Major redesign of Verific SVA importer
authorClifford Wolf <clifford@clifford.at>
Tue, 27 Feb 2018 19:33:15 +0000 (20:33 +0100)
committerClifford Wolf <clifford@clifford.at>
Tue, 27 Feb 2018 19:33:15 +0000 (20:33 +0100)
Signed-off-by: Clifford Wolf <clifford@clifford.at>
frontends/verific/verificsva.cc
tests/sva/sva_range.sv

index 94443cd3e41839eb6fc765cfd8bf88c655bf7eb7..ceaca287d50c5cbee40aefb11df0f582bcbc9b95 100644 (file)
@@ -24,7 +24,6 @@
 //   not prop
 //   prop or prop
 //   prop and prop
-//   seq |-> prop
 //   seq |=> prop
 //   if (expr) prop [else prop]
 //   prop until prop
@@ -35,7 +34,6 @@
 //
 // seq:
 //   expr
-//   expr ##N seq
 //   expr ##[N:M] seq
 //   seq or seq
 //   seq and seq
 //   first_match (seq)
 //   expr throughout seq
 //   seq within seq
-//   seq [*N]
 //   seq [*N:M]
-//   expr [=N]
 //   expr [=N:M]
-//   expr [->N]
 //   expr [->N:M]
+//
+// Notes:
+//   |=> is a placeholder for |-> and |=>
+//   "until" is a placeholder for all until operators
+//   ##[N:M], [*N:M], [=N:M], [->N:M] includes ##N, [*N], [=N], [->N]
+//
+// Currently supported property styles:
+//   not seq
+//   seq |=> seq
+//   seq |=> seq until seq
+//
+// Currently supported sequence operators:
+//   ##[N:M]
+//   [*N:M]
+//   throughout
 
 
 #include "kernel/yosys.h"
@@ -60,6 +70,316 @@ USING_YOSYS_NAMESPACE
 using namespace Verific;
 #endif
 
