{{uReg0 = Rd.uw;
Rd.uw = Mem.uw;}},
{{Mem.uw = uReg0;}});
- format Load {
- 0x10: lduwa({{Rd = Mem.uw;}});
- 0x11: lduba({{Rd = Mem.ub;}});
- 0x12: lduha({{Rd = Mem.uhw;}});
+ format LoadAlt {
+ 0x10: lduwa({{Rd = Mem.uw;}}, {{EXT_ASI}});
+ 0x11: lduba({{Rd = Mem.ub;}}, {{EXT_ASI}});
+ 0x12: lduha({{Rd = Mem.uhw;}}, {{EXT_ASI}});
0x13: ldda({{
uint64_t val = Mem.udw;
RdLow = val<31:0>;
RdHigh = val<63:32>;
- }});
+ }}, {{EXT_ASI}});
}
- format Store {
- 0x14: stwa({{Mem.uw = Rd;}});
- 0x15: stba({{Mem.ub = Rd;}});
- 0x16: stha({{Mem.uhw = Rd;}});
- 0x17: stda({{Mem.udw = RdLow<31:0> | RdHigh<31:0> << 32;}});
+ format StoreAlt {
+ 0x14: stwa({{Mem.uw = Rd;}}, {{EXT_ASI}});
+ 0x15: stba({{Mem.ub = Rd;}}, {{EXT_ASI}});
+ 0x16: stha({{Mem.uhw = Rd;}}, {{EXT_ASI}});
+ 0x17: stda({{Mem.udw = RdLow<31:0> | RdHigh<31:0> << 32;}}, {{EXT_ASI}});
}
- format Load {
- 0x18: ldswa({{Rd = (int32_t)Mem.sw;}});
- 0x19: ldsba({{Rd = (int8_t)Mem.sb;}});
- 0x1A: ldsha({{Rd = (int16_t)Mem.shw;}});
- 0x1B: ldxa({{Rd = (int64_t)Mem.sdw;}});
+ format LoadAlt {
+ 0x18: ldswa({{Rd = (int32_t)Mem.sw;}}, {{EXT_ASI}});
+ 0x19: ldsba({{Rd = (int8_t)Mem.sb;}}, {{EXT_ASI}});
+ 0x1A: ldsha({{Rd = (int16_t)Mem.shw;}}, {{EXT_ASI}});
+ 0x1B: ldxa({{Rd = (int64_t)Mem.sdw;}}, {{EXT_ASI}});
}
- 0x1D: LoadStore::ldstuba(
+ 0x1D: LoadStoreAlt::ldstuba(
{{Rd = Mem.ub;}},
- {{Mem.ub = 0xFF}});
- 0x1E: Store::stxa({{Mem.udw = Rd}});
- 0x1F: LoadStore::swapa(
+ {{Mem.ub = 0xFF}}, {{EXT_ASI}});
+ 0x1E: StoreAlt::stxa({{Mem.udw = Rd}}, {{EXT_ASI}});
+ 0x1F: LoadStoreAlt::swapa(
{{uReg0 = Rd.uw;
Rd.uw = Mem.uw;}},
- {{Mem.uw = uReg0;}});
+ {{Mem.uw = uReg0;}}, {{EXT_ASI}});
format Trap {
0x20: Load::ldf({{Frd.uw = Mem.uw;}});
0x21: decode X {
0x26: stqf({{fault = new FpDisabled;}});
0x27: Store::stdf({{Mem.udw = Frd.udw;}});
0x2D: Nop::prefetch({{ }});
- 0x30: Load::ldfa({{Frd.uw = Mem.uw;}});
+ 0x30: LoadAlt::ldfa({{Frd.uw = Mem.uw;}}, {{EXT_ASI}});
0x32: ldqfa({{fault = new FpDisabled;}});
format LoadAlt {
0x33: decode EXT_ASI {
//ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
0x1F: FailUnimpl::ldblockf_aiusl();
//ASI_BLOCK_PRIMARY
- 0xF0: ldblockf_p({{Frd_N.udw = Mem.udw;}});
+ 0xF0: ldblockf_p({{Frd_N.udw = Mem.udw;}}, {{EXT_ASI}});
//ASI_BLOCK_SECONDARY
0xF1: FailUnimpl::ldblockf_s();
//ASI_BLOCK_PRIMARY_LITTLE
//ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
0x1F: FailUnimpl::stblockf_aiusl();
//ASI_BLOCK_PRIMARY
- 0xF0: stblockf_p({{Mem.udw = Frd_N.udw;}});
+ 0xF0: stblockf_p({{Mem.udw = Frd_N.udw;}}, {{EXT_ASI}});
//ASI_BLOCK_SECONDARY
0xF1: FailUnimpl::stblockf_s();
//ASI_BLOCK_PRIMARY_LITTLE
Mem.uw = Rd.uw;
else
storeCond = false;
- Rd.uw = uReg0;}});
+ Rd.uw = uReg0;}}, {{EXT_ASI}});
0x3D: Nop::prefetcha({{ }});
0x3E: Cas::casxa(
{{uReg0 = Mem.udw;}},
Mem.udw = Rd;
else
storeCond = false;
- Rd = uReg0;}});
+ Rd = uReg0;}}, {{EXT_ASI}});
}
}
}
}};
let {{
- def doMemFormat(code, execute, faultCode, name, Name, opt_flags):
+ def doMemFormat(code, execute, faultCode, name, Name, asi, opt_flags):
addrCalcReg = 'EA = Rs1 + Rs2;'
addrCalcImm = 'EA = Rs1 + imm;'
iop = InstObjParams(name, Name, 'Mem', code,
header_output = MemDeclare.subst(iop) + MemDeclare.subst(iop_imm)
decoder_output = BasicConstructor.subst(iop) + BasicConstructor.subst(iop_imm)
decode_block = ROrImmDecode.subst(iop)
- exec_output = doDualSplitExecute(code, addrCalcReg, addrCalcImm, execute,
- faultCode, name, name + "Imm", Name, Name + "Imm", opt_flags)
+ exec_output = doDualSplitExecute(code, addrCalcReg, addrCalcImm,
+ execute, faultCode, name, name + "Imm", Name, Name + "Imm",
+ asi, opt_flags)
return (header_output, decoder_output, exec_output, decode_block)
}};
-def format LoadAlt(code, *opt_flags) {{
+def format LoadAlt(code, asi, *opt_flags) {{
(header_output,
decoder_output,
exec_output,
decode_block) = doMemFormat(code, LoadExecute,
- AlternateAsiPrivFaultCheck, name, Name, opt_flags)
