if (inst->Type() == PRIM_DFFRS)
{
+ VerificClocking clocking(this, inst->GetClock());
+ log_assert(clocking.disable_sig == State::S0);
+ log_assert(clocking.body_net == nullptr);
+
if (inst->GetSet()->IsGnd() && inst->GetReset()->IsGnd())
- module->addDffGate(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()));
+ clocking.addDff(inst_name, net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()));
else if (inst->GetSet()->IsGnd())
- module->addAdffGate(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetReset()),
- net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()), false);
+ clocking.addAdff(inst_name, net_map_at(inst->GetReset()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()), State::S0);
else if (inst->GetReset()->IsGnd())
- module->addAdffGate(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetSet()),
- net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()), true);
+ clocking.addAdff(inst_name, net_map_at(inst->GetSet()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()), State::S1);
else
- module->addDffsrGate(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetSet()), net_map_at(inst->GetReset()),
+ clocking.addDffsr(inst_name, net_map_at(inst->GetSet()), net_map_at(inst->GetReset()),
net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()));
return true;
}
if (inst->Type() == PRIM_DFFRS)
{
+ VerificClocking clocking(this, inst->GetClock());
+ log_assert(clocking.disable_sig == State::S0);
+ log_assert(clocking.body_net == nullptr);
+
if (inst->GetSet()->IsGnd() && inst->GetReset()->IsGnd())
- module->addDff(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()));
+ clocking.addDff(inst_name, net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()));
else if (inst->GetSet()->IsGnd())
- module->addAdff(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetReset()),
- net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()), RTLIL::State::S0);
+ clocking.addAdff(inst_name, net_map_at(inst->GetReset()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()), RTLIL::State::S0);
else if (inst->GetReset()->IsGnd())
- module->addAdff(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetSet()),
- net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()), RTLIL::State::S1);
+ clocking.addAdff(inst_name, net_map_at(inst->GetSet()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()), RTLIL::State::S1);
else
- module->addDffsr(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetSet()), net_map_at(inst->GetReset()),
+ clocking.addDffsr(inst_name, net_map_at(inst->GetSet()), net_map_at(inst->GetReset()),
net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()));
return true;
}
return true;
}
- if (inst->Type() == OPER_WIDE_DFFRS) {
+ if (inst->Type() == OPER_WIDE_DFFRS)
+ {
+ VerificClocking clocking(this, inst->GetClock());
+ log_assert(clocking.disable_sig == State::S0);
+ log_assert(clocking.body_net == nullptr);
+
RTLIL::SigSpec sig_set = operatorInport(inst, "set");
RTLIL::SigSpec sig_reset = operatorInport(inst, "reset");
+
if (sig_set.is_fully_const() && !sig_set.as_bool() && sig_reset.is_fully_const() && !sig_reset.as_bool())
- module->addDff(inst_name, net_map_at(inst->GetClock()), IN, OUT);
+ clocking.addDff(inst_name, IN, OUT);
else
- module->addDffsr(inst_name, net_map_at(inst->GetClock()), sig_set, sig_reset, IN, OUT);
+ clocking.addDffsr(inst_name, sig_set, sig_reset, IN, OUT);
+
return true;
}
if (inst->Type() == OPER_SVA_STABLE)
{
