operands in the given code block. Returns an operand
+ descriptor list (instance of class OperandList).'''
+ def __init__(self, parser, code, requestor_list):
+ self.items = []
+ self.bases = {}
+ # delete strings and comments so we don't match on operands inside
+ for regEx in (stringRE, commentRE):
+ code = regEx.sub('', code)
+ # search for operands
+ next_pos = 0
+ while 1:
+ match = parser.operandsRE().search(code, next_pos)
+ if not match:
+ # no more matches: we're done
+ break
+ op = match.groups()
+ # regexp groups are operand full name, base, and extension
+ (op_full, op_base, op_ext) = op
+ # If is a elem operand, define or update the corresponding
+ # vector operand
+ if op_base in parser.elemToVector:
+ elem_op = op_base
+ op_base = parser.elemToVector[elem_op]
+ # find this op in the requestor list
+ op_desc = requestor_list.find_base(op_base)
+ if not op_desc:
+ error('Found operand %s which is not in the requestor list!'
+ % op_base)
+ else:
+ # See if we've already found this operand
+ op_desc = self.find_base(op_base)
+ if not op_desc:
+ # if not, add a reference to it to this sub list
+ self.append(requestor_list.bases[op_base])
+
+ # start next search after end of current match
+ next_pos = match.end()
+ self.sort()
+ self.memOperand = None
+ # Whether the whole PC needs to be read so parts of it can be accessed
+ self.readPC = False
+ # Whether the whole PC needs to be written after parts of it were
+ # changed
+ self.setPC = False
+ # Whether this instruction manipulates the whole PC or parts of it.
+ # Mixing the two is a bad idea and flagged as an error.
+ self.pcPart = None
+
+ # Flags to keep track if one or more operands are to be read/written
+ # conditionally.
+ self.predRead = False
+ self.predWrite = False
+
+ for op_desc in self.items:
+ if op_desc.isPCPart():
+ self.readPC = True
+ if op_desc.is_dest:
+ self.setPC = True
+
+ if op_desc.isPCState():
+ if self.pcPart is not None:
+ if self.pcPart and not op_desc.isPCPart() or \
+ not self.pcPart and op_desc.isPCPart():
+ error("Mixed whole and partial PC state operands.")
+ self.pcPart = op_desc.isPCPart()
+
+ if op_desc.isMem():
+ if self.memOperand:
+ error("Code block has more than one memory operand.")
+ self.memOperand = op_desc
+
+ # Check if this operand has read/write predication. If true, then
+ # the microop will dynamically index source/dest registers.
+ self.predRead = self.predRead or op_desc.hasReadPred()
+ self.predWrite = self.predWrite or op_desc.hasWritePred()
+
+# Regular expression object to match C++ strings
+stringRE = re.compile(r'"([^"\\]|\\.)*"')
+
+# Regular expression object to match C++ comments
+# (used in findOperands())
+commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
+ re.DOTALL | re.MULTILINE)
+
+# Regular expression object to match assignment statements (used in
+# findOperands()). If the code immediately following the first
+# appearance of the operand matches this regex, then the operand
+# appears to be on the LHS of an assignment, and is thus a
+# destination. basically we're looking for an '=' that's not '=='.
+# The heinous tangle before that handles the case where the operand
+# has an array subscript.
+assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE)
+
+def makeFlagConstructor(flag_list):
+ if len(flag_list) == 0:
+ return ''
+ # filter out repeated flags
+ flag_list.sort()
+ i = 1
+ while i < len(flag_list):
+ if flag_list[i] == flag_list[i-1]:
+ del flag_list[i]
+ else:
+ i += 1
+ pre = '\n\tflags['
+ post = '] = true;'
+ code = pre + (post + pre).join(flag_list) + post
+ return code
+
+# Assume all instruction flags are of the form 'IsFoo'
+instFlagRE = re.compile(r'Is.*')
+
+# OpClass constants end in 'Op' except No_OpClass
+opClassRE = re.compile(r'.*Op|No_OpClass')
+
+class InstObjParams(object):
+ def __init__(self, parser, mnem, class_name, base_class = '',
+ snippets = {}, opt_args = []):
+ self.mnemonic = mnem
+ self.class_name = class_name
+ self.base_class = base_class
+ if not isinstance(snippets, dict):
+ snippets = {'code' : snippets}
+ compositeCode = ' '.join(list(map(str, snippets.values())))
+ self.snippets = snippets
+
+ self.operands = OperandList(parser, compositeCode)
+
+ # The header of the constructor declares the variables to be used
+ # in the body of the constructor.
+ header = ''
+ header += '\n\t_numSrcRegs = 0;'
+ header += '\n\t_numDestRegs = 0;'
+ header += '\n\t_numFPDestRegs = 0;'
+ header += '\n\t_numVecDestRegs = 0;'
+ header += '\n\t_numVecElemDestRegs = 0;'
+ header += '\n\t_numVecPredDestRegs = 0;'
+ header += '\n\t_numIntDestRegs = 0;'
+ header += '\n\t_numCCDestRegs = 0;'
+
+ self.constructor = header + \
+ self.operands.concatAttrStrings('constructor')
+
+ self.flags = self.operands.concatAttrLists('flags')
+
+ self.op_class = None
+
+ # Optional arguments are assumed to be either StaticInst flags
+ # or an OpClass value. To avoid having to import a complete
+ # list of these values to match against, we do it ad-hoc
+ # with regexps.
+ for oa in opt_args:
+ if instFlagRE.match(oa):
+ self.flags.append(oa)
+ elif opClassRE.match(oa):
+ self.op_class = oa
+ else:
+ error('InstObjParams: optional arg "%s" not recognized '
+ 'as StaticInst::Flag or OpClass.' % oa)
+
+ # Make a basic guess on the operand class if not set.
+ # These are good enough for most cases.
