include frontends/*/Makefile.inc
include passes/*/Makefile.inc
include backends/*/Makefile.inc
-include techlibs/Makefile.inc
+include techlibs/*/Makefile.inc
top-all: $(TARGETS) $(EXTRA_TARGETS)
passes modify RTL cells they must always keep the values of these parameters in sync with
the size of the signals connected to the inputs and outputs.
-Simulation models for the RTL cells can be found in the file {\tt techlibs/simlib.v} in the Yosys
+Simulation models for the RTL cells can be found in the file {\tt techlibs/common/simlib.v} in the Yosys
source tree.
\subsection{Unary Operators}
For gate level logic networks, fixed function single bit cells are used that do
not provide any parameters.
-Simulation models for these cells can be found in the file {\tt techlibs/stdcells\_sim.v} in the Yosys
+Simulation models for these cells can be found in the file {\tt techlibs/common/stdcells\_sim.v} in the Yosys
source tree.
\begin{table}[t]
When no map file is provided, {\tt techmap} uses a built-in map file that
maps the Yosys RTL cell types to the internal gate library used by Yosys.
-The curious reader may find this map file as {\tt techlibs/stdcells.v} in
+The curious reader may find this map file as {\tt techlibs/common/stdcells.v} in
the Yosys source tree.
Additional features have been added to {\tt techmap} to allow for conditional
GENFILES += passes/techmap/stdcells.inc
OBJS += passes/techmap/techmap.o
-passes/techmap/stdcells.inc: techlibs/stdcells.v
+passes/techmap/stdcells.inc: techlibs/common/stdcells.v
echo "// autogenerated from $<" > $@.new
od -v -td1 -w1 $< | awk 'BEGIN { print "static char stdcells_code[] = {"; } $$2 != "" { print $$2 ","; } \
END { print 0 "};"; }' | fmt >> $@.new
+++ /dev/null
-
-EXTRA_TARGETS += techlibs/blackbox.v
-
-techlibs/blackbox.v: techlibs/blackbox.sed techlibs/simlib.v techlibs/stdcells_sim.v
- cat techlibs/simlib.v techlibs/stdcells_sim.v | sed -rf techlibs/blackbox.sed > techlibs/blackbox.v.new
- mv techlibs/blackbox.v.new techlibs/blackbox.v
-
+++ /dev/null
-#!/bin/sed -r
-/^(wire|assign|reg)/ d;
-/^(genvar|always|initial)/,/^end/ d;
-s/ reg / /;
--- /dev/null
+
+EXTRA_TARGETS += techlibs/common/blackbox.v
+
+techlibs/common/blackbox.v: techlibs/common/blackbox.sed techlibs/common/simlib.v techlibs/common/stdcells_sim.v
+ cat techlibs/common/simlib.v techlibs/common/stdcells_sim.v | sed -rf techlibs/common/blackbox.sed > techlibs/common/blackbox.v.new
+ mv techlibs/common/blackbox.v.new techlibs/common/blackbox.v
+
--- /dev/null
+#!/bin/sed -r
+/^(wire|assign|reg)/ d;
+/^(genvar|always|initial)/,/^end/ d;
+s/ reg / /;
--- /dev/null
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * ---
+ *
+ * The Simulation Library.
+ *
+ * This verilog library contains simple simulation models for the internal
+ * cells ($not, ...) generated by the frontends and used in most passes.
+ *
+ * This library can be used to verify the internal netlists as generated
+ * by the different frontends and passes.
+ *
+ * Note that memory can only be simulated when all $memrd and $memwr cells
+ * have been merged to stand-alone $mem cells (this is what the "memory_collect"
+ * pass is doing).
+ *
+ */
+
+`define INPUT_A \
+input [A_WIDTH-1:0] A; \
+generate if (A_SIGNED) begin:A_BUF wire signed [A_WIDTH-1:0] val = A; end else begin:A_BUF wire [A_WIDTH-1:0] val = A; end endgenerate
+
+`define INPUT_B \
+input [B_WIDTH-1:0] B; \
+generate if (B_SIGNED) begin:B_BUF wire signed [B_WIDTH-1:0] val = B; end else begin:B_BUF wire [B_WIDTH-1:0] val = B; end endgenerate
+
+// --------------------------------------------------------
+
+module \$not (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+output [Y_WIDTH-1:0] Y;
+
+assign Y = ~A_BUF.val;
+
+endmodule
+
+
+// --------------------------------------------------------
+
+module \$pos (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+output [Y_WIDTH-1:0] Y;
+
+assign Y = +A_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$neg (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+output [Y_WIDTH-1:0] Y;
+
+assign Y = -A_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$and (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val & B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$or (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val | B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$xor (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val ^ B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$xnor (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val ~^ B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$reduce_and (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+output Y;
+
+assign Y = &A_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$reduce_or (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+output Y;
+
+assign Y = |A_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$reduce_xor (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+output Y;
+
+assign Y = ^A_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$reduce_xnor (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+output Y;
+
+assign Y = ~^A_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$reduce_bool (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+output Y;
+
+assign Y = A_BUF.val != 0;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$shl (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val << B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$shr (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val >> B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$sshl (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val <<< B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$sshr (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val >>> B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$lt (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val < B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$le (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val <= B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$eq (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val == B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$ne (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val != B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$ge (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val >= B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$gt (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val > B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$add (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val + B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$sub (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val - B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$mul (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val * B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$div (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val / B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$mod (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val % B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$pow (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val ** B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$logic_not (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+output [Y_WIDTH-1:0] Y;
+
+assign Y = !A_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$logic_and (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val && B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$logic_or (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 0;
+parameter B_WIDTH = 0;
+parameter Y_WIDTH = 0;
+
+`INPUT_A
+`INPUT_B
+output [Y_WIDTH-1:0] Y;
+
+assign Y = A_BUF.val || B_BUF.val;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$mux (A, B, S, Y);
+
+parameter WIDTH = 0;
+
+input [WIDTH-1:0] A, B;
+input S;
+output reg [WIDTH-1:0] Y;
+
+always @* begin
+ if (S)
+ Y = B;
+ else
+ Y = A;
+end
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$pmux (A, B, S, Y);
+
+parameter WIDTH = 0;
+parameter S_WIDTH = 0;
+
+input [WIDTH-1:0] A;
+input [WIDTH*S_WIDTH-1:0] B;
+input [S_WIDTH-1:0] S;