+ AlternateASIPrivFaultCheck, name, Name, asi, opt_flags)
}};
-def format StoreAlt(code, *opt_flags) {{
+def format StoreAlt(code, asi, *opt_flags) {{
(header_output,
decoder_output,
exec_output,
decode_block) = doMemFormat(code, StoreExecute,
- AlternateAsiPrivFaultCheck, name, Name, opt_flags)
+ AlternateASIPrivFaultCheck, name, Name, asi, opt_flags)
}};
def format Load(code, *opt_flags) {{
decoder_output,
exec_output,
decode_block) = doMemFormat(code,
- LoadExecute, '', name, Name, opt_flags)
+ LoadExecute, '', name, Name, 0, opt_flags)
}};
def format Store(code, *opt_flags) {{
decoder_output,
exec_output,
decode_block) = doMemFormat(code,
- StoreExecute, '', name, Name, opt_flags)
+ StoreExecute, '', name, Name, 0, opt_flags)
}};
let {{
- def doBlockMemFormat(code, faultCode, execute, name, Name, opt_flags):
+ def doBlockMemFormat(code, faultCode, execute, name, Name, asi, opt_flags):
# XXX Need to take care of pstate.hpriv as well. The lower ASIs
# are split into ones that are available in priv and hpriv, and
# those that are only available in hpriv
makeMicroName(name + "Imm", microPc),
makeMicroName(Name, microPc),
makeMicroName(Name + "Imm", microPc),
- opt_flags);
+ asi, opt_flags);
faultCode = ''
return (header_output, decoder_output, exec_output, decode_block)
}};
-def format BlockLoad(code, *opt_flags) {{
+def format BlockLoad(code, asi, *opt_flags) {{
# We need to make sure to check the highest priority fault last.
# That way, if other faults have been detected, they'll be overwritten
# rather than the other way around.
decoder_output,
exec_output,
decode_block) = doBlockMemFormat(code, faultCode,
- LoadExecute, name, Name, opt_flags)
+ LoadExecute, name, Name, asi, opt_flags)
}};
-def format BlockStore(code, *opt_flags) {{
+def format BlockStore(code, asi, *opt_flags) {{
# We need to make sure to check the highest priority fault last.
# That way, if other faults have been detected, they'll be overwritten
# rather than the other way around.
decoder_output,
exec_output,
decode_block) = doBlockMemFormat(code, faultCode,
- StoreExecute, name, Name, opt_flags)
+ StoreExecute, name, Name, asi, opt_flags)
}};
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
- uint64_t write_result = 0;
//This is to support the conditional store in cas instructions.
//It should be optomized out in all the others
bool storeCond = true;
}
if(storeCond && fault == NoFault)
{
- fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, 0, &write_result);
+ fault = xc->write((uint%(mem_acc_size)s_t)Mem,
+ EA, %(asi_val)s, 0);
}
if(fault == NoFault)
{
Trace::InstRecord * traceData) const
{
Fault fault = NoFault;
- uint64_t write_result = 0;
bool storeCond = true;
Addr EA;
%(op_decl)s;
}
if(storeCond && fault == NoFault)
{
- fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, 0, &write_result);
+ fault = xc->write((uint%(mem_acc_size)s_t)Mem,
+ EA, %(asi_val)s, 0);
}
if(fault == NoFault)
{
//and in the other they're distributed across two. Also note that for
//execute functions, the name of the base class doesn't matter.
let {{
- def doSplitExecute(code, execute, name, Name, opt_flags, microParam):
+ def doSplitExecute(code, execute, name, Name, asi, opt_flags, microParam):
+ microParam["asi_val"] = asi;
codeParam = microParam.copy()
codeParam["ea_code"] = ''
codeIop = InstObjParams(name, Name, '', code, opt_flags, codeParam)
def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
- faultCode, nameReg, nameImm, NameReg, NameImm, opt_flags):
+ faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags):
executeCode = ''
for (eaCode, name, Name) in (
(eaRegCode, nameReg, NameReg),
(eaImmCode, nameImm, NameImm)):
microParams = {"ea_code" : eaCode, "fault_check": faultCode}
executeCode += doSplitExecute(code, execute, name, Name,
- opt_flags, microParams)
+ asi, opt_flags, microParams)
return executeCode
}};