+ if not self.op_class:
+ if 'IsStore' in self.flags:
+ # The order matters here: 'IsFloating' and 'IsInteger' are
+ # usually set in FP instructions because of the base
+ # register
+ if 'IsFloating' in self.flags:
+ self.op_class = 'FloatMemWriteOp'
+ else:
+ self.op_class = 'MemWriteOp'
+ elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
+ # The order matters here: 'IsFloating' and 'IsInteger' are
+ # usually set in FP instructions because of the base
+ # register
+ if 'IsFloating' in self.flags:
+ self.op_class = 'FloatMemReadOp'
+ else:
+ self.op_class = 'MemReadOp'
+ elif 'IsFloating' in self.flags:
+ self.op_class = 'FloatAddOp'
+ elif 'IsVector' in self.flags:
+ self.op_class = 'SimdAddOp'
+ else:
+ self.op_class = 'IntAluOp'
+
+ # add flag initialization to contructor here to include
+ # any flags added via opt_args
+ self.constructor += makeFlagConstructor(self.flags)
+
+ # if 'IsFloating' is set, add call to the FP enable check
+ # function (which should be provided by isa_desc via a declare)
+ # if 'IsVector' is set, add call to the Vector enable check
+ # function (which should be provided by isa_desc via a declare)
+ if 'IsFloating' in self.flags:
+ self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
+ elif 'IsVector' in self.flags:
+ self.fp_enable_check = 'fault = checkVecEnableFault(xc);'
+ else:
+ self.fp_enable_check = ''
+
+##############
+# Stack: a simple stack object. Used for both formats (formatStack)
+# and default cases (defaultStack). Simply wraps a list to give more
+# stack-like syntax and enable initialization with an argument list
+# (as opposed to an argument that's a list).
+
+class Stack(list):
+ def __init__(self, *items):
+ list.__init__(self, items)
+
+ def push(self, item):
+ self.append(item);
+
+ def top(self):
+ return self[-1]
+
+# Format a file include stack backtrace as a string
+def backtrace(filename_stack):
+ fmt = "In file included from %s:"
+ return "\n".join([fmt % f for f in filename_stack])
+
+
+#######################
+#
+# LineTracker: track filenames along with line numbers in PLY lineno fields
+# PLY explicitly doesn't do anything with 'lineno' except propagate
+# it. This class lets us tie filenames with the line numbers with a
+# minimum of disruption to existing increment code.
+#
+
+class LineTracker(object):
+ def __init__(self, filename, lineno=1):
+ self.filename = filename
+ self.lineno = lineno
+
+ # Overload '+=' for increments. We need to create a new object on
+ # each update else every token ends up referencing the same
+ # constantly incrementing instance.
+ def __iadd__(self, incr):
+ return LineTracker(self.filename, self.lineno + incr)
+
+ def __str__(self):
+ return "%s:%d" % (self.filename, self.lineno)
+
+ # In case there are places where someone really expects a number
+ def __int__(self):
+ return self.lineno
+
+
+#######################
+#
+# ISA Parser
+# parses ISA DSL and emits C++ headers and source
+#
+
+class ISAParser(Grammar):
+ def __init__(self, output_dir):
+ super(ISAParser, self).__init__()
+ self.output_dir = output_dir
+
+ self.filename = None # for output file watermarking/scaremongering
+
+ # variable to hold templates
+ self.templateMap = {}
+
+ # variable to hold operands
+ self.operandNameMap = {}
+
+ # Regular expressions for working with operands
+ self._operandsRE = None
+ self._operandsWithExtRE = None
+
+ # This dictionary maps format name strings to Format objects.
+ self.formatMap = {}
+
+ # Track open files and, if applicable, how many chunks it has been
+ # split into so far.
+ self.files = {}
+ self.splits = {}
+
+ # isa_name / namespace identifier from namespace declaration.
+ # before the namespace declaration, None.
+ self.isa_name = None
+ self.namespace = None
+
+ # The format stack.
+ self.formatStack = Stack(NoFormat())
+
+ # The default case stack.
+ self.defaultStack = Stack(None)
+
+ # Stack that tracks current file and line number. Each
+ # element is a tuple (filename, lineno) that records the
+ # *current* filename and the line number in the *previous*
+ # file where it was included.
+ self.fileNameStack = Stack()
+
+ symbols = ('makeList', 're')
+ self.exportContext = dict([(s, eval(s)) for s in symbols])
+
+ self.maxInstSrcRegs = 0
+ self.maxInstDestRegs = 0
+ self.maxMiscDestRegs = 0
+
+ def operandsRE(self):
+ if not self._operandsRE:
+ self.buildOperandREs()
+ return self._operandsRE
+
+ def operandsWithExtRE(self):
+ if not self._operandsWithExtRE:
+ self.buildOperandREs()
+ return self._operandsWithExtRE
+
+ def __getitem__(self, i): # Allow object (self) to be
+ return getattr(self, i) # passed to %-substitutions
+
+ # Change the file suffix of a base filename:
+ # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
+ def suffixize(self, s, sec):
+ extn = re.compile('(\.[^\.]+)$') # isolate extension
+ if self.namespace:
+ return extn.sub(r'-ns\1.inc', s) # insert some text on either side
+ else:
+ return extn.sub(r'-g\1.inc', s)
+
+ # Get the file object for emitting code into the specified section
+ # (header, decoder, exec, decode_block).
+ def get_file(self, section):
+ if section == 'decode_block':
+ filename = 'decode-method.cc.inc'
+ else:
+ if section == 'header':
+ file = 'decoder.hh'
+ else:
+ file = '%s.cc' % section
+ filename = self.suffixize(file, section)
+ try:
+ return self.files[filename]
+ except KeyError: pass
+
+ f = self.open(filename)
+ self.files[filename] = f
+
+ # The splittable files are the ones with many independent
+ # per-instruction functions - the decoder's instruction constructors
+ # and the instruction execution (execute()) methods. These both have
+ # the suffix -ns.cc.inc, meaning they are within the namespace part
+ # of the ISA, contain object-emitting C++ source, and are included
+ # into other top-level files. These are the files that need special
+ # #define's to allow parts of them to be compiled separately. Rather
+ # than splitting the emissions into separate files, the monolithic
+ # output of the ISA parser is maintained, but the value (or lack
+ # thereof) of the __SPLIT definition during C preprocessing will
+ # select the different chunks. If no 'split' directives are used,
+ # the cpp emissions have no effect.
+ if re.search('-ns.cc.inc$', filename):
+ print('#if !defined(__SPLIT) || (__SPLIT == 1)', file=f)
+ self.splits[f] = 1
+ # ensure requisite #include's
+ elif filename == 'decoder-g.hh.inc':
+ print('#include "base/bitfield.hh"', file=f)
+
+ return f
+
+ # Weave together the parts of the different output sections by
+ # #include'ing them into some very short top-level .cc/.hh files.