+output reg [WIDTH-1:0] Y;
+
+integer i;
+
+always @* begin
+ Y = A;
+ for (i = 0; i < S_WIDTH; i = i+1)
+ if (S[i])
+ Y = B >> (WIDTH*i);
+end
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$safe_pmux (A, B, S, Y);
+
+parameter WIDTH = 0;
+parameter S_WIDTH = 0;
+
+input [WIDTH-1:0] A;
+input [WIDTH*S_WIDTH-1:0] B;
+input [S_WIDTH-1:0] S;
+output reg [WIDTH-1:0] Y;
+
+integer i, j;
+
+always @* begin
+ j = 0;
+ for (i = 0; i < S_WIDTH; i = i+1)
+ if (S[i]) begin
+ Y = B >> (WIDTH*i);
+ j = j + 1;
+ end
+ if (j != 1)
+ Y = A;
+end
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$sr (S, R, Q);
+
+parameter WIDTH = 0;
+
+input [WIDTH-1:0] S, R;
+output reg [WIDTH-1:0] Q;
+
+integer i;
+always @(S, R)
+ for (i = 0; i < WIDTH; i = i+1) begin
+ if (R[i])
+ Q[i] <= 0;
+ else if (S[i])
+ Q[i] <= 1;
+ end
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$lut (I, O);
+
+parameter WIDTH = 0;
+parameter LUT = 0;
+
+input [WIDTH-1:0] I;
+output reg O;
+
+wire lut0_out, lut1_out;
+
+generate
+ if (WIDTH <= 1) begin:simple
+ assign {lut1_out, lut0_out} = LUT;
+ end else begin:complex
+ \$lut #( .WIDTH(WIDTH-1), .LUT(LUT ) ) lut0 ( .I(I[WIDTH-2:0]), .O(lut0_out) );
+ \$lut #( .WIDTH(WIDTH-1), .LUT(LUT >> (2**(WIDTH-1))) ) lut1 ( .I(I[WIDTH-2:0]), .O(lut1_out) );
+ end
+endgenerate
+
+always @*
+ casez ({I[WIDTH-1], lut0_out, lut1_out})
+ 3'b?11: O = 1'b1;
+ 3'b?00: O = 1'b0;
+ 3'b0??: O = lut0_out;
+ 3'b1??: O = lut1_out;
+ default: O = 1'bx;
+ endcase
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$dff (CLK, D, Q);
+
+parameter WIDTH = 0;
+parameter CLK_POLARITY = 1'b1;
+
+input CLK;
+input [WIDTH-1:0] D;
+output reg [WIDTH-1:0] Q;
+wire pos_clk = CLK == CLK_POLARITY;
+
+always @(posedge pos_clk) begin
+ Q <= D;
+end
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$adff (CLK, ARST, D, Q);
+
+parameter WIDTH = 0;
+parameter CLK_POLARITY = 1'b1;
+parameter ARST_POLARITY = 1'b1;
+parameter ARST_VALUE = 0;
+
+input CLK, ARST;
+input [WIDTH-1:0] D;
+output reg [WIDTH-1:0] Q;
+wire pos_clk = CLK == CLK_POLARITY;
+wire pos_arst = ARST == ARST_POLARITY;
+
+always @(posedge pos_clk, posedge pos_arst) begin
+ if (pos_arst)
+ Q <= ARST_VALUE;
+ else
+ Q <= D;
+end
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$fsm (CLK, ARST, CTRL_IN, CTRL_OUT);
+
+parameter NAME = "";
+
+parameter CLK_POLARITY = 1'b1;
+parameter ARST_POLARITY = 1'b1;
+
+parameter CTRL_IN_WIDTH = 1;
+parameter CTRL_OUT_WIDTH = 1;
+
+parameter STATE_BITS = 1;
+parameter STATE_NUM = 1;
+parameter STATE_NUM_LOG2 = 1;
+parameter STATE_RST = 0;
+parameter STATE_TABLE = 1'b0;
+
+parameter TRANS_NUM = 1;
+parameter TRANS_TABLE = 4'b0x0x;
+
+input CLK, ARST;
+input [CTRL_IN_WIDTH-1:0] CTRL_IN;
+output reg [CTRL_OUT_WIDTH-1:0] CTRL_OUT;
+
+wire pos_clk = CLK == CLK_POLARITY;
+wire pos_arst = ARST == ARST_POLARITY;
+
+reg [STATE_BITS-1:0] state;
+reg [STATE_BITS-1:0] state_tmp;
+reg [STATE_BITS-1:0] next_state;
+
+reg [STATE_BITS-1:0] tr_state_in;
+reg [STATE_BITS-1:0] tr_state_out;
+reg [CTRL_IN_WIDTH-1:0] tr_ctrl_in;
+reg [CTRL_OUT_WIDTH-1:0] tr_ctrl_out;
+
+integer i;
+
+task tr_fetch;
+ input [31:0] tr_num;
+ reg [31:0] tr_pos;
+ reg [STATE_NUM_LOG2-1:0] state_num;
+ begin
+ tr_pos = (2*STATE_NUM_LOG2+CTRL_IN_WIDTH+CTRL_OUT_WIDTH)*tr_num;
+ tr_ctrl_out = TRANS_TABLE >> tr_pos;
+ tr_pos = tr_pos + CTRL_OUT_WIDTH;
+ state_num = TRANS_TABLE >> tr_pos;
+ tr_state_out = STATE_TABLE >> (STATE_BITS*state_num);
+ tr_pos = tr_pos + STATE_NUM_LOG2;
+ tr_ctrl_in = TRANS_TABLE >> tr_pos;
+ tr_pos = tr_pos + CTRL_IN_WIDTH;
+ state_num = TRANS_TABLE >> tr_pos;
+ tr_state_in = STATE_TABLE >> (STATE_BITS*state_num);
+ tr_pos = tr_pos + STATE_NUM_LOG2;
+ end
+endtask
+
+always @(posedge pos_clk, posedge pos_arst) begin
+ if (pos_arst)
+ state_tmp = STATE_TABLE[STATE_BITS*(STATE_RST+1)-1:STATE_BITS*STATE_RST];
+ else
+ state_tmp = next_state;
+ for (i = 0; i < STATE_BITS; i = i+1)
+ if (state_tmp[i] === 1'bz)
+ state_tmp[i] = 0;
+ state <= state_tmp;
+end
+
+always @(state, CTRL_IN) begin
+ next_state <= STATE_TABLE[STATE_BITS*(STATE_RST+1)-1:STATE_BITS*STATE_RST];
+ CTRL_OUT <= 'bx;
+ // $display("---");
+ // $display("Q: %b %b", state, CTRL_IN);
+ for (i = 0; i < TRANS_NUM; i = i+1) begin
+ tr_fetch(i);
+ // $display("T: %b %b -> %b %b [%d]", tr_state_in, tr_ctrl_in, tr_state_out, tr_ctrl_out, i);
+ casez ({state, CTRL_IN})
+ {tr_state_in, tr_ctrl_in}: begin
+ // $display("-> %b %b <- MATCH", state, CTRL_IN);
+ {next_state, CTRL_OUT} <= {tr_state_out, tr_ctrl_out};
+ end
+ endcase
+ end
+end
+
+endmodule
+
+// --------------------------------------------------------
+`ifndef SIMLIB_NOMEM
+
+module \$memrd (CLK, ADDR, DATA);
+
+parameter MEMID = "";
+parameter ABITS = 8;
+parameter WIDTH = 8;
+
+parameter CLK_ENABLE = 0;
+parameter CLK_POLARITY = 0;
+
+input CLK;
+input [ABITS-1:0] ADDR;
+output [WIDTH-1:0] DATA;
+
+initial begin
+ $display("ERROR: Found non-simulatable instance of $memrd!");
+ $finish;
+end
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$memwr (CLK, EN, ADDR, DATA);
+
+parameter MEMID = "";
+parameter ABITS = 8;
+parameter WIDTH = 8;
+
+parameter CLK_ENABLE = 0;
+parameter CLK_POLARITY = 0;
+
+input CLK, EN;
+input [ABITS-1:0] ADDR;
+input [WIDTH-1:0] DATA;
+
+initial begin
+ $display("ERROR: Found non-simulatable instance of $memwr!");
+ $finish;
+end
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$mem (RD_CLK, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA);
+
+parameter MEMID = "";
+parameter SIZE = 256;
+parameter ABITS = 8;
+parameter WIDTH = 8;
+
+parameter RD_PORTS = 1;
+parameter RD_CLK_ENABLE = 1'b1;
+parameter RD_CLK_POLARITY = 1'b1;
+
+parameter WR_PORTS = 1;
+parameter WR_CLK_ENABLE = 1'b1;
+parameter WR_CLK_POLARITY = 1'b1;
+
+input [RD_PORTS-1:0] RD_CLK;
+input [RD_PORTS*ABITS-1:0] RD_ADDR;
+output reg [RD_PORTS*WIDTH-1:0] RD_DATA;
+
+input [WR_PORTS-1:0] WR_CLK, WR_EN;
+input [WR_PORTS*ABITS-1:0] WR_ADDR;
+input [WR_PORTS*WIDTH-1:0] WR_DATA;
+
+reg [WIDTH-1:0] data [SIZE-1:0];
+event update_async_rd;
+
+genvar i;
+generate
+
+ for (i = 0; i < RD_PORTS; i = i+1) begin:rd
+ if (RD_CLK_ENABLE[i] == 0) begin:rd_noclk
+ always @(RD_ADDR or update_async_rd)
+ RD_DATA[ (i+1)*WIDTH-1 : i*WIDTH ] <= data[ RD_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ];
+ end else
+ if (RD_CLK_POLARITY[i] == 1) begin:rd_posclk
+ always @(posedge RD_CLK[i])
+ RD_DATA[ (i+1)*WIDTH-1 : i*WIDTH ] <= data[ RD_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ];
+ end else begin:rd_negclk
+ always @(negedge RD_CLK[i])
+ RD_DATA[ (i+1)*WIDTH-1 : i*WIDTH ] <= data[ RD_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ];
+ end
+ end
+
+ for (i = 0; i < WR_PORTS; i = i+1) begin:wr
+ if (WR_CLK_ENABLE[i] == 0) begin:wr_noclk
+ always @(WR_ADDR or WR_DATA or WR_EN) begin
+ if (WR_EN[i]) begin
+ data[ WR_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ] <= WR_DATA[ (i+1)*WIDTH-1 : i*WIDTH ];
+ #1 -> update_async_rd;
+ end
+ end
+ end else
+ if (RD_CLK_POLARITY[i] == 1) begin:rd_posclk
+ always @(posedge WR_CLK[i])
+ if (WR_EN[i]) begin
+ data[ WR_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ] <= WR_DATA[ (i+1)*WIDTH-1 : i*WIDTH ];
+ #1 -> update_async_rd;
+ end
+ end else begin:rd_negclk
+ always @(negedge WR_CLK[i])
+ if (WR_EN[i]) begin
+ data[ WR_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ] <= WR_DATA[ (i+1)*WIDTH-1 : i*WIDTH ];
+ #1 -> update_async_rd;
+ end
+ end
+ end
+
+endgenerate
+
+endmodule
+
+`endif
+// --------------------------------------------------------
--- /dev/null
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * ---
+ *
+ * The internal logic cell technology mapper.
+ *
+ * This verilog library contains the mapping of internal cells (e.g. $not with
+ * variable bit width) to the internal logic cells (such as the single bit $_INV_
+ * gate). Usually this logic network is then mapped to the actual technology
+ * using e.g. the "abc" pass.
+ *
+ * Note that this library does not map $mem cells. They must be mapped to logic
+ * and $dff cells using the "memory_map" pass first. (Or map it to custom cells,
+ * which is of course highly recommended for larger memories.)