- VerificClockEdge clock_edge(this, inst->GetInput2Bit(0)->Driver());
+ VerificClocking clocking(this, inst->GetInput2Bit(0));
log_assert(inst->Input1Size() == inst->OutputSize());
}
if (verific_verbose) {
- log(" %sedge FF with D=%s, Q=%s, C=%s.\n", clock_edge.posedge ? "pos" : "neg",
- log_signal(sig_d), log_signal(sig_q), log_signal(clock_edge.clock_sig));
+ log(" %sedge FF with D=%s, Q=%s, C=%s.\n", clocking.posedge ? "pos" : "neg",
+ log_signal(sig_d), log_signal(sig_q), log_signal(clocking.clock_sig));
log(" XNOR with A=%s, B=%s, Y=%s.\n",
log_signal(sig_d), log_signal(sig_q), log_signal(sig_o));
}
- module->addDff(NEW_ID, clock_edge.clock_sig, sig_d, sig_q, clock_edge.posedge);
+ clocking.addDff(NEW_ID, sig_d, sig_q);
module->addXnor(NEW_ID, sig_d, sig_q, sig_o);
if (!mode_keep)
if (inst->Type() == PRIM_SVA_STABLE)
{
- VerificClockEdge clock_edge(this, inst->GetInput2()->Driver());
+ VerificClocking clocking(this, inst->GetInput2());
SigSpec sig_d = net_map_at(inst->GetInput1());
SigSpec sig_o = net_map_at(inst->GetOutput());
SigSpec sig_q = module->addWire(NEW_ID);
if (verific_verbose) {
- log(" %sedge FF with D=%s, Q=%s, C=%s.\n", clock_edge.posedge ? "pos" : "neg",
- log_signal(sig_d), log_signal(sig_q), log_signal(clock_edge.clock_sig));
+ log(" %sedge FF with D=%s, Q=%s, C=%s.\n", clocking.posedge ? "pos" : "neg",
+ log_signal(sig_d), log_signal(sig_q), log_signal(clocking.clock_sig));
log(" XNOR with A=%s, B=%s, Y=%s.\n",
log_signal(sig_d), log_signal(sig_q), log_signal(sig_o));
}
- module->addDff(NEW_ID, clock_edge.clock_sig, sig_d, sig_q, clock_edge.posedge);
+ clocking.addDff(NEW_ID, sig_d, sig_q);
module->addXnor(NEW_ID, sig_d, sig_q, sig_o);
if (!mode_keep)
if (inst->Type() == PRIM_SVA_PAST)
{
- VerificClockEdge clock_edge(this, inst->GetInput2()->Driver());
+ VerificClocking clocking(this, inst->GetInput2());
SigBit sig_d = net_map_at(inst->GetInput1());
SigBit sig_q = net_map_at(inst->GetOutput());
if (verific_verbose)
- log(" %sedge FF with D=%s, Q=%s, C=%s.\n", clock_edge.posedge ? "pos" : "neg",
- log_signal(sig_d), log_signal(sig_q), log_signal(clock_edge.clock_sig));
+ log(" %sedge FF with D=%s, Q=%s, C=%s.\n", clocking.posedge ? "pos" : "neg",
+ log_signal(sig_d), log_signal(sig_q), log_signal(clocking.clock_sig));
- past_ffs.insert(module->addDff(NEW_ID, clock_edge.clock_sig, sig_d, sig_q, clock_edge.posedge));
+ past_ffs.insert(clocking.addDff(NEW_ID, sig_d, sig_q));
if (!mode_keep)
continue;
if ((inst->Type() == PRIM_SVA_ROSE || inst->Type() == PRIM_SVA_FELL))
{
- VerificClockEdge clock_edge(this, inst->GetInput2()->Driver());
+ VerificClocking clocking(this, inst->GetInput2());
SigBit sig_d = net_map_at(inst->GetInput1());
SigBit sig_o = net_map_at(inst->GetOutput());
SigBit sig_q = module->addWire(NEW_ID);
if (verific_verbose)
- log(" %sedge FF with D=%s, Q=%s, C=%s.\n", clock_edge.posedge ? "pos" : "neg",
- log_signal(sig_d), log_signal(sig_q), log_signal(clock_edge.clock_sig));
+ log(" %sedge FF with D=%s, Q=%s, C=%s.\n", clocking.posedge ? "pos" : "neg",
+ log_signal(sig_d), log_signal(sig_q), log_signal(clocking.clock_sig));
- module->addDff(NEW_ID, clock_edge.clock_sig, sig_d, sig_q, clock_edge.posedge);
+ clocking.addDff(NEW_ID, sig_d, sig_q);
module->addEq(NEW_ID, {sig_q, sig_d}, Const(inst->Type() == PRIM_SVA_ROSE ? 1 : 2, 2), sig_o);
if (!mode_keep)
// ==================================================================
-VerificClockEdge::VerificClockEdge(VerificImporter *importer, Instance *inst)