+ # These small files make it much clearer how this tool works, since
+ # you directly see the chunks emitted as files that are #include'd.
+ def write_top_level_files(self):
+ # decoder header - everything depends on this
+ file = 'decoder.hh'
+ with self.open(file) as f:
+ f.write('#ifndef __ARCH_%(isa)s_GENERATED_DECODER_HH__\n'
+ '#define __ARCH_%(isa)s_GENERATED_DECODER_HH__\n\n' %
+ {'isa': self.isa_name.upper()})
+ fn = 'decoder-g.hh.inc'
+ assert(fn in self.files)
+ f.write('#include "%s"\n' % fn)
+
+ fn = 'decoder-ns.hh.inc'
+ assert(fn in self.files)
+ f.write('namespace %s {\n#include "%s"\n}\n'
+ % (self.namespace, fn))
+ f.write('\n#endif // __ARCH_%s_GENERATED_DECODER_HH__\n' %
+ self.isa_name.upper())
+
+ # decoder method - cannot be split
+ file = 'decoder.cc'
+ with self.open(file) as f:
+ fn = 'base/compiler.hh'
+ f.write('#include "%s"\n' % fn)
+
+ fn = 'decoder-g.cc.inc'
+ assert(fn in self.files)
+ f.write('#include "%s"\n' % fn)
+
+ fn = 'decoder.hh'
+ f.write('#include "%s"\n' % fn)
+
+ fn = 'decode-method.cc.inc'
+ # is guaranteed to have been written for parse to complete
+ f.write('#include "%s"\n' % fn)
+
+ extn = re.compile('(\.[^\.]+)$')
+
+ # instruction constructors
+ splits = self.splits[self.get_file('decoder')]
+ file_ = 'inst-constrs.cc'
+ for i in range(1, splits+1):
+ if splits > 1:
+ file = extn.sub(r'-%d\1' % i, file_)
+ else:
+ file = file_
+ with self.open(file) as f:
+ fn = 'decoder-g.cc.inc'
+ assert(fn in self.files)
+ f.write('#include "%s"\n' % fn)
+
+ fn = 'decoder.hh'
+ f.write('#include "%s"\n' % fn)
+
+ fn = 'decoder-ns.cc.inc'
+ assert(fn in self.files)
+ print('namespace %s {' % self.namespace, file=f)
+ if splits > 1:
+ print('#define __SPLIT %u' % i, file=f)
+ print('#include "%s"' % fn, file=f)
+ print('}', file=f)
+
+ # instruction execution
+ splits = self.splits[self.get_file('exec')]
+ for i in range(1, splits+1):
+ file = 'generic_cpu_exec.cc'
+ if splits > 1:
+ file = extn.sub(r'_%d\1' % i, file)
+ with self.open(file) as f:
+ fn = 'exec-g.cc.inc'
+ assert(fn in self.files)
+ f.write('#include "%s"\n' % fn)
+ f.write('#include "cpu/exec_context.hh"\n')
+ f.write('#include "decoder.hh"\n')
+
+ fn = 'exec-ns.cc.inc'
+ assert(fn in self.files)
+ print('namespace %s {' % self.namespace, file=f)
+ if splits > 1:
+ print('#define __SPLIT %u' % i, file=f)
+ print('#include "%s"' % fn, file=f)
+ print('}', file=f)
+
+ # max_inst_regs.hh
+ self.update('max_inst_regs.hh',
+ '''namespace %(namespace)s {
+ const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
+ const int MaxInstDestRegs = %(maxInstDestRegs)d;
+ const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
+
+ scaremonger_template ='''// DO NOT EDIT
+// This file was automatically generated from an ISA description:
+// %(filename)s
+
+''';
+
+ #####################################################################
+ #
+ # Lexer
+ #
+ # The PLY lexer module takes two things as input:
+ # - A list of token names (the string list 'tokens')
+ # - A regular expression describing a match for each token. The
+ # regexp for token FOO can be provided in two ways:
+ # - as a string variable named t_FOO
+ # - as the doc string for a function named t_FOO. In this case,
+ # the function is also executed, allowing an action to be
+ # associated with each token match.
+ #
+ #####################################################################
+
+ # Reserved words. These are listed separately as they are matched
+ # using the same regexp as generic IDs, but distinguished in the
+ # t_ID() function. The PLY documentation suggests this approach.
+ reserved = (
+ 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
+ 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
+ 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
+ )
+
+ # List of tokens. The lex module requires this.
+ tokens = reserved + (
+ # identifier
+ 'ID',
+
+ # integer literal
+ 'INTLIT',
+
+ # string literal
+ 'STRLIT',
+
+ # code literal
+ 'CODELIT',
+
+ # ( ) [ ] { } < > , ; . : :: *
+ 'LPAREN', 'RPAREN',
+ 'LBRACKET', 'RBRACKET',
+ 'LBRACE', 'RBRACE',
+ 'LESS', 'GREATER', 'EQUALS',
+ 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
+ 'ASTERISK',
+
+ # C preprocessor directives
+ 'CPPDIRECTIVE'
+
+ # The following are matched but never returned. commented out to
+ # suppress PLY warning
+ # newfile directive
+ # 'NEWFILE',
+
+ # endfile directive
+ # 'ENDFILE'
+ )
+
+ # Regular expressions for token matching
+ t_LPAREN = r'\('
+ t_RPAREN = r'\)'
+ t_LBRACKET = r'\['
+ t_RBRACKET = r'\]'
+ t_LBRACE = r'\{'
+ t_RBRACE = r'\}'
+ t_LESS = r'\<'
+ t_GREATER = r'\>'
+ t_EQUALS = r'='
+ t_COMMA = r','
+ t_SEMI = r';'
+ t_DOT = r'\.'
+ t_COLON = r':'
+ t_DBLCOLON = r'::'
+ t_ASTERISK = r'\*'
+
+ # Identifiers and reserved words
+ reserved_map = { }
+ for r in reserved:
+ reserved_map[r.lower()] = r
+
+ def t_ID(self, t):
+ r'[A-Za-z_]\w*'
+ t.type = self.reserved_map.get(t.value, 'ID')
+ return t
+
+ # Integer literal
+ def t_INTLIT(self, t):
+ r'-?(0x[\da-fA-F]+)|\d+'
+ try:
+ t.value = int(t.value,0)
+ except ValueError:
+ error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
+ t.value = 0
+ return t
+
+ # String literal. Note that these use only single quotes, and
+ # can span multiple lines.