+PRIVATE_NAMESPACE_BEGIN
+
+struct SvaFsmNode
+{
+       vector<pair<int, SigBit>> edges, links;
+};
+
+struct SvaFsm
+{
+       Module *module;
+       SigBit clock;
+       bool clockpol;
+
+       SigBit trigger_sig = State::S1, disable_sig;
+       SigBit accept_sig = State::Sz, reject_sig = State::Sz;
+       SigBit throughout_sig = State::S1;
+       bool materialized = false;
+
+       vector<SigBit> disable_stack;
+       vector<SigBit> throughout_stack;
+
+       int startNode, acceptNode, rejectNode;
+       vector<SvaFsmNode> nodes;
+
+       SvaFsm(Module *mod, SigBit clk, bool clkpol, SigBit dis = State::S0, SigBit trig = State::S1)
+       {
+               module = mod;
+               clock = clk;
+               clockpol = clkpol;
+               disable_sig = dis;
+               trigger_sig = trig;
+
+               startNode = createNode();
+               acceptNode = createNode();
+               rejectNode = createNode();
+       }
+
+       void pushDisable(SigBit sig)
+       {
+               log_assert(!materialized);
+
+               disable_stack.push_back(disable_sig);
+
+               if (disable_sig == State::S0)
+                       disable_sig = sig;
+               else
+                       disable_sig = module->Or(NEW_ID, disable_sig, sig);
+       }
+
+       void popDisable()
+       {
+               log_assert(!materialized);
+               log_assert(!disable_stack.empty());
+
+               disable_sig = disable_stack.back();
+               disable_stack.pop_back();
+       }
+
+       void pushThroughout(SigBit sig)
+       {
+               log_assert(!materialized);
+
+               throughout_stack.push_back(throughout_sig);
+
+               if (throughout_sig == State::S1)
+                       throughout_sig = sig;
+               else
+                       throughout_sig = module->And(NEW_ID, throughout_sig, sig);
+       }
+
+       void popThroughout()
+       {
+               log_assert(!materialized);
+               log_assert(!throughout_stack.empty());
+
+               throughout_sig = throughout_stack.back();
+               throughout_stack.pop_back();
+       }
+
+       SigBit getAccept()
+       {
+               if (accept_sig != State::Sz)
+                       return accept_sig;
+
+               log_assert(!materialized);
+               accept_sig = module->addWire(NEW_ID);
+               return accept_sig;
+       }
+
+       SigBit getReject()
+       {
+               if (reject_sig != State::Sz)
+                       return reject_sig;
+
+               log_assert(!materialized);
+               reject_sig = module->addWire(NEW_ID);
+               return reject_sig;
+       }
+
+       int createNode()
+       {
+               log_assert(!materialized);
+
+               int idx = GetSize(nodes);
+               nodes.push_back(SvaFsmNode());
+               return idx;
+       }
+
+       void createEdge(int from_node, int to_node, SigBit ctrl = State::S1)
+       {
+               log_assert(!materialized);
+               log_assert(0 <= from_node && from_node < GetSize(nodes));
+               log_assert(0 <= to_node && to_node < GetSize(nodes));
+
+               if (throughout_sig != State::S1) {
+                       if (ctrl != State::S1)
+                               ctrl = module->And(NEW_ID, throughout_sig, ctrl);
+                       else
+                               ctrl = throughout_sig;
+               }
+
+               nodes[from_node].edges.push_back(make_pair(to_node, ctrl));
+       }
+
+       void createLink(int from_node, int to_node, SigBit ctrl = State::S1)
+       {
+               log_assert(!materialized);
+               log_assert(0 <= from_node && from_node < GetSize(nodes));
+               log_assert(0 <= to_node && to_node < GetSize(nodes));
+
+               if (throughout_sig != State::S1) {
+                       if (ctrl != State::S1)
+                               ctrl = module->And(NEW_ID, throughout_sig, ctrl);
+                       else
+                               ctrl = throughout_sig;
+               }
+
+               nodes[from_node].links.push_back(make_pair(to_node, ctrl));
+       }
+
+       void make_link_order(vector<int> &order, int node, int min)
+       {
+               order[node] = std::max(order[node], min);
+               for (auto &it : nodes[node].links)
+                       make_link_order(order, it.first, order[node]+1);
+       }
+
+       void materialize_ndfsm()
+       {
+               log_assert(!materialized);
+               materialized = true;
+
+               vector<SigBit> next_state_sig(GetSize(nodes));
+               vector<SigBit> state_sig(GetSize(nodes));
+
+               // Create state FFs
+
+               {
+                       SigBit not_disable = State::S1;
+
+                       if (disable_sig != State::S0)
+                               not_disable = module->Not(NEW_ID, disable_sig);
+
+                       for (int i = 0; i < GetSize(nodes); i++)
+                       {
+                               next_state_sig[i] = module->addWire(NEW_ID);
+
+                               Wire *w = module->addWire(NEW_ID);
+                               w->attributes["\\init"] = Const(0, 1);
+                               state_sig[i] = w;
+
+                               module->addDff(NEW_ID, clock, next_state_sig[i], state_sig[i], clockpol);
+
+                               if (i == startNode)
+                                       state_sig[i] = module->Or(NEW_ID, state_sig[i], trigger_sig);
+