+ *
+ */
+
+// --------------------------------------------------------
+
+module \$not (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+output [Y_WIDTH-1:0] Y;
+
+wire [Y_WIDTH-1:0] A_buf;
+\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
+
+genvar i;
+generate
+ for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
+ \$_INV_ gate (
+ .A(A_buf[i]),
+ .Y(Y[i])
+ );
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$pos (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+output [Y_WIDTH-1:0] Y;
+
+genvar i;
+generate
+ for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
+ if (i < A_WIDTH) begin
+ assign Y[i] = A[i];
+ end else if (A_SIGNED) begin
+ assign Y[i] = A[A_WIDTH-1];
+ end else begin
+ assign Y[i] = 0;
+ end
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$neg (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+output [Y_WIDTH-1:0] Y;
+
+\$sub #(
+ .A_SIGNED(A_SIGNED),
+ .B_SIGNED(A_SIGNED),
+ .A_WIDTH(1),
+ .B_WIDTH(A_WIDTH),
+ .Y_WIDTH(Y_WIDTH)
+) sub (
+ .A(0),
+ .B(A),
+ .Y(Y)
+);
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$and (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+wire [Y_WIDTH-1:0] A_buf, B_buf;
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+genvar i;
+generate
+ for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
+ \$_AND_ gate (
+ .A(A_buf[i]),
+ .B(B_buf[i]),
+ .Y(Y[i])
+ );
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$or (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+wire [Y_WIDTH-1:0] A_buf, B_buf;
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+genvar i;
+generate
+ for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
+ \$_OR_ gate (
+ .A(A_buf[i]),
+ .B(B_buf[i]),
+ .Y(Y[i])
+ );
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$xor (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+wire [Y_WIDTH-1:0] A_buf, B_buf;
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+genvar i;
+generate
+ for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
+ \$_XOR_ gate (
+ .A(A_buf[i]),
+ .B(B_buf[i]),
+ .Y(Y[i])
+ );
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$xnor (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+wire [Y_WIDTH-1:0] A_buf, B_buf;
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+genvar i;
+generate
+ for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
+ wire tmp;
+ \$_XOR_ gate1 (
+ .A(A_buf[i]),
+ .B(B_buf[i]),
+ .Y(tmp)
+ );
+ \$_INV_ gate2 (
+ .A(tmp),
+ .Y(Y[i])
+ );
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$reduce_and (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+output Y;
+
+wire [A_WIDTH-1:0] buffer;
+
+genvar i;
+generate
+ for (i = 1; i < A_WIDTH; i = i + 1) begin:V
+ \$_AND_ gate (
+ .A(A[i]),
+ .B(buffer[i-1]),
+ .Y(buffer[i])
+ );
+ end
+endgenerate
+
+assign buffer[0] = A[0];
+assign Y = buffer[A_WIDTH-1];
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$reduce_or (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+output Y;
+
+wire [A_WIDTH-1:0] buffer;
+
+genvar i;
+generate
+ for (i = 1; i < A_WIDTH; i = i + 1) begin:V
+ \$_OR_ gate (
+ .A(A[i]),
+ .B(buffer[i-1]),
+ .Y(buffer[i])
+ );
+ end
+endgenerate
+
+assign buffer[0] = A[0];
+assign Y = buffer[A_WIDTH-1];
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$reduce_xor (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+output Y;
+
+wire [A_WIDTH-1:0] buffer;
+
+genvar i;
+generate
+ for (i = 1; i < A_WIDTH; i = i + 1) begin:V
+ \$_XOR_ gate (
+ .A(A[i]),
+ .B(buffer[i-1]),
+ .Y(buffer[i])
+ );
+ end
+endgenerate
+
+assign buffer[0] = A[0];
+assign Y = buffer[A_WIDTH-1];
+
+endmodule
+
+
+// --------------------------------------------------------
+
+module \$reduce_xnor (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+output Y;
+
+wire [A_WIDTH-1:0] buffer;
+
+genvar i;
+generate
+ for (i = 1; i < A_WIDTH; i = i + 1) begin:V
+ \$_XOR_ gate (
+ .A(A[i]),
+ .B(buffer[i-1]),
+ .Y(buffer[i])
+ );
+ end
+endgenerate
+
+assign buffer[0] = A[0];
+ \$_INV_ gate_inv (
+ .A(buffer[A_WIDTH-1]),
+ .Y(Y)
+);
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$reduce_bool (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+output Y;
+
+wire [A_WIDTH-1:0] buffer;
+
+genvar i;
+generate
+ for (i = 1; i < A_WIDTH; i = i + 1) begin:V
+ \$_OR_ gate (
+ .A(A[i]),
+ .B(buffer[i-1]),
+ .Y(buffer[i])
+ );
+ end
+endgenerate
+
+assign buffer[0] = A[0];
+assign Y = buffer[A_WIDTH-1];
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$shift (X, A, Y);
+
+parameter WIDTH = 1;
+parameter SHIFT = 0;
+
+input X;
+input [WIDTH-1:0] A;
+output [WIDTH-1:0] Y;
+
+genvar i;
+generate
+ for (i = 0; i < WIDTH; i = i + 1) begin:V
+ if (i+SHIFT < 0) begin
+ assign Y[i] = 0;
+ end else
+ if (i+SHIFT < WIDTH) begin
+ assign Y[i] = A[i+SHIFT];
+ end else begin
+ assign Y[i] = X;
+ end
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$shl (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+parameter WIDTH = Y_WIDTH;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+genvar i;
+generate
+ wire [WIDTH*(B_WIDTH+1)-1:0] chain;
+ \$pos #(
+ .A_SIGNED(A_SIGNED),
+ .A_WIDTH(A_WIDTH),
+ .Y_WIDTH(WIDTH)
+ ) expand (
+ .A(A),
+ .Y(chain[WIDTH-1:0])
+ );
+ assign Y = chain[WIDTH*(B_WIDTH+1)-1 : WIDTH*B_WIDTH];
+ for (i = 0; i < B_WIDTH; i = i + 1) begin:V
+ wire [WIDTH-1:0] unshifted, shifted, result;
+ assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
+ assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
+ \$shift #(
+ .WIDTH(WIDTH),
+ .SHIFT(0 - (2 ** (i > 30 ? 30 : i)))
+ ) sh (
+ .X(0),
+ .A(unshifted),
+ .Y(shifted)
+ );
+ \$mux #(
+ .WIDTH(WIDTH)
+ ) mux (
+ .A(unshifted),
+ .B(shifted),
+ .Y(result),
+ .S(B[i])
+ );
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$shr (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+parameter WIDTH = A_WIDTH > Y_WIDTH ? A_WIDTH : Y_WIDTH;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+genvar i;
+generate
+ wire [WIDTH*(B_WIDTH+1)-1:0] chain;
+ \$pos #(
+ .A_SIGNED(A_SIGNED),
+ .A_WIDTH(A_WIDTH),
+ .Y_WIDTH(WIDTH)
+ ) expand (
+ .A(A),
+ .Y(chain[WIDTH-1:0])
+ );
+ assign Y = chain[WIDTH*(B_WIDTH+1)-1 : WIDTH*B_WIDTH];
+ for (i = 0; i < B_WIDTH; i = i + 1) begin:V
+ wire [WIDTH-1:0] unshifted, shifted, result;
+ assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
+ assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
+ \$shift #(
+ .WIDTH(WIDTH),
+ .SHIFT(2 ** (i > 30 ? 30 : i))
+ ) sh (
+ .X(0),
+ .A(unshifted),
+ .Y(shifted)
+ );
+ \$mux #(
+ .WIDTH(WIDTH)
+ ) mux (
+ .A(unshifted),
+ .B(shifted),
+ .Y(result),
+ .S(B[i])
+ );
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$sshl (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+parameter WIDTH = Y_WIDTH;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+genvar i;
+generate
+ wire [WIDTH*(B_WIDTH+1)-1:0] chain;
+ \$pos #(
+ .A_SIGNED(A_SIGNED),
+ .A_WIDTH(A_WIDTH),
+ .Y_WIDTH(WIDTH)
+ ) expand (
+ .A(A),
+ .Y(chain[WIDTH-1:0])
+ );
+ assign Y = chain[WIDTH*(B_WIDTH+1)-1 : WIDTH*B_WIDTH];
+ for (i = 0; i < B_WIDTH; i = i + 1) begin:V
+ wire [WIDTH-1:0] unshifted, shifted, result;
+ assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
+ assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
+ \$shift #(
+ .WIDTH(WIDTH),
+ .SHIFT(0 - (2 ** (i > 30 ? 30 : i)))
+ ) sh (
+ .X(0),
+ .A(unshifted),
+ .Y(shifted)
+ );
+ \$mux #(
+ .WIDTH(WIDTH)
+ ) mux (
+ .A(unshifted),
+ .B(shifted),
+ .Y(result),
+ .S(B[i])
+ );
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$sshr (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+parameter WIDTH = A_WIDTH > Y_WIDTH ? A_WIDTH : Y_WIDTH;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+genvar i;
+generate
+ wire [WIDTH*(B_WIDTH+1)-1:0] chain;
+ \$pos #(
+ .A_SIGNED(A_SIGNED),
+ .A_WIDTH(A_WIDTH),
+ .Y_WIDTH(WIDTH)
+ ) expand (
+ .A(A),
+ .Y(chain[WIDTH-1:0])
+ );
+ for (i = 0; i < Y_WIDTH; i = i + 1) begin:Y
+ if (i < WIDTH) begin
+ assign Y[i] = chain[WIDTH*B_WIDTH + i];
+ end else
+ if (A_SIGNED) begin
+ assign Y[i] = chain[WIDTH*B_WIDTH + WIDTH-1];
+ end else begin
+ assign Y[i] = 0;
+ end
+ end
+ for (i = 0; i < B_WIDTH; i = i + 1) begin:V