+ def t_STRLIT(self, t):
+ r"(?m)'([^'])+'"
+ # strip off quotes
+ t.value = t.value[1:-1]
+ t.lexer.lineno += t.value.count('\n')
+ return t
+
+
+ # "Code literal"... like a string literal, but delimiters are
+ # '{{' and '}}' so they get formatted nicely under emacs c-mode
+ def t_CODELIT(self, t):
+ r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
+ # strip off {{ & }}
+ t.value = t.value[2:-2]
+ t.lexer.lineno += t.value.count('\n')
+ return t
+
+ def t_CPPDIRECTIVE(self, t):
+ r'^\#[^\#].*\n'
+ t.lexer.lineno += t.value.count('\n')
+ return t
+
+ def t_NEWFILE(self, t):
+ r'^\#\#newfile\s+"[^"]*"\n'
+ self.fileNameStack.push(t.lexer.lineno)
+ t.lexer.lineno = LineTracker(t.value[11:-2])
+
+ def t_ENDFILE(self, t):
+ r'^\#\#endfile\n'
+ t.lexer.lineno = self.fileNameStack.pop()
+
+ #
+ # The functions t_NEWLINE, t_ignore, and t_error are
+ # special for the lex module.
+ #
+
+ # Newlines
+ def t_NEWLINE(self, t):
+ r'\n+'
+ t.lexer.lineno += t.value.count('\n')
+
+ # Comments
+ def t_comment(self, t):
+ r'//.*'
+
+ # Completely ignored characters
+ t_ignore = ' \t\x0c'
+
+ # Error handler
+ def t_error(self, t):
+ error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
+ t.skip(1)
+
+ #####################################################################
+ #
+ # Parser
+ #
+ # Every function whose name starts with 'p_' defines a grammar
+ # rule. The rule is encoded in the function's doc string, while
+ # the function body provides the action taken when the rule is
+ # matched. The argument to each function is a list of the values
+ # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
+ # symbols on the RHS. For tokens, the value is copied from the
+ # t.value attribute provided by the lexer. For non-terminals, the
+ # value is assigned by the producing rule; i.e., the job of the
+ # grammar rule function is to set the value for the non-terminal
+ # on the LHS (by assigning to t[0]).
+ #####################################################################
+
+ # The LHS of the first grammar rule is used as the start symbol
+ # (in this case, 'specification'). Note that this rule enforces
+ # that there will be exactly one namespace declaration, with 0 or
+ # more global defs/decls before and after it. The defs & decls
+ # before the namespace decl will be outside the namespace; those
+ # after will be inside. The decoder function is always inside the
+ # namespace.
+ def p_specification(self, t):
+ 'specification : opt_defs_and_outputs top_level_decode_block'
+
+ for f in self.splits.keys():
+ f.write('\n#endif\n')
+
+ for f in self.files.values(): # close ALL the files;
+ f.close() # not doing so can cause compilation to fail
+
+ self.write_top_level_files()
+
+ t[0] = True
+
+ # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
+ # output statements. Its productions do the hard work of eventually
+ # instantiating a GenCode, which are generally emitted (written to disk)
+ # as soon as possible, except for the decode_block, which has to be
+ # accumulated into one large function of nested switch/case blocks.
+ def p_opt_defs_and_outputs_0(self, t):
+ 'opt_defs_and_outputs : empty'
+
+ def p_opt_defs_and_outputs_1(self, t):
+ 'opt_defs_and_outputs : defs_and_outputs'
+
+ def p_defs_and_outputs_0(self, t):
+ 'defs_and_outputs : def_or_output'
+
+ def p_defs_and_outputs_1(self, t):
+ 'defs_and_outputs : defs_and_outputs def_or_output'
+
+ # The list of possible definition/output statements.
+ # They are all processed as they are seen.
+ def p_def_or_output(self, t):
+ '''def_or_output : name_decl
+ | def_format
+ | def_bitfield
+ | def_bitfield_struct
+ | def_template
+ | def_operand_types
+ | def_operands
+ | output
+ | global_let
+ | split'''
+
+ # Utility function used by both invocations of splitting - explicit
+ # 'split' keyword and split() function inside "let {{ }};" blocks.
+ def split(self, sec, write=False):
+ assert(sec != 'header' and "header cannot be split")
+
+ f = self.get_file(sec)
+ self.splits[f] += 1
+ s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
+ if write:
+ f.write(s)
+ else:
+ return s
+
+ # split output file to reduce compilation time
+ def p_split(self, t):
+ 'split : SPLIT output_type SEMI'
+ assert(self.isa_name and "'split' not allowed before namespace decl")
+
+ self.split(t[2], True)
+
+ def p_output_type(self, t):
+ '''output_type : DECODER
+ | HEADER
+ | EXEC'''
+ t[0] = t[1]
+
+ # ISA name declaration looks like "namespace <foo>;"
+ def p_name_decl(self, t):
+ 'name_decl : NAMESPACE ID SEMI'
+ assert(self.isa_name == None and "Only 1 namespace decl permitted")
+ self.isa_name = t[2]
+ self.namespace = t[2] + 'Inst'
+
+ # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
+ # directly to the appropriate output section.
+
+ # Massage output block by substituting in template definitions and
+ # bit operators. We handle '%'s embedded in the string that don't
+ # indicate template substitutions by doubling them first so that the
+ # format operation will reduce them back to single '%'s.
+ def process_output(self, s):
+ s = self.protectNonSubstPercents(s)
+ return substBitOps(s % self.templateMap)
+
+ def p_output(self, t):
+ 'output : OUTPUT output_type CODELIT SEMI'
+ kwargs = { t[2]+'_output' : self.process_output(t[3]) }
+ GenCode(self, **kwargs).emit()
+
+ def make_split(self):
+ def _split(sec):
+ return self.split(sec)
+ return _split
+
+ # global let blocks 'let {{...}}' (Python code blocks) are
+ # executed directly when seen. Note that these execute in a
+ # special variable context 'exportContext' to prevent the code
+ # from polluting this script's namespace.
