#CVC4Streams
Combination
Datatypes
+ FloatingPointArith
HelloWorld
LinearArith
## disabled until bindings for the new API are in place (issue #2284)
-cp "${EXAMPLES_JAVA_CLASSPATH}:${CMAKE_BINARY_DIR}/bin/examples/api/java/"
${example}
)
+ set_tests_properties(${example_test} PROPERTIES SKIP_RETURN_CODE 77)
set_tests_properties(${example_test} PROPERTIES LABELS "example")
endforeach()
--- /dev/null
+/********************* */
+/*! \file FloatingPointArith.java
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Andres Noetzli
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief An example of solving floating-point problems with CVC4's Java API
+ **
+ ** This example shows how to check whether CVC4 was built with floating-point
+ ** support, how to create floating-point types, variables and expressions, and
+ ** how to create rounding mode constants by solving toy problems. The example
+ ** also shows making special values (such as NaN and +oo) and converting an
+ ** IEEE 754-2008 bit-vector to a floating-point number.
+ **/
+
+import edu.nyu.acsys.CVC4.*;
+import java.util.Iterator;
+
+public class FloatingPointArith {
+ public static void main(String[] args) {
+ System.loadLibrary("cvc4jni");
+
+ // Test whether CVC4 was built with floating-point support
+ if (!Configuration.isBuiltWithSymFPU()) {
+ System.out.println("CVC4 was built without floating-point support.");
+ System.out.println("Configure with --symfpu and rebuild CVC4 to run");
+ System.out.println("this example.");
+ System.exit(77);
+ }
+
+ ExprManager em = new ExprManager();
+ SmtEngine smt = new SmtEngine(em);
+
+ // Enable the model production
+ smt.setOption("produce-models", new SExpr(true));
+
+ // Make single precision floating-point variables
+ FloatingPointType fpt32 = em.mkFloatingPointType(8, 24);
+ Expr a = em.mkVar("a", fpt32);
+ Expr b = em.mkVar("b", fpt32);
+ Expr c = em.mkVar("c", fpt32);
+ Expr d = em.mkVar("d", fpt32);
+ Expr e = em.mkVar("e", fpt32);
+
+ // Assert that floating-point addition is not associative:
+ // (a + (b + c)) != ((a + b) + c)
+ Expr rm = em.mkConst(RoundingMode.roundNearestTiesToEven);
+ Expr lhs = em.mkExpr(Kind.FLOATINGPOINT_PLUS,
+ rm,
+ a,
+ em.mkExpr(Kind.FLOATINGPOINT_PLUS, rm, b, c));
+ Expr rhs = em.mkExpr(Kind.FLOATINGPOINT_PLUS,
+ rm,
+ em.mkExpr(Kind.FLOATINGPOINT_PLUS, rm, a, b),
+ c);
+ smt.assertFormula(em.mkExpr(Kind.NOT, em.mkExpr(Kind.EQUAL, a, b)));
+
+ Result r = smt.checkSat(); // result is sat
+ assert r.isSat() == Result.Sat.SAT;
+
+ System.out.println("a = " + smt.getValue(a));
+ System.out.println("b = " + smt.getValue(b));
+ System.out.println("c = " + smt.getValue(c));
+
+ // Now, let's restrict `a` to be either NaN or positive infinity
+ FloatingPointSize fps32 = new FloatingPointSize(8, 24);
+ Expr nan = em.mkConst(FloatingPoint.makeNaN(fps32));
+ Expr inf = em.mkConst(FloatingPoint.makeInf(fps32, /* sign */ true));
+ smt.assertFormula(em.mkExpr(
+ Kind.OR, em.mkExpr(Kind.EQUAL, a, inf), em.mkExpr(Kind.EQUAL, a, nan)));
+
+ r = smt.checkSat(); // result is sat
+ assert r.isSat() == Result.Sat.SAT;
+
+ System.out.println("a = " + smt.getValue(a));
+ System.out.println("b = " + smt.getValue(b));
+ System.out.println("c = " + smt.getValue(c));
+
+ // And now for something completely different. Let's try to find a (normal)
+ // floating-point number that rounds to different integer values for
+ // different rounding modes.