+ wire [WIDTH-1:0] unshifted, shifted, result;
+ assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
+ assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
+ \$shift #(
+ .WIDTH(WIDTH),
+ .SHIFT(2 ** (i > 30 ? 30 : i))
+ ) sh (
+ .X(A_SIGNED && A[A_WIDTH-1]),
+ .A(unshifted),
+ .Y(shifted)
+ );
+ \$mux #(
+ .WIDTH(WIDTH)
+ ) mux (
+ .A(unshifted),
+ .B(shifted),
+ .Y(result),
+ .S(B[i])
+ );
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$fulladd (A, B, C, X, Y);
+
+// {X, Y} = A + B + C
+input A, B, C;
+output X, Y;
+
+// {t1, t2} = A + B
+wire t1, t2, t3;
+
+ \$_AND_ gate1 ( .A(A), .B(B), .Y(t1) );
+ \$_XOR_ gate2 ( .A(A), .B(B), .Y(t2) );
+ \$_AND_ gate3 ( .A(t2), .B(C), .Y(t3) );
+ \$_XOR_ gate4 ( .A(t2), .B(C), .Y(Y) );
+ \$_OR_ gate5 ( .A(t1), .B(t3), .Y(X) );
+
+endmodule
+
+
+// --------------------------------------------------------
+
+module \$alu (A, B, Cin, Y, Cout, Csign);
+
+parameter WIDTH = 1;
+
+input [WIDTH-1:0] A, B;
+input Cin;
+
+output [WIDTH-1:0] Y;
+output Cout, Csign;
+
+wire [WIDTH:0] carry;
+assign carry[0] = Cin;
+assign Cout = carry[WIDTH];
+assign Csign = carry[WIDTH-1];
+
+genvar i;
+generate
+ for (i = 0; i < WIDTH; i = i + 1) begin:V
+ \$fulladd adder (
+ .A(A[i]),
+ .B(B[i]),
+ .C(carry[i]),
+ .X(carry[i+1]),
+ .Y(Y[i])
+ );
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$lt (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output Y;
+
+wire carry, carry_sign;
+wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+\$alu #(
+ .WIDTH(WIDTH)
+) alu (
+ .A(A_buf),
+ .B(~B_buf),
+ .Cin(1'b1),
+ .Y(Y_buf),
+ .Cout(carry),
+ .Csign(carry_sign),
+);
+
+// ALU flags
+wire cf, of, zf, sf;
+assign cf = !carry;
+assign of = carry ^ carry_sign;
+assign zf = ~|Y_buf;
+assign sf = Y_buf[WIDTH-1];
+
+generate
+ if (A_SIGNED && B_SIGNED) begin
+ assign Y = of != sf;
+ end else begin
+ assign Y = cf;
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$le (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output Y;
+
+wire carry, carry_sign;
+wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+\$alu #(
+ .WIDTH(WIDTH)
+) alu (
+ .A(A_buf),
+ .B(~B_buf),
+ .Cin(1'b1),
+ .Y(Y_buf),
+ .Cout(carry),
+ .Csign(carry_sign),
+);
+
+// ALU flags
+wire cf, of, zf, sf;
+assign cf = !carry;
+assign of = carry ^ carry_sign;
+assign zf = ~|Y_buf;
+assign sf = Y_buf[WIDTH-1];
+
+generate
+ if (A_SIGNED && B_SIGNED) begin
+ assign Y = zf || (of != sf);
+ end else begin
+ assign Y = zf || cf;
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$eq (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output Y;
+
+wire carry, carry_sign;
+wire [WIDTH-1:0] A_buf, B_buf;
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+assign Y = ~|(A_buf ^ B_buf);
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$ne (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output Y;
+
+wire carry, carry_sign;
+wire [WIDTH-1:0] A_buf, B_buf;
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+assign Y = |(A_buf ^ B_buf);
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$ge (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output Y;
+
+\$le #(
+ .A_SIGNED(B_SIGNED),
+ .B_SIGNED(A_SIGNED),
+ .A_WIDTH(B_WIDTH),
+ .B_WIDTH(A_WIDTH)
+) ge_via_le (
+ .A(B),
+ .B(A),
+ .Y(Y)
+);
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$gt (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output Y;
+
+\$lt #(
+ .A_SIGNED(B_SIGNED),
+ .B_SIGNED(A_SIGNED),
+ .A_WIDTH(B_WIDTH),
+ .B_WIDTH(A_WIDTH)
+) gt_via_lt (
+ .A(B),
+ .B(A),
+ .Y(Y)
+);
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$add (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+wire [Y_WIDTH-1:0] A_buf, B_buf;
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+\$alu #(
+ .WIDTH(Y_WIDTH)
+) alu (
+ .A(A_buf),
+ .B(B_buf),
+ .Cin(1'b0),
+ .Y(Y)
+);
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$sub (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+wire [Y_WIDTH-1:0] A_buf, B_buf;
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+\$alu #(
+ .WIDTH(Y_WIDTH)
+) alu (
+ .A(A_buf),
+ .B(~B_buf),
+ .Cin(1'b1),
+ .Y(Y)
+);
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$arraymul (A, B, Y);
+
+parameter WIDTH = 8;
+input [WIDTH-1:0] A, B;
+output [WIDTH-1:0] Y;
+
+wire [WIDTH*WIDTH-1:0] partials;
+
+genvar i;
+assign partials[WIDTH-1 : 0] = A[0] ? B : 0;
+generate for (i = 1; i < WIDTH; i = i+1) begin:gen
+ assign partials[WIDTH*(i+1)-1 : WIDTH*i] = (A[i] ? B << i : 0) + partials[WIDTH*i-1 : WIDTH*(i-1)];
+end endgenerate
+
+assign Y = partials[WIDTH*WIDTH-1 : WIDTH*(WIDTH-1)];
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$mul (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+wire [Y_WIDTH-1:0] A_buf, B_buf;
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+\$arraymul #(
+ .WIDTH(Y_WIDTH)
+) arraymul (
+ .A(A_buf),
+ .B(B_buf),
+ .Y(Y)
+);
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$div_mod_u (A, B, Y, R);
+
+parameter WIDTH = 1;
+
+input [WIDTH-1:0] A, B;
+output [WIDTH-1:0] Y, R;
+
+wire [WIDTH*WIDTH-1:0] chaindata;
+assign R = chaindata[WIDTH*WIDTH-1:WIDTH*(WIDTH-1)];
+
+genvar i;
+generate begin
+ for (i = 0; i < WIDTH; i=i+1) begin:stage
+ wire [WIDTH-1:0] stage_in;
+
+ if (i == 0) begin:cp
+ assign stage_in = A;
+ end else begin:cp
+ assign stage_in = chaindata[i*WIDTH-1:(i-1)*WIDTH];
+ end
+
+ assign Y[WIDTH-(i+1)] = stage_in >= {B, {WIDTH-(i+1){1'b0}}};
+ assign chaindata[(i+1)*WIDTH-1:i*WIDTH] = Y[WIDTH-(i+1)] ? stage_in - {B, {WIDTH-(i+1){1'b0}}} : stage_in;
+ end
+end endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$div_mod (A, B, Y, R);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+localparam WIDTH =
+ A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH :
+ B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y, R;
+
+wire [WIDTH-1:0] A_buf, B_buf;
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+wire [WIDTH-1:0] A_buf_u, B_buf_u, Y_u, R_u;
+assign A_buf_u = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -A_buf : A_buf;
+assign B_buf_u = A_SIGNED && B_SIGNED && B_buf[WIDTH-1] ? -B_buf : B_buf;
+
+\$div_mod_u #(
+ .WIDTH(WIDTH)
+) div_mod_u (
+ .A(A_buf_u),
+ .B(B_buf_u),
+ .Y(Y_u),
+ .R(R_u),
+);
+
+assign Y = A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? -Y_u : Y_u;
+assign R = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -R_u : R_u;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$div (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+wire [Y_WIDTH-1:0] Y_buf;
+wire [Y_WIDTH-1:0] Y_div_zero;
+
+\$div_mod #(
+ .A_SIGNED(A_SIGNED),
+ .B_SIGNED(B_SIGNED),
+ .A_WIDTH(A_WIDTH),
+ .B_WIDTH(B_WIDTH),
+ .Y_WIDTH(Y_WIDTH)
+) div_mod (
+ .A(A),
+ .B(B),
+ .Y(Y_buf)
+);
+
+// explicitly force the division-by-zero behavior found in other synthesis tools
+generate begin
+ if (A_SIGNED && B_SIGNED) begin:make_div_zero
+ assign Y_div_zero = A[A_WIDTH-1] ? {Y_WIDTH{1'b0}} | 1'b1 : {Y_WIDTH{1'b1}};
+ end else begin:make_div_zero
+ assign Y_div_zero = {A_WIDTH{1'b1}};
+ end
+end endgenerate
+
+assign Y = B ? Y_buf : Y_div_zero;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$mod (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+wire [Y_WIDTH-1:0] Y_buf;
+wire [Y_WIDTH-1:0] Y_div_zero;
+
+\$div_mod #(
+ .A_SIGNED(A_SIGNED),
+ .B_SIGNED(B_SIGNED),
+ .A_WIDTH(A_WIDTH),
+ .B_WIDTH(B_WIDTH),
+ .Y_WIDTH(Y_WIDTH)
+) div_mod (
+ .A(A),
+ .B(B),
+ .R(Y_buf)
+);
+
+// explicitly force the division-by-zero behavior found in other synthesis tools
+localparam div_zero_copy_a_bits = A_WIDTH < B_WIDTH ? A_WIDTH : B_WIDTH;
+generate begin
+ if (A_SIGNED && B_SIGNED) begin:make_div_zero
+ assign Y_div_zero = $signed(A[div_zero_copy_a_bits-1:0]);
+ end else begin:make_div_zero
+ assign Y_div_zero = $unsigned(A[div_zero_copy_a_bits-1:0]);
+ end
+end endgenerate
+
+assign Y = B ? Y_buf : Y_div_zero;
+
+endmodule
+
+/****
+// --------------------------------------------------------
+
+module \$pow (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+wire signed [A_WIDTH:0] buffer_a = A_SIGNED ? $signed(A) : A;
+wire signed [B_WIDTH:0] buffer_b = B_SIGNED ? $signed(B) : B;