+ def p_global_let(self, t):
+ 'global_let : LET CODELIT SEMI'
+ self.updateExportContext()
+ self.exportContext["header_output"] = ''
+ self.exportContext["decoder_output"] = ''
+ self.exportContext["exec_output"] = ''
+ self.exportContext["decode_block"] = ''
+ self.exportContext["split"] = self.make_split()
+ split_setup = '''
+def wrap(func):
+ def split(sec):
+ globals()[sec + '_output'] += func(sec)
+ return split
+split = wrap(split)
+del wrap
+'''
+ # This tricky setup (immediately above) allows us to just write
+ # (e.g.) "split('exec')" in the Python code and the split #ifdef's
+ # will automatically be added to the exec_output variable. The inner
+ # Python execution environment doesn't know about the split points,
+ # so we carefully inject and wrap a closure that can retrieve the
+ # next split's #define from the parser and add it to the current
+ # emission-in-progress.
+ try:
+ exec(split_setup+fixPythonIndentation(t[2]), self.exportContext)
+ except Exception as exc:
+ traceback.print_exc(file=sys.stdout)
+ if debug:
+ raise
+ error(t.lineno(1), 'In global let block: %s' % exc)
+ GenCode(self,
+ header_output=self.exportContext["header_output"],
+ decoder_output=self.exportContext["decoder_output"],
+ exec_output=self.exportContext["exec_output"],
+ decode_block=self.exportContext["decode_block"]).emit()
+
+ # Define the mapping from operand type extensions to C++ types and
+ # bit widths (stored in operandTypeMap).
+ def p_def_operand_types(self, t):
+ 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
+ try:
+ self.operandTypeMap = eval('{' + t[3] + '}')
+ except Exception as exc:
+ if debug:
+ raise
+ error(t.lineno(1),
+ 'In def operand_types: %s' % exc)
+
+ # Define the mapping from operand names to operand classes and
+ # other traits. Stored in operandNameMap.
+ def p_def_operands(self, t):
+ 'def_operands : DEF OPERANDS CODELIT SEMI'
+ if not hasattr(self, 'operandTypeMap'):
+ error(t.lineno(1),
+ 'error: operand types must be defined before operands')
+ try:
+ user_dict = eval('{' + t[3] + '}', self.exportContext)
+ except Exception as exc:
+ if debug:
+ raise
+ error(t.lineno(1), 'In def operands: %s' % exc)
+ self.buildOperandNameMap(user_dict, t.lexer.lineno)
+
+ # A bitfield definition looks like:
+ # 'def [signed] bitfield <ID> [<first>:<last>]'
+ # This generates a preprocessor macro in the output file.
+ def p_def_bitfield_0(self, t):
+ 'def_bitfield : DEF opt_signed ' \
+ 'BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
+ expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
+ if (t[2] == 'signed'):
+ expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ GenCode(self, header_output=hash_define).emit()
+
+ # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
+ def p_def_bitfield_1(self, t):
+ 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
+ expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
+ if (t[2] == 'signed'):
+ expr = 'sext<%d>(%s)' % (1, expr)
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ GenCode(self, header_output=hash_define).emit()
+
+ # alternate form for structure member: 'def bitfield <ID> <ID>'
+ def p_def_bitfield_struct(self, t):
+ 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
+ if (t[2] != ''):
+ error(t.lineno(1),
+ 'error: structure bitfields are always unsigned.')
+ expr = 'machInst.%s' % t[5]
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ GenCode(self, header_output=hash_define).emit()
+
+ def p_id_with_dot_0(self, t):
+ 'id_with_dot : ID'
+ t[0] = t[1]
+
+ def p_id_with_dot_1(self, t):
+ 'id_with_dot : ID DOT id_with_dot'
+ t[0] = t[1] + t[2] + t[3]
+
+ def p_opt_signed_0(self, t):
+ 'opt_signed : SIGNED'
+ t[0] = t[1]
+
+ def p_opt_signed_1(self, t):
+ 'opt_signed : empty'
+ t[0] = ''
+
+ def p_def_template(self, t):
+ 'def_template : DEF TEMPLATE ID CODELIT SEMI'
+ if t[3] in self.templateMap:
+ print("warning: template %s already defined" % t[3])
+ self.templateMap[t[3]] = Template(self, t[4])
+
+ # An instruction format definition looks like
+ # "def format <fmt>(<params>) {{...}};"
+ def p_def_format(self, t):
+ 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
+ (id, params, code) = (t[3], t[5], t[7])
+ self.defFormat(id, params, code, t.lexer.lineno)
+
+ # The formal parameter list for an instruction format is a
+ # possibly empty list of comma-separated parameters. Positional
+ # (standard, non-keyword) parameters must come first, followed by
+ # keyword parameters, followed by a '*foo' parameter that gets
+ # excess positional arguments (as in Python). Each of these three
+ # parameter categories is optional.
+ #
+ # Note that we do not support the '**foo' parameter for collecting
+ # otherwise undefined keyword args. Otherwise the parameter list
+ # is (I believe) identical to what is supported in Python.
+ #
+ # The param list generates a tuple, where the first element is a
+ # list of the positional params and the second element is a dict
+ # containing the keyword params.
+ def p_param_list_0(self, t):
+ 'param_list : positional_param_list COMMA nonpositional_param_list'
+ t[0] = t[1] + t[3]
+
+ def p_param_list_1(self, t):
+ '''param_list : positional_param_list
+ | nonpositional_param_list'''
+ t[0] = t[1]
+
+ def p_positional_param_list_0(self, t):
+ 'positional_param_list : empty'
+ t[0] = []
+
+ def p_positional_param_list_1(self, t):
+ 'positional_param_list : ID'
+ t[0] = [t[1]]
+
+ def p_positional_param_list_2(self, t):
+ 'positional_param_list : positional_param_list COMMA ID'
+ t[0] = t[1] + [t[3]]
+
+ def p_nonpositional_param_list_0(self, t):
+ 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
+ t[0] = t[1] + t[3]
+
+ def p_nonpositional_param_list_1(self, t):
+ '''nonpositional_param_list : keyword_param_list
+ | excess_args_param'''
+ t[0] = t[1]
+
+ def p_keyword_param_list_0(self, t):
+ 'keyword_param_list : keyword_param'
+ t[0] = [t[1]]
+
+ def p_keyword_param_list_1(self, t):
+ 'keyword_param_list : keyword_param_list COMMA keyword_param'
+ t[0] = t[1] + [t[3]]
+
+ def p_keyword_param(self, t):
+ 'keyword_param : ID EQUALS expr'
+ t[0] = t[1] + ' = ' + t[3].__repr__()
+
+ def p_excess_args_param(self, t):
+ 'excess_args_param : ASTERISK ID'
+ # Just concatenate them: '*ID'. Wrap in list to be consistent
+ # with positional_param_list and keyword_param_list.