+VerificClocking::VerificClocking(VerificImporter *importer, Net *net)
{
+ module = importer->module;
+
log_assert(importer != nullptr);
- log_assert(inst != nullptr);
+ log_assert(net != nullptr);
- // SVA posedge/negedge
- if (inst->Type() == PRIM_SVA_POSEDGE)
+ Instance *inst = net->Driver();
+
+ if (inst != nullptr && inst->Type() == PRIM_SVA_AT)
{
- clock_net = inst->GetInput();
- posedge = true;
+ net = inst->GetInput1();
+ body_net = inst->GetInput2();
+
+ inst = net->Driver();
- Instance *driver = clock_net->Driver();
- if (!clock_net->IsMultipleDriven() && driver && driver->Type() == PRIM_INV) {
- clock_net = driver->GetInput();
- posedge = false;
+ Instance *body_inst = body_net->Driver();
+ if (body_inst != nullptr && body_inst->Type() == PRIM_SVA_DISABLE_IFF) {
+ disable_net = body_inst->GetInput1();
+ disable_sig = importer->net_map_at(disable_net);
+ body_net = body_inst->GetInput2();
}
+ }
- clock_sig = importer->net_map_at(clock_net);
- return;
+ if (inst != nullptr && inst->Type() == PRIM_SVA_POSEDGE)
+ {
+ net = inst->GetInput();
+ inst = net->Driver();;
}
+
+ if (inst != nullptr && inst->Type() == PRIM_INV)
+ {
+ net = inst->GetInput();
+ inst = net->Driver();;
+ posedge = false;
+ }
+
+ // Detect clock-enable circuit
+ do {
+ if (inst == nullptr || inst->Type() != PRIM_AND)
+ break;
+
+ Net *net_dlatch = inst->GetInput1();
+ Instance *inst_dlatch = net_dlatch->Driver();
+
+ if (inst_dlatch == nullptr || inst_dlatch->Type() != PRIM_DLATCHRS)
+ break;
+
+ if (!inst_dlatch->GetSet()->IsGnd() || !inst_dlatch->GetReset()->IsGnd())
+ break;
+
+ Net *net_enable = inst_dlatch->GetInput();
+ Net *net_not_clock = inst_dlatch->GetControl();
+
+ if (net_enable == nullptr || net_not_clock == nullptr)
+ break;
+
+ Instance *inst_not_clock = net_not_clock->Driver();
+
+ if (inst_not_clock == nullptr || inst_not_clock->Type() != PRIM_INV)
+ break;
+
+ Net *net_clock1 = inst_not_clock->GetInput();
+ Net *net_clock2 = inst->GetInput2();
+
+ if (net_clock1 == nullptr || net_clock1 != net_clock2)
+ break;
+
+ enable_net = net_enable;
+ enable_sig = importer->net_map_at(enable_net);
+
+ net = net_clock1;
+ inst = net->Driver();;
+ } while (0);
+
+ clock_net = net;
+ clock_sig = importer->net_map_at(clock_net);
+}
+
+Cell *VerificClocking::addDff(IdString name, SigSpec sig_d, SigSpec sig_q, Const init_value)
+{
+ log_assert(GetSize(sig_d) == GetSize(sig_q));
+
+ if (GetSize(init_value) != 0) {
+ log_assert(GetSize(sig_q) == GetSize(init_value));
+ if (sig_q.is_wire()) {
+ sig_q.as_wire()->attributes["\\init"] = init_value;
+ } else {
+ Wire *w = module->addWire(NEW_ID, GetSize(sig_q));
+ w->attributes["\\init"] = init_value;
+ module->connect(sig_q, w);
+ sig_q = w;
+ }
+ }
+
+ if (enable_sig != State::S1)
+ sig_d = module->Mux(NEW_ID, sig_q, sig_d, enable_sig);
+
+ if (disable_sig != State::S0) {
+ log_assert(GetSize(sig_q) == GetSize(init_value));
+ return module->addAdff(name, clock_sig, disable_sig, sig_d, sig_q, init_value, posedge);
+ }
+
+ return module->addDff(name, clock_sig, sig_d, sig_q, posedge);
+}
+
+Cell *VerificClocking::addAdff(IdString name, RTLIL::SigSpec sig_arst, SigSpec sig_d, SigSpec sig_q, Const arst_value)
+{
+ log_assert(disable_sig == State::S0);
+
+ if (enable_sig != State::S1)
+ sig_d = module->Mux(NEW_ID, sig_q, sig_d, enable_sig);
+
+ return module->addAdff(name, clock_sig, sig_arst, sig_d, sig_q, arst_value, posedge);
+}
+