+
+assign Y = buffer_a ** buffer_b;
+
+endmodule
+
+// --------------------------------------------------------
+****/
+
+module \$logic_not (A, Y);
+
+parameter A_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+output [Y_WIDTH-1:0] Y;
+
+wire A_buf;
+
+\$reduce_bool #(
+ .A_SIGNED(A_SIGNED),
+ .A_WIDTH(A_WIDTH)
+) A_logic (
+ .A(A),
+ .Y(A_buf)
+);
+
+ \$_INV_ gate (
+ .A(A_buf),
+ .Y(Y[0])
+);
+
+generate
+ if (Y_WIDTH > 1) begin:V
+ assign Y[Y_WIDTH-1:1] = 0;
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$logic_and (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+wire A_buf, B_buf;
+
+\$reduce_bool #(
+ .A_SIGNED(A_SIGNED),
+ .A_WIDTH(A_WIDTH)
+) A_logic (
+ .A(A),
+ .Y(A_buf)
+);
+
+\$reduce_bool #(
+ .A_SIGNED(B_SIGNED),
+ .A_WIDTH(B_WIDTH)
+) B_logic (
+ .A(B),
+ .Y(B_buf)
+);
+
+ \$_AND_ gate (
+ .A(A_buf),
+ .B(B_buf),
+ .Y(Y[0])
+);
+
+generate
+ if (Y_WIDTH > 1) begin:V
+ assign Y[Y_WIDTH-1:1] = 0;
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$logic_or (A, B, Y);
+
+parameter A_SIGNED = 0;
+parameter B_SIGNED = 0;
+parameter A_WIDTH = 1;
+parameter B_WIDTH = 1;
+parameter Y_WIDTH = 1;
+
+input [A_WIDTH-1:0] A;
+input [B_WIDTH-1:0] B;
+output [Y_WIDTH-1:0] Y;
+
+wire A_buf, B_buf;
+
+\$reduce_bool #(
+ .A_SIGNED(A_SIGNED),
+ .A_WIDTH(A_WIDTH)
+) A_logic (
+ .A(A),
+ .Y(A_buf)
+);
+
+\$reduce_bool #(
+ .A_SIGNED(B_SIGNED),
+ .A_WIDTH(B_WIDTH)
+) B_logic (
+ .A(B),
+ .Y(B_buf)
+);
+
+ \$_OR_ gate (
+ .A(A_buf),
+ .B(B_buf),
+ .Y(Y[0])
+);
+
+generate
+ if (Y_WIDTH > 1) begin:V
+ assign Y[Y_WIDTH-1:1] = 0;
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$mux (A, B, S, Y);
+
+parameter WIDTH = 1;
+
+input [WIDTH-1:0] A, B;
+input S;
+output [WIDTH-1:0] Y;
+
+genvar i;
+generate
+ for (i = 0; i < WIDTH; i = i + 1) begin:V
+ \$_MUX_ gate (
+ .A(A[i]),
+ .B(B[i]),
+ .S(S),
+ .Y(Y[i])
+ );
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$pmux (A, B, S, Y);
+
+parameter WIDTH = 1;
+parameter S_WIDTH = 1;
+
+input [WIDTH-1:0] A;
+input [WIDTH*S_WIDTH-1:0] B;
+input [S_WIDTH-1:0] S;
+output [WIDTH-1:0] Y;
+
+wire [WIDTH-1:0] Y_B;
+
+genvar i, j;
+generate
+ wire [WIDTH*S_WIDTH-1:0] B_AND_S;
+ for (i = 0; i < S_WIDTH; i = i + 1) begin:B_AND
+ assign B_AND_S[WIDTH*(i+1)-1:WIDTH*i] = B[WIDTH*(i+1)-1:WIDTH*i] & {WIDTH{S[i]}};
+ end:B_AND
+ for (i = 0; i < WIDTH; i = i + 1) begin:B_OR
+ wire [S_WIDTH-1:0] B_AND_BITS;
+ for (j = 0; j < S_WIDTH; j = j + 1) begin:B_AND_BITS_COLLECT
+ assign B_AND_BITS[j] = B_AND_S[WIDTH*j+i];
+ end:B_AND_BITS_COLLECT
+ assign Y_B[i] = |B_AND_BITS;
+ end:B_OR
+endgenerate
+
+assign Y = |S ? Y_B : A;
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$safe_pmux (A, B, S, Y);
+
+parameter WIDTH = 1;
+parameter S_WIDTH = 1;
+
+input [WIDTH-1:0] A;
+input [WIDTH*S_WIDTH-1:0] B;
+input [S_WIDTH-1:0] S;
+output [WIDTH-1:0] Y;
+
+wire [S_WIDTH-1:0] status_found_first;
+wire [S_WIDTH-1:0] status_found_second;
+
+genvar i;
+generate
+ for (i = 0; i < S_WIDTH; i = i + 1) begin:GEN1
+ wire pre_first;
+ if (i > 0) begin:GEN2
+ assign pre_first = status_found_first[i-1];
+ end:GEN2 else begin:GEN3
+ assign pre_first = 0;
+ end:GEN3
+ assign status_found_first[i] = pre_first | S[i];
+ assign status_found_second[i] = pre_first & S[i];
+ end:GEN1
+endgenerate
+
+\$pmux #(
+ .WIDTH(WIDTH),
+ .S_WIDTH(S_WIDTH)
+) pmux_cell (
+ .A(A),
+ .B(B),
+ .S(S & {S_WIDTH{~|status_found_second}}),
+ .Y(Y)
+);
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$dff (CLK, D, Q);
+
+parameter WIDTH = 1;
+parameter CLK_POLARITY = 1'b1;
+
+input CLK;
+input [WIDTH-1:0] D;
+output [WIDTH-1:0] Q;
+
+genvar i;
+generate
+ if (CLK_POLARITY == 0)
+ for (i = 0; i < WIDTH; i = i + 1) begin:V
+ \$_DFF_N_ ff (
+ .D(D[i]),
+ .Q(Q[i]),
+ .C(CLK)
+ );
+ end
+ if (CLK_POLARITY != 0)
+ for (i = 0; i < WIDTH; i = i + 1) begin:V
+ \$_DFF_P_ ff (
+ .D(D[i]),
+ .Q(Q[i]),
+ .C(CLK)
+ );
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
+module \$adff (CLK, ARST, D, Q);
+
+parameter WIDTH = 1;
+parameter CLK_POLARITY = 1'b1;
+parameter ARST_POLARITY = 1'b1;
+parameter ARST_VALUE = 0;
+
+input CLK, ARST;
+input [WIDTH-1:0] D;
+output [WIDTH-1:0] Q;
+
+genvar i;
+generate
+ for (i = 0; i < WIDTH; i = i + 1) begin:V
+ if (CLK_POLARITY == 0) begin:N
+ if (ARST_POLARITY == 0) begin:NN
+ if (ARST_VALUE[i] == 0) begin:NN0
+ \$_DFF_NN0_ ff (
+ .D(D[i]),
+ .Q(Q[i]),
+ .C(CLK),
+ .R(ARST)
+ );
+ end else begin:NN1
+ \$_DFF_NN1_ ff (
+ .D(D[i]),
+ .Q(Q[i]),
+ .C(CLK),
+ .R(ARST)
+ );
+ end
+ end else begin:NP
+ if (ARST_VALUE[i] == 0) begin:NP0
+ \$_DFF_NP0_ ff (
+ .D(D[i]),
+ .Q(Q[i]),
+ .C(CLK),
+ .R(ARST)
+ );
+ end else begin:NP1
+ \$_DFF_NP1_ ff (
+ .D(D[i]),
+ .Q(Q[i]),
+ .C(CLK),
+ .R(ARST)
+ );
+ end
+ end
+ end else begin:P
+ if (ARST_POLARITY == 0) begin:PN
+ if (ARST_VALUE[i] == 0) begin:PN0
+ \$_DFF_PN0_ ff (
+ .D(D[i]),
+ .Q(Q[i]),
+ .C(CLK),
+ .R(ARST)
+ );
+ end else begin:PN1
+ \$_DFF_PN1_ ff (
+ .D(D[i]),
+ .Q(Q[i]),
+ .C(CLK),
+ .R(ARST)
+ );
+ end
+ end else begin:PP
+ if (ARST_VALUE[i] == 0) begin:PP0
+ \$_DFF_PP0_ ff (
+ .D(D[i]),
+ .Q(Q[i]),
+ .C(CLK),
+ .R(ARST)
+ );
+ end else begin:PP1
+ \$_DFF_PP1_ ff (
+ .D(D[i]),
+ .Q(Q[i]),
+ .C(CLK),
+ .R(ARST)
+ );
+ end
+ end
+ end
+ end
+endgenerate
+
+endmodule
+
+// --------------------------------------------------------
+
--- /dev/null
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * ---
+ *
+ * The internal logic cell simulation library.
+ *
+ * This verilog library contains simple simulation models for the internal
+ * logic cells ($_INV_ , $_AND_ , ...) that are generated by the default technology
+ * mapper (see "stdcells.v" in this directory) and expected by the "abc" pass.
+ *
+ */
+
+module \$_INV_ (A, Y);
+input A;
+output Y;
+assign Y = ~A;
+endmodule
+
+module \$_AND_ (A, B, Y);
+input A, B;
+output Y;
+assign Y = A & B;
+endmodule
+
+module \$_OR_ (A, B, Y);
+input A, B;
+output Y;
+assign Y = A | B;
+endmodule
+
+module \$_XOR_ (A, B, Y);
+input A, B;
+output Y;
+assign Y = A ^ B;
+endmodule
+
+module \$_MUX_ (A, B, S, Y);
+input A, B, S;
+output reg Y;
+always @* begin
+ if (S)
+ Y = B;
+ else
+ Y = A;
+end
+endmodule
+
+module \$_DFF_N_ (D, Q, C);
+input D, C;
+output reg Q;
+always @(negedge C) begin
+ Q <= D;
+end
+endmodule
+
+module \$_DFF_P_ (D, Q, C);
+input D, C;
+output reg Q;
+always @(posedge C) begin
+ Q <= D;
+end
+endmodule
+
+module \$_DFF_NN0_ (D, Q, C, R);
+input D, C, R;
+output reg Q;
+always @(negedge C or negedge R) begin
+ if (R == 0)
+ Q <= 0;
+ else
+ Q <= D;
+end
+endmodule
+
+module \$_DFF_NN1_ (D, Q, C, R);
+input D, C, R;
+output reg Q;
+always @(negedge C or negedge R) begin
+ if (R == 0)
+ Q <= 1;
+ else
+ Q <= D;
+end
+endmodule
+
+module \$_DFF_NP0_ (D, Q, C, R);
+input D, C, R;
+output reg Q;
+always @(negedge C or posedge R) begin
+ if (R == 1)
+ Q <= 0;
+ else
+ Q <= D;
+end
+endmodule
+
+module \$_DFF_NP1_ (D, Q, C, R);
+input D, C, R;
+output reg Q;
+always @(negedge C or posedge R) begin
+ if (R == 1)
+ Q <= 1;
+ else
+ Q <= D;
+end
+endmodule
+
+module \$_DFF_PN0_ (D, Q, C, R);
+input D, C, R;
+output reg Q;
+always @(posedge C or negedge R) begin
+ if (R == 0)
+ Q <= 0;
+ else
+ Q <= D;
+end
+endmodule
+
+module \$_DFF_PN1_ (D, Q, C, R);
+input D, C, R;
+output reg Q;
+always @(posedge C or negedge R) begin
+ if (R == 0)
+ Q <= 1;
+ else
+ Q <= D;
+end
+endmodule
+
+module \$_DFF_PP0_ (D, Q, C, R);
+input D, C, R;
+output reg Q;
+always @(posedge C or posedge R) begin
+ if (R == 1)
+ Q <= 0;
+ else
+ Q <= D;
+end
+endmodule
+
+module \$_DFF_PP1_ (D, Q, C, R);
+input D, C, R;
+output reg Q;
+always @(posedge C or posedge R) begin
+ if (R == 1)
+ Q <= 1;
+ else
+ Q <= D;
+end
+endmodule
+
+++ /dev/null
-/*
- * yosys -- Yosys Open SYnthesis Suite
- *
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
- *
- * Permission to use, copy, modify, and/or distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- *
- * ---
- *
- * The Simulation Library.
- *
- * This verilog library contains simple simulation models for the internal
- * cells ($not, ...) generated by the frontends and used in most passes.