+ t[0] = [t[1] + t[2]]
+
+ # End of format definition-related rules.
+ ##############
+
+ #
+ # A decode block looks like:
+ # decode <field1> [, <field2>]* [default <inst>] { ... }
+ #
+ def p_top_level_decode_block(self, t):
+ 'top_level_decode_block : decode_block'
+ codeObj = t[1]
+ codeObj.wrap_decode_block('''
+StaticInstPtr
+%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
+{
+ using namespace %(namespace)s;
+''' % self, '}')
+
+ codeObj.emit()
+
+ def p_decode_block(self, t):
+ 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
+ default_defaults = self.defaultStack.pop()
+ codeObj = t[5]
+ # use the "default defaults" only if there was no explicit
+ # default statement in decode_stmt_list
+ if not codeObj.has_decode_default:
+ codeObj += default_defaults
+ codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
+ t[0] = codeObj
+
+ # The opt_default statement serves only to push the "default
+ # defaults" onto defaultStack. This value will be used by nested
+ # decode blocks, and used and popped off when the current
+ # decode_block is processed (in p_decode_block() above).
+ def p_opt_default_0(self, t):
+ 'opt_default : empty'
+ # no default specified: reuse the one currently at the top of
+ # the stack
+ self.defaultStack.push(self.defaultStack.top())
+ # no meaningful value returned
+ t[0] = None
+
+ def p_opt_default_1(self, t):
+ 'opt_default : DEFAULT inst'
+ # push the new default
+ codeObj = t[2]
+ codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
+ self.defaultStack.push(codeObj)
+ # no meaningful value returned
+ t[0] = None
+
+ def p_decode_stmt_list_0(self, t):
+ 'decode_stmt_list : decode_stmt'
+ t[0] = t[1]
+
+ def p_decode_stmt_list_1(self, t):
+ 'decode_stmt_list : decode_stmt decode_stmt_list'
+ if (t[1].has_decode_default and t[2].has_decode_default):
+ error(t.lineno(1), 'Two default cases in decode block')
+ t[0] = t[1] + t[2]
+
+ #
+ # Decode statement rules
+ #
+ # There are four types of statements allowed in a decode block:
+ # 1. Format blocks 'format <foo> { ... }'
+ # 2. Nested decode blocks
+ # 3. Instruction definitions.
+ # 4. C preprocessor directives.
+
+
+ # Preprocessor directives found in a decode statement list are
+ # passed through to the output, replicated to all of the output
+ # code streams. This works well for ifdefs, so we can ifdef out
+ # both the declarations and the decode cases generated by an
+ # instruction definition. Handling them as part of the grammar
+ # makes it easy to keep them in the right place with respect to
+ # the code generated by the other statements.
+ def p_decode_stmt_cpp(self, t):
+ 'decode_stmt : CPPDIRECTIVE'
+ t[0] = GenCode(self, t[1], t[1], t[1], t[1])
+
+ # A format block 'format <foo> { ... }' sets the default
+ # instruction format used to handle instruction definitions inside
+ # the block. This format can be overridden by using an explicit
+ # format on the instruction definition or with a nested format
+ # block.
+ def p_decode_stmt_format(self, t):
+ 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
+ # The format will be pushed on the stack when 'push_format_id'
+ # is processed (see below). Once the parser has recognized
+ # the full production (though the right brace), we're done
+ # with the format, so now we can pop it.
+ self.formatStack.pop()
+ t[0] = t[4]
+
+ # This rule exists so we can set the current format (& push the
+ # stack) when we recognize the format name part of the format
+ # block.
+ def p_push_format_id(self, t):
+ 'push_format_id : ID'
+ try:
+ self.formatStack.push(self.formatMap[t[1]])
+ t[0] = ('', '// format %s' % t[1])
+ except KeyError:
+ error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
+
+ # Nested decode block: if the value of the current field matches
+ # the specified constant(s), do a nested decode on some other field.
+ def p_decode_stmt_decode(self, t):
+ 'decode_stmt : case_list COLON decode_block'
+ case_list = t[1]
+ codeObj = t[3]
+ # just wrap the decoding code from the block as a case in the
+ # outer switch statement.
+ codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list),
+ 'M5_UNREACHABLE;\n')
+ codeObj.has_decode_default = (case_list == ['default:'])
+ t[0] = codeObj
+
+ # Instruction definition (finally!).
+ def p_decode_stmt_inst(self, t):
+ 'decode_stmt : case_list COLON inst SEMI'
+ case_list = t[1]
+ codeObj = t[3]
+ codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
+ codeObj.has_decode_default = (case_list == ['default:'])
+ t[0] = codeObj
+
+ # The constant list for a decode case label must be non-empty, and must
+ # either be the keyword 'default', or made up of one or more
+ # comma-separated integer literals or strings which evaluate to
+ # constants when compiled as C++.
+ def p_case_list_0(self, t):
+ 'case_list : DEFAULT'
+ t[0] = ['default:']
+
+ def prep_int_lit_case_label(self, lit):
+ if lit >= 2**32:
+ return 'case ULL(%#x): ' % lit
+ else:
+ return 'case %#x: ' % lit
+
+ def prep_str_lit_case_label(self, lit):
+ return 'case %s: ' % lit
+
+ def p_case_list_1(self, t):
+ 'case_list : INTLIT'
+ t[0] = [self.prep_int_lit_case_label(t[1])]
+
+ def p_case_list_2(self, t):
+ 'case_list : STRLIT'
+ t[0] = [self.prep_str_lit_case_label(t[1])]
+
+ def p_case_list_3(self, t):
+ 'case_list : case_list COMMA INTLIT'
+ t[0] = t[1]
+ t[0].append(self.prep_int_lit_case_label(t[3]))
+
+ def p_case_list_4(self, t):
+ 'case_list : case_list COMMA STRLIT'
+ t[0] = t[1]
+ t[0].append(self.prep_str_lit_case_label(t[3]))
+
+ # Define an instruction using the current instruction format
+ # (specified by an enclosing format block).
+ # "<mnemonic>(<args>)"
+ def p_inst_0(self, t):
+ 'inst : ID LPAREN arg_list RPAREN'
+ # Pass the ID and arg list to the current format class to deal with.