+ Expr rtp = em.mkConst(RoundingMode.roundTowardPositive);
+ Expr rtn = em.mkConst(RoundingMode.roundTowardNegative);
+ Expr op = em.mkConst(new FloatingPointToSBV(16)); // (_ fp.to_sbv 16)
+ lhs = em.mkExpr(op, rtp, d);
+ rhs = em.mkExpr(op, rtn, d);
+ smt.assertFormula(em.mkExpr(Kind.FLOATINGPOINT_ISN, d));
+ smt.assertFormula(em.mkExpr(Kind.NOT, em.mkExpr(Kind.EQUAL, lhs, rhs)));
+
+ r = smt.checkSat(); // result is sat
+ assert r.isSat() == Result.Sat.SAT;
+
+ // Convert the result to a rational and print it
+ Expr val = smt.getValue(d);
+ Rational realVal =
+ val.getConstFloatingPoint().convertToRationalTotal(new Rational(0));
+ System.out.println("d = " + val + " = " + realVal);
+ System.out.println("((_ fp.to_sbv 16) RTP d) = " + smt.getValue(lhs));
+ System.out.println("((_ fp.to_sbv 16) RTN d) = " + smt.getValue(rhs));
+
+ // For our final trick, let's try to find a floating-point number between
+ // positive zero and the smallest positive floating-point number
+ Expr zero = em.mkConst(FloatingPoint.makeZero(fps32, /* sign */ true));
+ Expr smallest =
+ em.mkConst(new FloatingPoint(8, 24, new BitVector(32, 0b001)));
+ smt.assertFormula(em.mkExpr(Kind.AND,
+ em.mkExpr(Kind.FLOATINGPOINT_LT, zero, e),
+ em.mkExpr(Kind.FLOATINGPOINT_LT, e, smallest)));
+
+ r = smt.checkSat(); // result is unsat
+ assert r.isSat() == Result.Sat.UNSAT;
+ }
+}
${CMAKE_CURRENT_BINARY_DIR}/ExprManager.java
${CMAKE_CURRENT_BINARY_DIR}/ExprManagerMapCollection.java
${CMAKE_CURRENT_BINARY_DIR}/ExprStream.java
+ ${CMAKE_CURRENT_BINARY_DIR}/FloatingPoint.java
+ ${CMAKE_CURRENT_BINARY_DIR}/FloatingPointConvertSort.java
+ ${CMAKE_CURRENT_BINARY_DIR}/FloatingPointSize.java
+ ${CMAKE_CURRENT_BINARY_DIR}/FloatingPointToBV.java
+ ${CMAKE_CURRENT_BINARY_DIR}/FloatingPointToFPFloatingPoint.java
+ ${CMAKE_CURRENT_BINARY_DIR}/FloatingPointToFPGeneric.java
+ ${CMAKE_CURRENT_BINARY_DIR}/FloatingPointToFPIEEEBitVector.java
+ ${CMAKE_CURRENT_BINARY_DIR}/FloatingPointToFPReal.java
+ ${CMAKE_CURRENT_BINARY_DIR}/FloatingPointToFPSignedBitVector.java
+ ${CMAKE_CURRENT_BINARY_DIR}/FloatingPointToFPUnsignedBitVector.java
+ ${CMAKE_CURRENT_BINARY_DIR}/FloatingPointToSBV.java
+ ${CMAKE_CURRENT_BINARY_DIR}/FloatingPointToUBV.java
${CMAKE_CURRENT_BINARY_DIR}/FloatingPointType.java
${CMAKE_CURRENT_BINARY_DIR}/FunctionType.java
${CMAKE_CURRENT_BINARY_DIR}/GetAssertionsCommand.java
${CMAKE_CURRENT_BINARY_DIR}/ResourceManager.java
${CMAKE_CURRENT_BINARY_DIR}/Result.java
${CMAKE_CURRENT_BINARY_DIR}/RewriteRuleCommand.java
+ ${CMAKE_CURRENT_BINARY_DIR}/RoundingMode.java
${CMAKE_CURRENT_BINARY_DIR}/RoundingModeType.java
${CMAKE_CURRENT_BINARY_DIR}/SExpr.java
${CMAKE_CURRENT_BINARY_DIR}/SExprKeyword.java
#include "options/option_exception.h"
#include "smt/command.h"
#include "util/bitvector.h"
+#include "util/floatingpoint.h"
#include "util/integer.h"
#include "util/sexpr.h"
#include "util/unsafe_interrupt_exception.h"
%include "util/integer.i"
%include "util/rational.i"
%include "util/bitvector.i"
+%include "util/floatingpoint.i"
// Tim: The remainder of util/.