- *
- * This library can be used to verify the internal netlists as generated
- * by the different frontends and passes.
- *
- * Note that memory can only be simulated when all $memrd and $memwr cells
- * have been merged to stand-alone $mem cells (this is what the "memory_collect"
- * pass is doing).
- *
- */
-
-`define INPUT_A \
-input [A_WIDTH-1:0] A; \
-generate if (A_SIGNED) begin:A_BUF wire signed [A_WIDTH-1:0] val = A; end else begin:A_BUF wire [A_WIDTH-1:0] val = A; end endgenerate
-
-`define INPUT_B \
-input [B_WIDTH-1:0] B; \
-generate if (B_SIGNED) begin:B_BUF wire signed [B_WIDTH-1:0] val = B; end else begin:B_BUF wire [B_WIDTH-1:0] val = B; end endgenerate
-
-// --------------------------------------------------------
-
-module \$not (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-output [Y_WIDTH-1:0] Y;
-
-assign Y = ~A_BUF.val;
-
-endmodule
-
-
-// --------------------------------------------------------
-
-module \$pos (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-output [Y_WIDTH-1:0] Y;
-
-assign Y = +A_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$neg (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-output [Y_WIDTH-1:0] Y;
-
-assign Y = -A_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$and (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val & B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$or (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val | B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$xor (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val ^ B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$xnor (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val ~^ B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$reduce_and (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-output Y;
-
-assign Y = &A_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$reduce_or (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-output Y;
-
-assign Y = |A_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$reduce_xor (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-output Y;
-
-assign Y = ^A_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$reduce_xnor (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-output Y;
-
-assign Y = ~^A_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$reduce_bool (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-output Y;
-
-assign Y = A_BUF.val != 0;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$shl (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val << B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$shr (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val >> B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$sshl (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val <<< B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$sshr (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val >>> B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$lt (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val < B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$le (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val <= B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$eq (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val == B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$ne (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val != B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$ge (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val >= B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$gt (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val > B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$add (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val + B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$sub (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val - B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$mul (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val * B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$div (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val / B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$mod (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val % B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$pow (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val ** B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$logic_not (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-output [Y_WIDTH-1:0] Y;
-
-assign Y = !A_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$logic_and (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val && B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$logic_or (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 0;
-parameter B_WIDTH = 0;
-parameter Y_WIDTH = 0;
-
-`INPUT_A
-`INPUT_B
-output [Y_WIDTH-1:0] Y;
-
-assign Y = A_BUF.val || B_BUF.val;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$mux (A, B, S, Y);
-
-parameter WIDTH = 0;
-
-input [WIDTH-1:0] A, B;
-input S;
-output reg [WIDTH-1:0] Y;
-
-always @* begin
- if (S)
- Y = B;
- else
- Y = A;
-end
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$pmux (A, B, S, Y);
-
-parameter WIDTH = 0;
-parameter S_WIDTH = 0;
-
-input [WIDTH-1:0] A;
-input [WIDTH*S_WIDTH-1:0] B;
-input [S_WIDTH-1:0] S;
-output reg [WIDTH-1:0] Y;
-
-integer i;
-
-always @* begin
- Y = A;
- for (i = 0; i < S_WIDTH; i = i+1)
- if (S[i])
- Y = B >> (WIDTH*i);
-end
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$safe_pmux (A, B, S, Y);
-
-parameter WIDTH = 0;
-parameter S_WIDTH = 0;
-
-input [WIDTH-1:0] A;
-input [WIDTH*S_WIDTH-1:0] B;
-input [S_WIDTH-1:0] S;
-output reg [WIDTH-1:0] Y;
-
-integer i, j;
-
-always @* begin
- j = 0;
- for (i = 0; i < S_WIDTH; i = i+1)
- if (S[i]) begin
- Y = B >> (WIDTH*i);
- j = j + 1;
- end
- if (j != 1)
- Y = A;
-end
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$sr (S, R, Q);
-
-parameter WIDTH = 0;
-
-input [WIDTH-1:0] S, R;
-output reg [WIDTH-1:0] Q;
-
-integer i;
-always @(S, R)
- for (i = 0; i < WIDTH; i = i+1) begin
- if (R[i])
- Q[i] <= 0;
- else if (S[i])
- Q[i] <= 1;
- end
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$lut (I, O);
-
-parameter WIDTH = 0;
-parameter LUT = 0;
-
-input [WIDTH-1:0] I;
-output reg O;
-
-wire lut0_out, lut1_out;
-
-generate
- if (WIDTH <= 1) begin:simple
- assign {lut1_out, lut0_out} = LUT;
- end else begin:complex
- \$lut #( .WIDTH(WIDTH-1), .LUT(LUT ) ) lut0 ( .I(I[WIDTH-2:0]), .O(lut0_out) );
- \$lut #( .WIDTH(WIDTH-1), .LUT(LUT >> (2**(WIDTH-1))) ) lut1 ( .I(I[WIDTH-2:0]), .O(lut1_out) );
- end
-endgenerate
-
-always @*
- casez ({I[WIDTH-1], lut0_out, lut1_out})
- 3'b?11: O = 1'b1;
- 3'b?00: O = 1'b0;
- 3'b0??: O = lut0_out;
- 3'b1??: O = lut1_out;
- default: O = 1'bx;
- endcase
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$dff (CLK, D, Q);
-
-parameter WIDTH = 0;
-parameter CLK_POLARITY = 1'b1;
-
-input CLK;
-input [WIDTH-1:0] D;
-output reg [WIDTH-1:0] Q;
-wire pos_clk = CLK == CLK_POLARITY;
-
-always @(posedge pos_clk) begin
- Q <= D;
-end
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$adff (CLK, ARST, D, Q);
-
-parameter WIDTH = 0;
-parameter CLK_POLARITY = 1'b1;
-parameter ARST_POLARITY = 1'b1;
-parameter ARST_VALUE = 0;
-
-input CLK, ARST;
-input [WIDTH-1:0] D;
-output reg [WIDTH-1:0] Q;
-wire pos_clk = CLK == CLK_POLARITY;
-wire pos_arst = ARST == ARST_POLARITY;
-
-always @(posedge pos_clk, posedge pos_arst) begin
- if (pos_arst)
- Q <= ARST_VALUE;
- else
- Q <= D;
-end
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$fsm (CLK, ARST, CTRL_IN, CTRL_OUT);
-
-parameter NAME = "";
-
-parameter CLK_POLARITY = 1'b1;
-parameter ARST_POLARITY = 1'b1;
-
-parameter CTRL_IN_WIDTH = 1;
-parameter CTRL_OUT_WIDTH = 1;
-
-parameter STATE_BITS = 1;
-parameter STATE_NUM = 1;
-parameter STATE_NUM_LOG2 = 1;
-parameter STATE_RST = 0;
-parameter STATE_TABLE = 1'b0;
-
-parameter TRANS_NUM = 1;
-parameter TRANS_TABLE = 4'b0x0x;
-
-input CLK, ARST;
-input [CTRL_IN_WIDTH-1:0] CTRL_IN;
-output reg [CTRL_OUT_WIDTH-1:0] CTRL_OUT;
-
-wire pos_clk = CLK == CLK_POLARITY;
-wire pos_arst = ARST == ARST_POLARITY;
-
-reg [STATE_BITS-1:0] state;
-reg [STATE_BITS-1:0] state_tmp;
-reg [STATE_BITS-1:0] next_state;
-
-reg [STATE_BITS-1:0] tr_state_in;
-reg [STATE_BITS-1:0] tr_state_out;
-reg [CTRL_IN_WIDTH-1:0] tr_ctrl_in;
-reg [CTRL_OUT_WIDTH-1:0] tr_ctrl_out;
-
-integer i;
-
-task tr_fetch;
- input [31:0] tr_num;
- reg [31:0] tr_pos;
- reg [STATE_NUM_LOG2-1:0] state_num;
- begin
- tr_pos = (2*STATE_NUM_LOG2+CTRL_IN_WIDTH+CTRL_OUT_WIDTH)*tr_num;
- tr_ctrl_out = TRANS_TABLE >> tr_pos;
- tr_pos = tr_pos + CTRL_OUT_WIDTH;
- state_num = TRANS_TABLE >> tr_pos;
- tr_state_out = STATE_TABLE >> (STATE_BITS*state_num);
- tr_pos = tr_pos + STATE_NUM_LOG2;
- tr_ctrl_in = TRANS_TABLE >> tr_pos;
- tr_pos = tr_pos + CTRL_IN_WIDTH;
- state_num = TRANS_TABLE >> tr_pos;
- tr_state_in = STATE_TABLE >> (STATE_BITS*state_num);
- tr_pos = tr_pos + STATE_NUM_LOG2;