+ currentFormat = self.formatStack.top()
+ codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
+ args = ','.join(list(map(str, t[3])))
+ args = re.sub('(?m)^', '//', args)
+ args = re.sub('^//', '', args)
+ comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
+ codeObj.prepend_all(comment)
+ t[0] = codeObj
+
+ # Define an instruction using an explicitly specified format:
+ # "<fmt>::<mnemonic>(<args>)"
+ def p_inst_1(self, t):
+ 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
+ try:
+ format = self.formatMap[t[1]]
+ except KeyError:
+ error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
+
+ codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
+ comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
+ codeObj.prepend_all(comment)
+ t[0] = codeObj
+
+ # The arg list generates a tuple, where the first element is a
+ # list of the positional args and the second element is a dict
+ # containing the keyword args.
+ def p_arg_list_0(self, t):
+ 'arg_list : positional_arg_list COMMA keyword_arg_list'
+ t[0] = ( t[1], t[3] )
+
+ def p_arg_list_1(self, t):
+ 'arg_list : positional_arg_list'
+ t[0] = ( t[1], {} )
+
+ def p_arg_list_2(self, t):
+ 'arg_list : keyword_arg_list'
+ t[0] = ( [], t[1] )
+
+ def p_positional_arg_list_0(self, t):
+ 'positional_arg_list : empty'
+ t[0] = []
+
+ def p_positional_arg_list_1(self, t):
+ 'positional_arg_list : expr'
+ t[0] = [t[1]]
+
+ def p_positional_arg_list_2(self, t):
+ 'positional_arg_list : positional_arg_list COMMA expr'
+ t[0] = t[1] + [t[3]]
+
+ def p_keyword_arg_list_0(self, t):
+ 'keyword_arg_list : keyword_arg'
+ t[0] = t[1]
+
+ def p_keyword_arg_list_1(self, t):
+ 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
+ t[0] = t[1]
+ t[0].update(t[3])
+
+ def p_keyword_arg(self, t):
+ 'keyword_arg : ID EQUALS expr'
+ t[0] = { t[1] : t[3] }
+
+ #
+ # Basic expressions. These constitute the argument values of
+ # "function calls" (i.e. instruction definitions in the decode
+ # block) and default values for formal parameters of format
+ # functions.
+ #
+ # Right now, these are either strings, integers, or (recursively)
+ # lists of exprs (using Python square-bracket list syntax). Note
+ # that bare identifiers are trated as string constants here (since
+ # there isn't really a variable namespace to refer to).
+ #
+ def p_expr_0(self, t):
+ '''expr : ID
+ | INTLIT
+ | STRLIT
+ | CODELIT'''
+ t[0] = t[1]
+
+ def p_expr_1(self, t):
+ '''expr : LBRACKET list_expr RBRACKET'''
+ t[0] = t[2]
+
+ def p_list_expr_0(self, t):
+ 'list_expr : expr'
+ t[0] = [t[1]]
+
+ def p_list_expr_1(self, t):
+ 'list_expr : list_expr COMMA expr'
+ t[0] = t[1] + [t[3]]
+
+ def p_list_expr_2(self, t):
+ 'list_expr : empty'
+ t[0] = []
+
+ #
+ # Empty production... use in other rules for readability.
+ #
+ def p_empty(self, t):
+ 'empty :'
+ pass
+
+ # Parse error handler. Note that the argument here is the
+ # offending *token*, not a grammar symbol (hence the need to use
+ # t.value)
+ def p_error(self, t):
+ if t:
+ error(t.lexer.lineno, "syntax error at '%s'" % t.value)
+ else:
+ error("unknown syntax error")
+
+ # END OF GRAMMAR RULES
+
+ def updateExportContext(self):
+
+ # create a continuation that allows us to grab the current parser
+ def wrapInstObjParams(*args):
+ return InstObjParams(self, *args)
+ self.exportContext['InstObjParams'] = wrapInstObjParams
+ self.exportContext.update(self.templateMap)
+
+ def defFormat(self, id, params, code, lineno):
+ '''Define a new format'''
+
+ # make sure we haven't already defined this one
+ if id in self.formatMap:
+ error(lineno, 'format %s redefined.' % id)
+
+ # create new object and store in global map
+ self.formatMap[id] = Format(id, params, code)
+
+ def protectNonSubstPercents(self, s):
+ '''Protect any non-dict-substitution '%'s in a format string
+ (i.e. those not followed by '(')'''
+
+ return re.sub(r'%(?!\()', '%%', s)
+
+ def buildOperandNameMap(self, user_dict, lineno):
+ operand_name = {}
+ for op_name, val in user_dict.items():
+
+ # Check if extra attributes have been specified.
+ if len(val) > 9:
+ error(lineno, 'error: too many attributes for operand "%s"' %
+ base_cls_name)
+
+ # Pad val with None in case optional args are missing
+ val += (None, None, None, None)
+ base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
+ read_code, write_code, read_predicate, write_predicate = val[:9]
+
+ # Canonical flag structure is a triple of lists, where each list
+ # indicates the set of flags implied by this operand always, when
+ # used as a source, and when used as a dest, respectively.
+ # For simplicity this can be initialized using a variety of fairly
+ # obvious shortcuts; we convert these to canonical form here.
+ if not flags:
+ # no flags specified (e.g., 'None')
+ flags = ( [], [], [] )
+ elif isinstance(flags, str):
+ # a single flag: assumed to be unconditional
+ flags = ( [ flags ], [], [] )
+ elif isinstance(flags, list):
+ # a list of flags: also assumed to be unconditional
+ flags = ( flags, [], [] )
+ elif isinstance(flags, tuple):
+ # it's a tuple: it should be a triple,
+ # but each item could be a single string or a list
+ (uncond_flags, src_flags, dest_flags) = flags
+ flags = (makeList(uncond_flags),
+ makeList(src_flags), makeList(dest_flags))
+
+ # Accumulate attributes of new operand class in tmp_dict
+ tmp_dict = {}
+ attrList = ['reg_spec', 'flags', 'sort_pri',
+ 'read_code', 'write_code',
+ 'read_predicate', 'write_predicate']
+ if dflt_ext:
+ dflt_ctype = self.operandTypeMap[dflt_ext]
+ attrList.extend(['dflt_ctype', 'dflt_ext'])
+ # reg_spec is either just a string or a dictionary
+ # (for elems of vector)
+ if isinstance(reg_spec, tuple):
+ (reg_spec, elem_spec) = reg_spec
+ if isinstance(elem_spec, str):
+ attrList.append('elem_spec')
+ else:
+ assert(isinstance(elem_spec, dict))
+ elems = elem_spec
+ attrList.append('elems')
+ for attr in attrList:
+ tmp_dict[attr] = eval(attr)
+ tmp_dict['base_name'] = op_name
+
+ # New class name will be e.g. "IntReg_Ra"
+ cls_name = base_cls_name + '_' + op_name
+ # Evaluate string arg to get class object. Note that the
+ # actual base class for "IntReg" is "IntRegOperand", i.e. we
+ # have to append "Operand".