+                               if (disable_sig != State::S0)
+                                       state_sig[i] = module->And(NEW_ID, state_sig[i], not_disable);
+                       }
+               }
+
+               // Follow Links
+
+               {
+                       vector<int> node_order(GetSize(nodes));
+                       vector<vector<int>> order_to_nodes;
+
+                       for (int i = 0; i < GetSize(nodes); i++)
+                               make_link_order(node_order, i, 0);
+
+                       for (int i = 0; i < GetSize(nodes); i++) {
+                               if (node_order[i] >= GetSize(order_to_nodes))
+                                       order_to_nodes.resize(node_order[i]+1);
+                               order_to_nodes[node_order[i]].push_back(i);
+                       }
+
+                       for (int order = 0; order < GetSize(order_to_nodes); order++)
+                       for (int node : order_to_nodes[order])
+                       {
+                               for (auto &it : nodes[node].links)
+                               {
+                                       int target = it.first;
+                                       SigBit ctrl = state_sig[node];
+
+                                       if (it.second != State::S1)
+                                               ctrl = module->And(NEW_ID, ctrl, it.second);
+
+                                       state_sig[target] = module->Or(NEW_ID, state_sig[target], ctrl);
+                               }
+                       }
+               }
+
+               // Construct activations
+
+               {
+                       vector<SigSpec> activate_sig(GetSize(nodes));
+                       vector<SigBit> activate_bit(GetSize(nodes));
+
+                       for (int i = 0; i < GetSize(nodes); i++) {
+                               for (auto &it : nodes[i].edges)
+                                       activate_sig[it.first].append(module->And(NEW_ID, state_sig[i], it.second));
+                       }
+
+                       for (int i = 0; i < GetSize(nodes); i++) {
+                               if (GetSize(activate_sig[i]) == 0)
+                                       activate_bit[i] = State::S0;
+                               else if (GetSize(activate_sig[i]) == 1)
+                                       activate_bit[i] = activate_sig[i];
+                               else
+                                       activate_bit[i] = module->ReduceOr(NEW_ID, activate_sig[i]);
+                       }
+
+                       if (activate_bit[rejectNode] != State::S0)
+                       {
+                               SigBit not_rej = module->Not(NEW_ID, next_state_sig[rejectNode]);
+                               for (int i = 0; i < GetSize(nodes); i++)
+                                       if (i != rejectNode && activate_bit[i] != State::S0)
+                                               activate_bit[i] = module->And(NEW_ID, activate_bit[i], not_rej);
+                               activate_bit[rejectNode] = State::S0;
+                       }
+
+                       for (int i = 0; i < GetSize(nodes); i++) {
+                               module->connect(next_state_sig[i], activate_bit[i]);
+                       }
+               }
+
+               // Construct output signals
+
+               if (accept_sig != State::Sz) {
+                       module->connect(accept_sig, state_sig[acceptNode]);
+               }
+
+               if (reject_sig != State::Sz)
+               {
+                       SigBit fsm_active = module->ReduceOr(NEW_ID, state_sig);
+                       SigBit fsm_next_active = module->ReduceOr(NEW_ID, next_state_sig);
+                       module->addEq(NEW_ID, {state_sig[acceptNode], fsm_next_active, fsm_active}, SigSpec(1, 3), reject_sig);
+               }
+       }
+
+       void materialize_dfsm()
+       {
+               // FIXME
+               log_abort();
+       }
+
+       bool is_linear()
+       {
+               for (int i = 0; i < GetSize(nodes); i++)
+                       if (GetSize(nodes[i].edges) + GetSize(nodes[i].links) > 1)
+                               return false;
+               return true;
+       }
+
+       void dump()
+       {
+               log("-----------\n");
+               for (int i = 0; i < GetSize(nodes); i++)
+               {
+                       log("node %d:\n", i);
+
+                       if (i == startNode)
+                               log("  startNode\n");
+
+                       if (i == rejectNode)
+                               log("  rejectNode\n");
+
+                       if (i == acceptNode)
+                               log("  acceptNode\n");
+
+                       for (auto &it : nodes[i].edges) {
+                               if (it.second != State::S1)
+                                       log("  egde %s -> %d\n", log_signal(it.second), it.first);
+                               else
+                                       log("  egde -> %d\n", it.first);
+                       }
+
+                       for (auto &it : nodes[i].links) {
+                               if (it.second != State::S1)
+                                       log("  link %s -> %d\n", log_signal(it.second), it.first);
+                               else
+                                       log("  link -> %d\n", it.first);
+                       }
+               }
+               log("-----------\n");
+       }
+};
+
+PRIVATE_NAMESPACE_END
+
 YOSYS_NAMESPACE_BEGIN
 