+Cell *VerificClocking::addDffsr(IdString name, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr, SigSpec sig_d, SigSpec sig_q)
+{
+ log_assert(disable_sig == State::S0);
+
+ if (enable_sig != State::S1)
+ sig_d = module->Mux(NEW_ID, sig_q, sig_d, enable_sig);
+
+ return module->addDffsr(name, clock_sig, sig_set, sig_clr, sig_d, sig_q, posedge);
}
// ==================================================================
// Notes:
// |-> is a placeholder for |-> and |=>
// "until" is a placeholder for all until operators
-// ##[N:M], [*N:M], [=N:M], [->N:M] includes ##N, [*N], [=N], [->N]
+// ##[N:M] includes ##N, ##[*], ##[+]
+// [*N:M] includes [*N], [*], [+]
+// [=N:M], [->N:M] includes [=N], [->N]
//
// -------------------------------------------------------
//
struct SvaFsm
{
Module *module;
- SigBit clock;
- bool clockpol;
+ VerificClocking clocking;
SigBit trigger_sig = State::S1, disable_sig;
SigBit throughout_sig = State::S1;
SigBit final_accept_sig = State::Sx;
SigBit final_reject_sig = State::Sx;
- SvaFsm(Module *mod, SigBit clk, bool clkpol, SigBit dis = State::S0, SigBit trig = State::S1)
+ SvaFsm(const VerificClocking &clking, SigBit trig = State::S1)
{
- module = mod;
- clock = clk;
- clockpol = clkpol;
- disable_sig = dis;
+ module = clking.module;
+ clocking = clking;
trigger_sig = trig;
startNode = createNode();
for (int i = 0; i < GetSize(nodes); i++)
{
if (next_state_sig[i] != State::S0) {
- state_wire[i]->attributes["\\init"] = Const(0, 1);
- module->addDff(NEW_ID, clock, next_state_sig[i], state_wire[i], clockpol);
+ clocking.addDff(NEW_ID, next_state_sig[i], state_wire[i], Const(0, 1));
} else {
module->connect(state_wire[i], State::S0);
}
{
SvaDFsmNode &dnode = it.second;
dnode.ffoutwire = module->addWire(NEW_ID);
- dnode.ffoutwire->attributes["\\init"] = Const(0, 1);
dnode.statesig = dnode.ffoutwire;
if (it.first == vector<int>{startNode})
module->connect(dnode.ffoutwire, State::S0);
} else
if (GetSize(dnode.nextstate) == 1) {
- module->addDff(NEW_ID, clock, dnode.nextstate, dnode.ffoutwire, clockpol);
+ clocking.addDff(NEW_ID, dnode.nextstate, dnode.ffoutwire, State::S0);
} else {
SigSpec nextstate = module->ReduceOr(NEW_ID, dnode.nextstate);
- module->addDff(NEW_ID, clock, nextstate, dnode.ffoutwire, clockpol);
+ clocking.addDff(NEW_ID, nextstate, dnode.ffoutwire, State::S0);
}
}
Netlist *netlist = nullptr;
Instance *root = nullptr;
- SigBit clock = State::Sx;
- bool clockpol = false;
-
- SigBit disable_iff = State::S0;
+ VerificClocking clocking;
bool mode_assert = false;
bool mode_assume = false;
bool mode_cover = false;
bool eventually = false;
- bool did_something = false;
Instance *net_to_ast_driver(Net *n)
{
RTLIL::IdString root_name = module->uniquify(importer->mode_names || root->IsUserDeclared() ? RTLIL::escape_id(root->Name()) : NEW_ID);
- // parse SVA property clock event
-
- Instance *at_node = get_ast_input(root);
-
- // asynchronous immediate assertion/assumption/cover
- if (at_node == nullptr && (root->Type() == PRIM_SVA_IMMEDIATE_ASSERT ||
- root->Type() == PRIM_SVA_IMMEDIATE_COVER || root->Type() == PRIM_SVA_IMMEDIATE_ASSUME))
- {
- SigSpec sig_a = importer->net_map_at(root->GetInput());
- RTLIL::Cell *c = nullptr;
-
- if (eventually) {
- if (mode_assert) c = module->addLive(root_name, sig_a, State::S1);
- if (mode_assume) c = module->addFair(root_name, sig_a, State::S1);
- } else {
- if (mode_assert) c = module->addAssert(root_name, sig_a, State::S1);