+ try:
+ base_cls = eval(base_cls_name + 'Operand')
+ except NameError:
+ error(lineno,
+ 'error: unknown operand base class "%s"' % base_cls_name)
+ # The following statement creates a new class called
+ # <cls_name> as a subclass of <base_cls> with the attributes
+ # in tmp_dict, just as if we evaluated a class declaration.
+ operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
+
+ self.operandNameMap.update(operand_name)
+
+ def buildOperandREs(self):
+ # Define operand variables.
+ operands = list(self.operandNameMap.keys())
+ # Add the elems defined in the vector operands and
+ # build a map elem -> vector (used in OperandList)
+ elem_to_vec = {}
+ for op_name, op in self.operandNameMap.items():
+ if hasattr(op, 'elems'):
+ for elem in op.elems.keys():
+ operands.append(elem)
+ elem_to_vec[elem] = op_name
+ self.elemToVector = elem_to_vec
+ extensions = self.operandTypeMap.keys()
+
+ operandsREString = r'''
+ (?<!\w) # neg. lookbehind assertion: prevent partial matches
+ ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
+ (?!\w) # neg. lookahead assertion: prevent partial matches
+ ''' % ('|'.join(operands), '|'.join(extensions))
+
+ self._operandsRE = re.compile(operandsREString,
+ re.MULTILINE | re.VERBOSE)
+
+ # Same as operandsREString, but extension is mandatory, and only two
+ # groups are returned (base and ext, not full name as above).
+ # Used for subtituting '_' for '.' to make C++ identifiers.
+ operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
+ % ('|'.join(operands), '|'.join(extensions))
+
+ self._operandsWithExtRE = \
+ re.compile(operandsWithExtREString, re.MULTILINE)
+
+ def substMungedOpNames(self, code):
+ '''Munge operand names in code string to make legal C++
+ variable names. This means getting rid of the type extension
+ if any. Will match base_name attribute of Operand object.)'''
+ return self.operandsWithExtRE().sub(r'\1', code)
+
+ def mungeSnippet(self, s):
+ '''Fix up code snippets for final substitution in templates.'''
+ if isinstance(s, str):
+ return self.substMungedOpNames(substBitOps(s))
+ else:
+ return s
+
+ def open(self, name, bare=False):
+ '''Open the output file for writing and include scary warning.'''
+ filename = os.path.join(self.output_dir, name)
+ f = open(filename, 'w')
+ if f:
+ if not bare:
+ f.write(ISAParser.scaremonger_template % self)
+ return f
+
+ def update(self, file, contents):
+ '''Update the output file only. Scons should handle the case when
+ the new contents are unchanged using its built-in hash feature.'''
+ f = self.open(file)
+ f.write(contents)
+ f.close()
+
+ # This regular expression matches '##include' directives
+ includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
+ re.MULTILINE)
+
+ def replace_include(self, matchobj, dirname):
+ """Function to replace a matched '##include' directive with the
+ contents of the specified file (with nested ##includes
+ replaced recursively). 'matchobj' is an re match object
+ (from a match of includeRE) and 'dirname' is the directory
+ relative to which the file path should be resolved."""
+
+ fname = matchobj.group('filename')
+ full_fname = os.path.normpath(os.path.join(dirname, fname))
+ contents = '##newfile "%s"\n%s\n##endfile\n' % \
+ (full_fname, self.read_and_flatten(full_fname))
+ return contents
+
+ def read_and_flatten(self, filename):
+ """Read a file and recursively flatten nested '##include' files."""
+
+ current_dir = os.path.dirname(filename)
+ try:
+ contents = open(filename).read()
+ except IOError:
+ error('Error including file "%s"' % filename)
+
+ self.fileNameStack.push(LineTracker(filename))
+
+ # Find any includes and include them
+ def replace(matchobj):
+ return self.replace_include(matchobj, current_dir)
+ contents = self.includeRE.sub(replace, contents)
+
+ self.fileNameStack.pop()
+ return contents
+
+ AlreadyGenerated = {}
+
+ def _parse_isa_desc(self, isa_desc_file):
+ '''Read in and parse the ISA description.'''
+
+ # The build system can end up running the ISA parser twice: once to
+ # finalize the build dependencies, and then to actually generate
+ # the files it expects (in src/arch/$ARCH/generated). This code
+ # doesn't do anything different either time, however; the SCons
+ # invocations just expect different things. Since this code runs
+ # within SCons, we can just remember that we've already run and
+ # not perform a completely unnecessary run, since the ISA parser's
+ # effect is idempotent.
+ if isa_desc_file in ISAParser.AlreadyGenerated:
+ return
+
+ # grab the last three path components of isa_desc_file
+ self.filename = '/'.join(isa_desc_file.split('/')[-3:])
+
+ # Read file and (recursively) all included files into a string.
+ # PLY requires that the input be in a single string so we have to
+ # do this up front.
+ isa_desc = self.read_and_flatten(isa_desc_file)
+
+ # Initialize lineno tracker
+ self.lex.lineno = LineTracker(isa_desc_file)
+
+ # Parse.
+ self.parse_string(isa_desc)
+
+ ISAParser.AlreadyGenerated[isa_desc_file] = None
+
+ def parse_isa_desc(self, *args, **kwargs):
+ try:
+ self._parse_isa_desc(*args, **kwargs)
+ except ISAParserError as e:
+ print(backtrace(self.fileNameStack))
+ print("At %s:" % e.lineno)
+ print(e)
+ sys.exit(1)
+
+# Called as script: get args from command line.
+# Args are: <isa desc file> <output dir>
+if __name__ == '__main__':
+ ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])