- end
-endtask
-
-always @(posedge pos_clk, posedge pos_arst) begin
- if (pos_arst)
- state_tmp = STATE_TABLE[STATE_BITS*(STATE_RST+1)-1:STATE_BITS*STATE_RST];
- else
- state_tmp = next_state;
- for (i = 0; i < STATE_BITS; i = i+1)
- if (state_tmp[i] === 1'bz)
- state_tmp[i] = 0;
- state <= state_tmp;
-end
-
-always @(state, CTRL_IN) begin
- next_state <= STATE_TABLE[STATE_BITS*(STATE_RST+1)-1:STATE_BITS*STATE_RST];
- CTRL_OUT <= 'bx;
- // $display("---");
- // $display("Q: %b %b", state, CTRL_IN);
- for (i = 0; i < TRANS_NUM; i = i+1) begin
- tr_fetch(i);
- // $display("T: %b %b -> %b %b [%d]", tr_state_in, tr_ctrl_in, tr_state_out, tr_ctrl_out, i);
- casez ({state, CTRL_IN})
- {tr_state_in, tr_ctrl_in}: begin
- // $display("-> %b %b <- MATCH", state, CTRL_IN);
- {next_state, CTRL_OUT} <= {tr_state_out, tr_ctrl_out};
- end
- endcase
- end
-end
-
-endmodule
-
-// --------------------------------------------------------
-`ifndef SIMLIB_NOMEM
-
-module \$memrd (CLK, ADDR, DATA);
-
-parameter MEMID = "";
-parameter ABITS = 8;
-parameter WIDTH = 8;
-
-parameter CLK_ENABLE = 0;
-parameter CLK_POLARITY = 0;
-
-input CLK;
-input [ABITS-1:0] ADDR;
-output [WIDTH-1:0] DATA;
-
-initial begin
- $display("ERROR: Found non-simulatable instance of $memrd!");
- $finish;
-end
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$memwr (CLK, EN, ADDR, DATA);
-
-parameter MEMID = "";
-parameter ABITS = 8;
-parameter WIDTH = 8;
-
-parameter CLK_ENABLE = 0;
-parameter CLK_POLARITY = 0;
-
-input CLK, EN;
-input [ABITS-1:0] ADDR;
-input [WIDTH-1:0] DATA;
-
-initial begin
- $display("ERROR: Found non-simulatable instance of $memwr!");
- $finish;
-end
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$mem (RD_CLK, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA);
-
-parameter MEMID = "";
-parameter SIZE = 256;
-parameter ABITS = 8;
-parameter WIDTH = 8;
-
-parameter RD_PORTS = 1;
-parameter RD_CLK_ENABLE = 1'b1;
-parameter RD_CLK_POLARITY = 1'b1;
-
-parameter WR_PORTS = 1;
-parameter WR_CLK_ENABLE = 1'b1;
-parameter WR_CLK_POLARITY = 1'b1;
-
-input [RD_PORTS-1:0] RD_CLK;
-input [RD_PORTS*ABITS-1:0] RD_ADDR;
-output reg [RD_PORTS*WIDTH-1:0] RD_DATA;
-
-input [WR_PORTS-1:0] WR_CLK, WR_EN;
-input [WR_PORTS*ABITS-1:0] WR_ADDR;
-input [WR_PORTS*WIDTH-1:0] WR_DATA;
-
-reg [WIDTH-1:0] data [SIZE-1:0];
-event update_async_rd;
-
-genvar i;
-generate
-
- for (i = 0; i < RD_PORTS; i = i+1) begin:rd
- if (RD_CLK_ENABLE[i] == 0) begin:rd_noclk
- always @(RD_ADDR or update_async_rd)
- RD_DATA[ (i+1)*WIDTH-1 : i*WIDTH ] <= data[ RD_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ];
- end else
- if (RD_CLK_POLARITY[i] == 1) begin:rd_posclk
- always @(posedge RD_CLK[i])
- RD_DATA[ (i+1)*WIDTH-1 : i*WIDTH ] <= data[ RD_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ];
- end else begin:rd_negclk
- always @(negedge RD_CLK[i])
- RD_DATA[ (i+1)*WIDTH-1 : i*WIDTH ] <= data[ RD_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ];
- end
- end
-
- for (i = 0; i < WR_PORTS; i = i+1) begin:wr
- if (WR_CLK_ENABLE[i] == 0) begin:wr_noclk
- always @(WR_ADDR or WR_DATA or WR_EN) begin
- if (WR_EN[i]) begin
- data[ WR_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ] <= WR_DATA[ (i+1)*WIDTH-1 : i*WIDTH ];
- #1 -> update_async_rd;
- end
- end
- end else
- if (RD_CLK_POLARITY[i] == 1) begin:rd_posclk
- always @(posedge WR_CLK[i])
- if (WR_EN[i]) begin
- data[ WR_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ] <= WR_DATA[ (i+1)*WIDTH-1 : i*WIDTH ];
- #1 -> update_async_rd;
- end
- end else begin:rd_negclk
- always @(negedge WR_CLK[i])
- if (WR_EN[i]) begin
- data[ WR_ADDR[ (i+1)*ABITS-1 : i*ABITS ] ] <= WR_DATA[ (i+1)*WIDTH-1 : i*WIDTH ];
- #1 -> update_async_rd;
- end
- end
- end
-
-endgenerate
-
-endmodule
-
-`endif
-// --------------------------------------------------------
+++ /dev/null
-/*
- * yosys -- Yosys Open SYnthesis Suite
- *
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
- *
- * Permission to use, copy, modify, and/or distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- *
- * ---
- *
- * The internal logic cell technology mapper.
- *
- * This verilog library contains the mapping of internal cells (e.g. $not with
- * variable bit width) to the internal logic cells (such as the single bit $_INV_
- * gate). Usually this logic network is then mapped to the actual technology
- * using e.g. the "abc" pass.
- *
- * Note that this library does not map $mem cells. They must be mapped to logic
- * and $dff cells using the "memory_map" pass first. (Or map it to custom cells,
- * which is of course highly recommended for larger memories.)
- *
- */
-
-// --------------------------------------------------------
-
-module \$not (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-output [Y_WIDTH-1:0] Y;
-
-wire [Y_WIDTH-1:0] A_buf;
-\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
-
-genvar i;
-generate
- for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
- \$_INV_ gate (
- .A(A_buf[i]),
- .Y(Y[i])
- );
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$pos (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-output [Y_WIDTH-1:0] Y;
-
-genvar i;
-generate
- for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
- if (i < A_WIDTH) begin
- assign Y[i] = A[i];
- end else if (A_SIGNED) begin
- assign Y[i] = A[A_WIDTH-1];
- end else begin
- assign Y[i] = 0;
- end
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$neg (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-output [Y_WIDTH-1:0] Y;
-
-\$sub #(
- .A_SIGNED(A_SIGNED),
- .B_SIGNED(A_SIGNED),
- .A_WIDTH(1),
- .B_WIDTH(A_WIDTH),
- .Y_WIDTH(Y_WIDTH)
-) sub (
- .A(0),
- .B(A),
- .Y(Y)
-);
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$and (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-wire [Y_WIDTH-1:0] A_buf, B_buf;
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
-
-genvar i;
-generate
- for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
- \$_AND_ gate (
- .A(A_buf[i]),
- .B(B_buf[i]),
- .Y(Y[i])
- );
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$or (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-wire [Y_WIDTH-1:0] A_buf, B_buf;
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
-
-genvar i;
-generate
- for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
- \$_OR_ gate (
- .A(A_buf[i]),
- .B(B_buf[i]),
- .Y(Y[i])
- );
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$xor (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-wire [Y_WIDTH-1:0] A_buf, B_buf;
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
-
-genvar i;
-generate
- for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
- \$_XOR_ gate (
- .A(A_buf[i]),
- .B(B_buf[i]),
- .Y(Y[i])
- );
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$xnor (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-wire [Y_WIDTH-1:0] A_buf, B_buf;
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
-
-genvar i;
-generate
- for (i = 0; i < Y_WIDTH; i = i + 1) begin:V
- wire tmp;
- \$_XOR_ gate1 (
- .A(A_buf[i]),
- .B(B_buf[i]),
- .Y(tmp)
- );
- \$_INV_ gate2 (
- .A(tmp),
- .Y(Y[i])
- );
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$reduce_and (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-output Y;
-
-wire [A_WIDTH-1:0] buffer;
-
-genvar i;
-generate
- for (i = 1; i < A_WIDTH; i = i + 1) begin:V
- \$_AND_ gate (
- .A(A[i]),
- .B(buffer[i-1]),
- .Y(buffer[i])
- );
- end
-endgenerate
-
-assign buffer[0] = A[0];
-assign Y = buffer[A_WIDTH-1];
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$reduce_or (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-output Y;
-
-wire [A_WIDTH-1:0] buffer;
-
-genvar i;
-generate
- for (i = 1; i < A_WIDTH; i = i + 1) begin:V
- \$_OR_ gate (
- .A(A[i]),
- .B(buffer[i-1]),
- .Y(buffer[i])
- );
- end
-endgenerate
-
-assign buffer[0] = A[0];
-assign Y = buffer[A_WIDTH-1];
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$reduce_xor (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-output Y;
-
-wire [A_WIDTH-1:0] buffer;
-
-genvar i;
-generate
- for (i = 1; i < A_WIDTH; i = i + 1) begin:V
- \$_XOR_ gate (
- .A(A[i]),
- .B(buffer[i-1]),
- .Y(buffer[i])
- );
- end
-endgenerate
-
-assign buffer[0] = A[0];
-assign Y = buffer[A_WIDTH-1];
-
-endmodule
-
-
-// --------------------------------------------------------
-
-module \$reduce_xnor (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-output Y;
-
-wire [A_WIDTH-1:0] buffer;
-
-genvar i;
-generate
- for (i = 1; i < A_WIDTH; i = i + 1) begin:V
- \$_XOR_ gate (
- .A(A[i]),
- .B(buffer[i-1]),
- .Y(buffer[i])
- );
- end
-endgenerate
-
-assign buffer[0] = A[0];
- \$_INV_ gate_inv (
- .A(buffer[A_WIDTH-1]),
- .Y(Y)
-);
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$reduce_bool (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-output Y;
-
-wire [A_WIDTH-1:0] buffer;
-
-genvar i;
-generate
- for (i = 1; i < A_WIDTH; i = i + 1) begin:V
- \$_OR_ gate (
- .A(A[i]),
- .B(buffer[i-1]),
- .Y(buffer[i])
- );
- end