- if (mode_assume) c = module->addAssume(root_name, sig_a, State::S1);
- if (mode_cover) c = module->addCover(root_name, sig_a, State::S1);
- }
-
- importer->import_attributes(c->attributes, root);
- return;
- }
-
- log_assert(at_node && at_node->Type() == PRIM_SVA_AT);
-
- VerificClockEdge clock_edge(importer, get_ast_input1(at_node));
- clock = clock_edge.clock_sig;
- clockpol = clock_edge.posedge;
-
- // parse disable_iff expression
+ clocking = VerificClocking(importer, root->GetInput());
- Net *net = at_node->GetInput2();
-
- while (1)
- {
- Instance *sequence_node = net_to_ast_driver(net);
-
- if (sequence_node && sequence_node->Type() == PRIM_SVA_S_EVENTUALLY) {
- eventually = true;
- net = sequence_node->GetInput();
- continue;
- }
-
- if (sequence_node && sequence_node->Type() == PRIM_SVA_DISABLE_IFF) {
- disable_iff = importer->net_map_at(sequence_node->GetInput1());
- net = sequence_node->GetInput2();
- continue;
- }
-
- break;
- }
+ if (clocking.body_net == nullptr)
+ log_error("Failed to parse SVA clocking at %s (%s) at %s:%d.", root->Name(), root->View()->Owner()->Name(),
+ LineFile::GetFileName(root->Linefile()), LineFile::GetLineNo(root->Linefile()));
// parse SVA sequence into trigger signal
SigBit prop_okay;
+ Net *net = clocking.body_net;
Instance *inst = net_to_ast_driver(net);
if (inst == nullptr)
Net *consequent_net = inst->GetInput2();
int node;
- SvaFsm antecedent_fsm(module, clock, clockpol, disable_iff);
+ SvaFsm antecedent_fsm(clocking);
node = parse_sequence(&antecedent_fsm, antecedent_fsm.startNode, antecedent_net);
if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION) {
int next_node = antecedent_fsm.createNode();
until_net = until_inst->GetInput();
}
- SvaFsm until_fsm(module, clock, clockpol, disable_iff);
+ SvaFsm until_fsm(clocking);
node = parse_sequence(&until_fsm, until_fsm.startNode, until_net);
until_fsm.createLink(node, until_fsm.acceptNode);
until_fsm.dump();
}
- Wire *antecedent_match_q = module->addWire(NEW_ID);
- antecedent_match_q->attributes["\\init"] = Const(0, 1);
-
+ SigBit antecedent_match_q = module->addWire(NEW_ID);
antecedent_match = module->Or(NEW_ID, antecedent_match, antecedent_match_q);
SigBit antecedent_match_filtered = module->And(NEW_ID, antecedent_match, not_until_match);
- module->addDff(NEW_ID, clock, antecedent_match_filtered, antecedent_match_q, clockpol);
+ clocking.addDff(NEW_ID, antecedent_match_filtered, antecedent_match_q, State::S0);
if (!until_with)
antecedent_match = antecedent_match_filtered;
consequent_inst = net_to_ast_driver(consequent_net);
}
- SvaFsm consequent_fsm(module, clock, clockpol, disable_iff, antecedent_match);
+ SvaFsm consequent_fsm(clocking, antecedent_match);
node = parse_sequence(&consequent_fsm, consequent_fsm.startNode, consequent_net);
consequent_fsm.createLink(node, consequent_fsm.acceptNode);
else
if (inst->Type() == PRIM_SVA_NOT || mode_cover)
{
- SvaFsm fsm(module, clock, clockpol, disable_iff);
+ SvaFsm fsm(clocking);
int node = parse_sequence(&fsm, fsm.startNode, mode_cover ? net : inst->GetInput());
fsm.createLink(node, fsm.acceptNode);
SigBit accept = fsm.getAccept();
// add final FF stage
- Wire *prop_okay_q = module->addWire(NEW_ID);
- prop_okay_q->attributes["\\init"] = Const(mode_cover ? 0 : 1, 1);
- module->addDff(NEW_ID, clock, prop_okay, prop_okay_q, clockpol);
+ SigBit prop_okay_q = module->addWire(NEW_ID);
+ clocking.addDff(NEW_ID, prop_okay, prop_okay_q, Const(mode_cover ? 0 : 1, 1));
// generate assert/assume/cover cell