%include "util/bool.i"
%template(getConstTypeConstant) CVC4::Expr::getConst<CVC4::TypeConstant>;
#endif
%template(getConstArrayStoreAll) CVC4::Expr::getConst<CVC4::ArrayStoreAll>;
-%template(getConstBitVectorSize) CVC4::Expr::getConst<CVC4::BitVectorSize>;
%template(getConstAscriptionType) CVC4::Expr::getConst<CVC4::AscriptionType>;
+%template(getConstBitVector) CVC4::Expr::getConst<CVC4::BitVector>;
%template(getConstBitVectorBitOf) CVC4::Expr::getConst<CVC4::BitVectorBitOf>;
-%template(getConstBitVectorRepeat) CVC4::Expr::getConst<CVC4::BitVectorRepeat>;
%template(getConstBitVectorExtract) CVC4::Expr::getConst<CVC4::BitVectorExtract>;
+%template(getConstBitVectorRepeat) CVC4::Expr::getConst<CVC4::BitVectorRepeat>;
%template(getConstBitVectorRotateLeft) CVC4::Expr::getConst<CVC4::BitVectorRotateLeft>;
+%template(getConstBitVectorRotateRight) CVC4::Expr::getConst<CVC4::BitVectorRotateRight>;
%template(getConstBitVectorSignExtend) CVC4::Expr::getConst<CVC4::BitVectorSignExtend>;
+%template(getConstBitVectorSize) CVC4::Expr::getConst<CVC4::BitVectorSize>;
%template(getConstBitVectorZeroExtend) CVC4::Expr::getConst<CVC4::BitVectorZeroExtend>;
-%template(getConstBitVectorRotateRight) CVC4::Expr::getConst<CVC4::BitVectorRotateRight>;
-%template(getConstUninterpretedConstant) CVC4::Expr::getConst<CVC4::UninterpretedConstant>;
-%template(getConstKind) CVC4::Expr::getConst<CVC4::kind::Kind_t>;
+%template(getConstBoolean) CVC4::Expr::getConst<bool>;
%template(getConstDatatypeIndexConstant) CVC4::Expr::getConst<CVC4::DatatypeIndexConstant>;
+%template(getConstEmptySet) CVC4::Expr::getConst<CVC4::EmptySet>;
+%template(getConstFloatingPoint) CVC4::Expr::getConst<CVC4::FloatingPoint>;
+%template(getConstKind) CVC4::Expr::getConst<CVC4::kind::Kind_t>;
%template(getConstRational) CVC4::Expr::getConst<CVC4::Rational>;
-%template(getConstBitVector) CVC4::Expr::getConst<CVC4::BitVector>;
+%template(getConstRoundingMode) CVC4::Expr::getConst<CVC4::RoundingMode>;
%template(getConstString) CVC4::Expr::getConst<CVC4::String>;
-%template(getConstEmptySet) CVC4::Expr::getConst<CVC4::EmptySet>;
-%template(getConstBoolean) CVC4::Expr::getConst<bool>;
+%template(getConstUninterpretedConstant) CVC4::Expr::getConst<CVC4::UninterpretedConstant>;
#ifdef SWIGJAVA
%template(mkConst) CVC4::ExprManager::mkConst<CVC4::BitVectorZeroExtend>;
%template(mkConst) CVC4::ExprManager::mkConst<CVC4::BitVectorRotateRight>;
%template(mkConst) CVC4::ExprManager::mkConst<CVC4::IntToBitVector>;
-//%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPoint>;
-//%template(mkConst) CVC4::ExprManager::mkConst<CVC4::RoundingMode>;
-//%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointSize>;
-//%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToFPIEEEBitVector>;
-//%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToFPFloatingPoint>;
-//%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToFPReal>;
-//%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToFPSignedBitVector>;
-//%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToFPUnsignedBitVector>;
-//%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToFPGeneric>;
-//%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToUBV>;
-//%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToSBV>;
+%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPoint>;
+%template(mkConst) CVC4::ExprManager::mkConst<CVC4::RoundingMode>;
+%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointSize>;
+%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToFPIEEEBitVector>;
+%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToFPFloatingPoint>;
+%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToFPReal>;
+%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToFPSignedBitVector>;
+%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToFPUnsignedBitVector>;
+%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToFPGeneric>;
+%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToUBV>;
+%template(mkConst) CVC4::ExprManager::mkConst<CVC4::FloatingPointToSBV>;
%template(mkConst) CVC4::ExprManager::mkConst<CVC4::UninterpretedConstant>;
%template(mkConst) CVC4::ExprManager::mkConst<CVC4::kind::Kind_t>;
%template(mkConst) CVC4::ExprManager::mkConst<CVC4::DatatypeIndexConstant>;
#include "util/floatingpoint.h"
%}
+// Ignore the methods related to FloatingPointLiteral (otherwise we have to
+// wrap those classes as well)
+%ignore CVC4::FloatingPointLiteral;
+%ignore CVC4::FloatingPoint::FloatingPoint (const FloatingPointSize &oldt, const FloatingPointLiteral &oldfpl);
+%ignore CVC4::FloatingPoint::getLiteral () const;
+
+// Ignore the partial methods (otherwise we have to provide a template
+// instantiation for std::pair<FloatingPoint, bool> which is quite ugly)
+%ignore CVC4::FloatingPoint::max(const FloatingPoint &arg) const;
+%ignore CVC4::FloatingPoint::min(const FloatingPoint &arg) const;
+%ignore CVC4::FloatingPoint::convertToRational() const;
+%ignore CVC4::FloatingPoint::convertToBV(BitVectorSize width, const RoundingMode &rm, bool signedBV) const;
+
%include "util/floatingpoint.h"