 pool<int> verific_sva_prims = {
@@ -254,6 +574,253 @@ struct VerificSvaImporter
        // ----------------------------------------------------------
        // SVA Importer
 
+       int parse_sequence(SvaFsm *fsm, int start_node, Net *net)
+       {
+               Instance *inst = net_to_ast_driver(net);
+
+               if (inst == nullptr) {
+                       int node = fsm->createNode();
+                       fsm->createLink(start_node, node, importer->net_map_at(net));
+                       return node;
+               }
+
+               if (inst->Type() == PRIM_SVA_SEQ_CONCAT)
+               {
+                       const char *sva_low_s = inst->GetAttValue("sva:low");
+                       const char *sva_high_s = inst->GetAttValue("sva:high");
+
+                       int sva_low = atoi(sva_low_s);
+                       int sva_high = atoi(sva_high_s);
+                       bool sva_inf = !strcmp(sva_high_s, "$");
+
+                       int node = parse_sequence(fsm, start_node, inst->GetInput1());
+
+                       for (int i = 0; i < sva_low; i++) {
+                               int next_node = fsm->createNode();
+                               fsm->createEdge(node, next_node);
+                               node = next_node;
+                       }
+
+                       if (sva_inf)
+                       {
+                               fsm->createEdge(node, node);
+                       }
+                       else
+                       {
+                               for (int i = sva_low; i < sva_high; i++)
+                               {
+                                       int next_node = fsm->createNode();
+                                       fsm->createEdge(node, next_node);
+                                       fsm->createLink(node, next_node);
+                                       node = next_node;
+                               }
+                       }
+
+                       node = parse_sequence(fsm, node, inst->GetInput2());
+
+                       return node;
+               }
+
+               if (inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT)
+               {
+                       const char *sva_low_s = inst->GetAttValue("sva:low");
+                       const char *sva_high_s = inst->GetAttValue("sva:high");
+
+                       int sva_low = atoi(sva_low_s);
+                       int sva_high = atoi(sva_high_s);
+                       bool sva_inf = !strcmp(sva_high_s, "$");
+
+                       int node = parse_sequence(fsm, start_node, inst->GetInput());
+
+                       for (int i = 1; i < sva_low; i++)
+                       {
+                               int next_node = fsm->createNode();
+                               fsm->createEdge(node, next_node);
+                               node = parse_sequence(fsm, next_node, inst->GetInput());
+                       }
+
+                       if (sva_inf)
+                       {
+                               int next_node = fsm->createNode();
+                               fsm->createEdge(node, next_node);
+                               next_node = parse_sequence(fsm, next_node, inst->GetInput());
+                               fsm->createLink(next_node, node);
+                       }
+                       else
+                       {
+                               for (int i = sva_low; i < sva_high; i++)
+                               {
+                                       int next_node = fsm->createNode();
+                                       fsm->createEdge(node, next_node);
+                                       next_node = parse_sequence(fsm, next_node, inst->GetInput());
+                                       fsm->createLink(node, next_node);
+                                       node = next_node;
+                               }
+                       }
+
+                       return node;
+               }
+
+               if (inst->Type() == PRIM_SVA_THROUGHOUT)
+               {
+                       log_assert(get_ast_input1(inst) == nullptr);
+                       SigBit expr = importer->net_map_at(inst->GetInput1());
+
+                       fsm->pushThroughout(expr);
+                       int node = parse_sequence(fsm, start_node, inst->GetInput2());
+                       fsm->popThroughout();
+
+                       return node;
+               }
+
+               // Handle unsupported primitives
+
+               if (!importer->mode_keep)
+                       log_error("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
+               log_warning("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
+
+               return start_node;
+       }
+
+       void import()
+       {
+               module = importer->module;
+               netlist = root->Owner();
+
+               RTLIL::IdString root_name = module->uniquify(importer->mode_names || root->IsUserDeclared() ? RTLIL::escape_id(root->Name()) : NEW_ID);
+
+               // parse SVA property clock event
+
+               Instance *at_node = get_ast_input(root);
+
+               // asynchronous immediate assertion/assumption/cover
+               if (at_node == nullptr && (root->Type() == PRIM_SVA_IMMEDIATE_ASSERT ||
+                               root->Type() == PRIM_SVA_IMMEDIATE_COVER || root->Type() == PRIM_SVA_IMMEDIATE_ASSUME))
+               {
+                       SigSpec sig_a = importer->net_map_at(root->GetInput());
+                       RTLIL::Cell *c = nullptr;
+
+                       if (eventually) {
+                               if (mode_assert) c = module->addLive(root_name, sig_a, State::S1);
+                               if (mode_assume) c = module->addFair(root_name, sig_a, State::S1);
+                       } else {
+                               if (mode_assert) c = module->addAssert(root_name, sig_a, State::S1);
+                               if (mode_assume) c = module->addAssume(root_name, sig_a, State::S1);
+                               if (mode_cover) c = module->addCover(root_name, sig_a, State::S1);
+                       }
+
+                       importer->import_attributes(c->attributes, root);
+                       return;
+               }
+
+               log_assert(at_node && at_node->Type() == PRIM_SVA_AT);
+
+               VerificClockEdge clock_edge(importer, get_ast_input1(at_node));
+               clock = clock_edge.clock_sig;
+               clock_posedge = clock_edge.posedge;
+
+               // parse disable_iff expression
+
+               Net *sequence_net = at_node->GetInput2();
+
+               while (1)
+               {
+                       Instance *sequence_node = net_to_ast_driver(sequence_net);
+
+                       if (sequence_node && sequence_node->Type() == PRIM_SVA_S_EVENTUALLY) {
+                               eventually = true;
+                               sequence_net = sequence_node->GetInput();
+                               continue;
+                       }
+
+                       if (sequence_node && sequence_node->Type() == PRIM_SVA_DISABLE_IFF) {
+                               disable_iff = importer->net_map_at(sequence_node->GetInput1());
+                               sequence_net = sequence_node->GetInput2();
+                               continue;
+                       }
+
+                       break;
+               }
+
+               // parse SVA sequence into trigger signal
+
+               SigBit prop_okay;
+               Instance *inst = net_to_ast_driver(sequence_net);
+
+               if (inst == nullptr)
+               {
+                       prop_okay = importer->net_map_at(sequence_net);
+               }
+               else
+               if (inst->Type() == PRIM_SVA_OVERLAPPED_IMPLICATION ||
+                               inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
+               {
+                       Net *antecedent_net = inst->GetInput1();
+                       Net *consequent_net = inst->GetInput2();
+                       int node;
+
+                       SvaFsm antecedent_fsm(module, clock, clock_posedge, disable_iff);
+                       node = parse_sequence(&antecedent_fsm, antecedent_fsm.startNode, antecedent_net);
+                       if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION) {
+                               int next_node = antecedent_fsm.createNode();
+                               antecedent_fsm.createEdge(node, next_node);
+                               node = next_node;
+                       }
+                       antecedent_fsm.createLink(node, antecedent_fsm.acceptNode);
+
+                       SigBit antecedent_accept = antecedent_fsm.getAccept();
+                       antecedent_fsm.materialize_ndfsm();
+                       antecedent_fsm.dump();
+
+                       SvaFsm consequent_fsm(module, clock, clock_posedge, disable_iff, antecedent_accept);
+                       node = parse_sequence(&consequent_fsm, consequent_fsm.startNode, consequent_net);
+                       consequent_fsm.createLink(node, consequent_fsm.acceptNode);
+
+                       SigBit consequent_reject = consequent_fsm.getReject();
+                       prop_okay = module->Not(NEW_ID, consequent_reject);
+
+                       if (consequent_fsm.is_linear())
+                               consequent_fsm.materialize_ndfsm();
+                       else
+                               log_error("Currently only linear sequences are allowed as impliciation consequent.\n");
+               }
+               else
+               {
+                       // Handle unsupported primitives
+
+                       if (!importer->mode_keep)
+                               log_error("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
+                       log_warning("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
+                       return;
+               }
+
+               // add final FF stage
+
+               Wire *prop_okay_q = module->addWire(NEW_ID);
+               prop_okay_q->attributes["\\init"] = Const(mode_cover ? 0 : 1, 1);
+               module->addDff(NEW_ID, clock, prop_okay, prop_okay_q, clock_posedge);
+
+               // generate assert/assume/cover cell
+
+               RTLIL::Cell *c = nullptr;
+
+               if (eventually) {
+                       log_error("No support for eventually in Verific SVA bindings yet.\n");
+                       // if (mode_assert) c = module->addLive(root_name, prop_okay_q, prop_start_q);
+                       // if (mode_assume) c = module->addFair(root_name, prop_okay_q, prop_start_q);
+               } else {
+                       if (mode_assert) c = module->addAssert(root_name, prop_okay_q, State::S1);
+                       if (mode_assume) c = module->addAssume(root_name, prop_okay_q, State::S1);
+                       if (mode_cover) c = module->addCover(root_name, prop_okay_q, State::S1);
+               }
+
+               importer->import_attributes(c->attributes, root);
+       }
+
+#if 0
+       // ----------------------------------------------------------
+       // Old SVA Importer
+
        vector<SigBit> sva_until_list_inclusive;
        vector<SigBit> sva_until_list_exclusive;
        vector<vector<SigBit>*> sva_sequence_alive_list;
@@ -603,6 +1170,7 @@ struct VerificSvaImporter
 
                importer->import_attributes(c->attributes, root);
        }
+#endif
 };
 
 void svapp_assert(Instance *inst)
index 38199bff145693a029704d22afcb0ad67d716841..d1569fc830619aee07cc65ab0d12315a9a383858 100644 (file)
@@ -5,7 +5,7 @@ module top (
        default clocking @(posedge clk); endclocking
 
        assert property (
-               a ##[*] b |=> c until ##[*] d
+               a ##[*] b |=> c until d
        );
 
 `ifndef FAIL