-endgenerate
-
-assign buffer[0] = A[0];
-assign Y = buffer[A_WIDTH-1];
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$shift (X, A, Y);
-
-parameter WIDTH = 1;
-parameter SHIFT = 0;
-
-input X;
-input [WIDTH-1:0] A;
-output [WIDTH-1:0] Y;
-
-genvar i;
-generate
- for (i = 0; i < WIDTH; i = i + 1) begin:V
- if (i+SHIFT < 0) begin
- assign Y[i] = 0;
- end else
- if (i+SHIFT < WIDTH) begin
- assign Y[i] = A[i+SHIFT];
- end else begin
- assign Y[i] = X;
- end
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$shl (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-parameter WIDTH = Y_WIDTH;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-genvar i;
-generate
- wire [WIDTH*(B_WIDTH+1)-1:0] chain;
- \$pos #(
- .A_SIGNED(A_SIGNED),
- .A_WIDTH(A_WIDTH),
- .Y_WIDTH(WIDTH)
- ) expand (
- .A(A),
- .Y(chain[WIDTH-1:0])
- );
- assign Y = chain[WIDTH*(B_WIDTH+1)-1 : WIDTH*B_WIDTH];
- for (i = 0; i < B_WIDTH; i = i + 1) begin:V
- wire [WIDTH-1:0] unshifted, shifted, result;
- assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
- assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
- \$shift #(
- .WIDTH(WIDTH),
- .SHIFT(0 - (2 ** (i > 30 ? 30 : i)))
- ) sh (
- .X(0),
- .A(unshifted),
- .Y(shifted)
- );
- \$mux #(
- .WIDTH(WIDTH)
- ) mux (
- .A(unshifted),
- .B(shifted),
- .Y(result),
- .S(B[i])
- );
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$shr (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-parameter WIDTH = A_WIDTH > Y_WIDTH ? A_WIDTH : Y_WIDTH;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-genvar i;
-generate
- wire [WIDTH*(B_WIDTH+1)-1:0] chain;
- \$pos #(
- .A_SIGNED(A_SIGNED),
- .A_WIDTH(A_WIDTH),
- .Y_WIDTH(WIDTH)
- ) expand (
- .A(A),
- .Y(chain[WIDTH-1:0])
- );
- assign Y = chain[WIDTH*(B_WIDTH+1)-1 : WIDTH*B_WIDTH];
- for (i = 0; i < B_WIDTH; i = i + 1) begin:V
- wire [WIDTH-1:0] unshifted, shifted, result;
- assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
- assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
- \$shift #(
- .WIDTH(WIDTH),
- .SHIFT(2 ** (i > 30 ? 30 : i))
- ) sh (
- .X(0),
- .A(unshifted),
- .Y(shifted)
- );
- \$mux #(
- .WIDTH(WIDTH)
- ) mux (
- .A(unshifted),
- .B(shifted),
- .Y(result),
- .S(B[i])
- );
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$sshl (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-parameter WIDTH = Y_WIDTH;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-genvar i;
-generate
- wire [WIDTH*(B_WIDTH+1)-1:0] chain;
- \$pos #(
- .A_SIGNED(A_SIGNED),
- .A_WIDTH(A_WIDTH),
- .Y_WIDTH(WIDTH)
- ) expand (
- .A(A),
- .Y(chain[WIDTH-1:0])
- );
- assign Y = chain[WIDTH*(B_WIDTH+1)-1 : WIDTH*B_WIDTH];
- for (i = 0; i < B_WIDTH; i = i + 1) begin:V
- wire [WIDTH-1:0] unshifted, shifted, result;
- assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
- assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
- \$shift #(
- .WIDTH(WIDTH),
- .SHIFT(0 - (2 ** (i > 30 ? 30 : i)))
- ) sh (
- .X(0),
- .A(unshifted),
- .Y(shifted)
- );
- \$mux #(
- .WIDTH(WIDTH)
- ) mux (
- .A(unshifted),
- .B(shifted),
- .Y(result),
- .S(B[i])
- );
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$sshr (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-parameter WIDTH = A_WIDTH > Y_WIDTH ? A_WIDTH : Y_WIDTH;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-genvar i;
-generate
- wire [WIDTH*(B_WIDTH+1)-1:0] chain;
- \$pos #(
- .A_SIGNED(A_SIGNED),
- .A_WIDTH(A_WIDTH),
- .Y_WIDTH(WIDTH)
- ) expand (
- .A(A),
- .Y(chain[WIDTH-1:0])
- );
- for (i = 0; i < Y_WIDTH; i = i + 1) begin:Y
- if (i < WIDTH) begin
- assign Y[i] = chain[WIDTH*B_WIDTH + i];
- end else
- if (A_SIGNED) begin
- assign Y[i] = chain[WIDTH*B_WIDTH + WIDTH-1];
- end else begin
- assign Y[i] = 0;
- end
- end
- for (i = 0; i < B_WIDTH; i = i + 1) begin:V
- wire [WIDTH-1:0] unshifted, shifted, result;
- assign unshifted = chain[WIDTH*i + WIDTH-1 : WIDTH*i];
- assign chain[WIDTH*(i+1) + WIDTH-1 : WIDTH*(i+1)] = result;
- \$shift #(
- .WIDTH(WIDTH),
- .SHIFT(2 ** (i > 30 ? 30 : i))
- ) sh (
- .X(A_SIGNED && A[A_WIDTH-1]),
- .A(unshifted),
- .Y(shifted)
- );
- \$mux #(
- .WIDTH(WIDTH)
- ) mux (
- .A(unshifted),
- .B(shifted),
- .Y(result),
- .S(B[i])
- );
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$fulladd (A, B, C, X, Y);
-
-// {X, Y} = A + B + C
-input A, B, C;
-output X, Y;
-
-// {t1, t2} = A + B
-wire t1, t2, t3;
-
- \$_AND_ gate1 ( .A(A), .B(B), .Y(t1) );
- \$_XOR_ gate2 ( .A(A), .B(B), .Y(t2) );
- \$_AND_ gate3 ( .A(t2), .B(C), .Y(t3) );
- \$_XOR_ gate4 ( .A(t2), .B(C), .Y(Y) );
- \$_OR_ gate5 ( .A(t1), .B(t3), .Y(X) );
-
-endmodule
-
-
-// --------------------------------------------------------
-
-module \$alu (A, B, Cin, Y, Cout, Csign);
-
-parameter WIDTH = 1;
-
-input [WIDTH-1:0] A, B;
-input Cin;
-
-output [WIDTH-1:0] Y;
-output Cout, Csign;
-
-wire [WIDTH:0] carry;
-assign carry[0] = Cin;
-assign Cout = carry[WIDTH];
-assign Csign = carry[WIDTH-1];
-
-genvar i;
-generate
- for (i = 0; i < WIDTH; i = i + 1) begin:V
- \$fulladd adder (
- .A(A[i]),
- .B(B[i]),
- .C(carry[i]),
- .X(carry[i+1]),
- .Y(Y[i])
- );
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$lt (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output Y;
-
-wire carry, carry_sign;
-wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
-
-\$alu #(
- .WIDTH(WIDTH)
-) alu (
- .A(A_buf),
- .B(~B_buf),
- .Cin(1'b1),
- .Y(Y_buf),
- .Cout(carry),
- .Csign(carry_sign),
-);
-
-// ALU flags
-wire cf, of, zf, sf;
-assign cf = !carry;
-assign of = carry ^ carry_sign;
-assign zf = ~|Y_buf;
-assign sf = Y_buf[WIDTH-1];
-
-generate
- if (A_SIGNED && B_SIGNED) begin
- assign Y = of != sf;
- end else begin
- assign Y = cf;
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$le (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output Y;
-
-wire carry, carry_sign;
-wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
-
-\$alu #(
- .WIDTH(WIDTH)
-) alu (
- .A(A_buf),
- .B(~B_buf),
- .Cin(1'b1),
- .Y(Y_buf),
- .Cout(carry),
- .Csign(carry_sign),
-);
-
-// ALU flags
-wire cf, of, zf, sf;
-assign cf = !carry;
-assign of = carry ^ carry_sign;
-assign zf = ~|Y_buf;
-assign sf = Y_buf[WIDTH-1];
-
-generate
- if (A_SIGNED && B_SIGNED) begin
- assign Y = zf || (of != sf);
- end else begin
- assign Y = zf || cf;
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$eq (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output Y;
-
-wire carry, carry_sign;
-wire [WIDTH-1:0] A_buf, B_buf;
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
-
-assign Y = ~|(A_buf ^ B_buf);
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$ne (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-parameter WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output Y;
-
-wire carry, carry_sign;
-wire [WIDTH-1:0] A_buf, B_buf;
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
-
-assign Y = |(A_buf ^ B_buf);
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$ge (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output Y;
-
-\$le #(
- .A_SIGNED(B_SIGNED),
- .B_SIGNED(A_SIGNED),
- .A_WIDTH(B_WIDTH),
- .B_WIDTH(A_WIDTH)
-) ge_via_le (
- .A(B),
- .B(A),
- .Y(Y)
-);
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$gt (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output Y;
-
-\$lt #(
- .A_SIGNED(B_SIGNED),
- .B_SIGNED(A_SIGNED),
- .A_WIDTH(B_WIDTH),
- .B_WIDTH(A_WIDTH)
-) gt_via_lt (
- .A(B),
- .B(A),
- .Y(Y)
-);
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$add (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-wire [Y_WIDTH-1:0] A_buf, B_buf;
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
-
-\$alu #(
- .WIDTH(Y_WIDTH)
-) alu (
- .A(A_buf),
- .B(B_buf),
- .Cin(1'b0),
- .Y(Y)
-);
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$sub (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-wire [Y_WIDTH-1:0] A_buf, B_buf;
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
-
-\$alu #(
- .WIDTH(Y_WIDTH)
-) alu (
- .A(A_buf),
- .B(~B_buf),
- .Cin(1'b1),
- .Y(Y)
-);
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$arraymul (A, B, Y);
-
-parameter WIDTH = 8;
-input [WIDTH-1:0] A, B;
-output [WIDTH-1:0] Y;
-
-wire [WIDTH*WIDTH-1:0] partials;
-
-genvar i;
-assign partials[WIDTH-1 : 0] = A[0] ? B : 0;
-generate for (i = 1; i < WIDTH; i = i+1) begin:gen
- assign partials[WIDTH*(i+1)-1 : WIDTH*i] = (A[i] ? B << i : 0) + partials[WIDTH*i-1 : WIDTH*(i-1)];
-end endgenerate
-
-assign Y = partials[WIDTH*WIDTH-1 : WIDTH*(WIDTH-1)];
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$mul (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-wire [Y_WIDTH-1:0] A_buf, B_buf;
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
-
-\$arraymul #(
- .WIDTH(Y_WIDTH)
-) arraymul (
- .A(A_buf),
- .B(B_buf),
- .Y(Y)
-);
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$div_mod_u (A, B, Y, R);
-
-parameter WIDTH = 1;
-
-input [WIDTH-1:0] A, B;
-output [WIDTH-1:0] Y, R;
-
-wire [WIDTH*WIDTH-1:0] chaindata;
-assign R = chaindata[WIDTH*WIDTH-1:WIDTH*(WIDTH-1)];
-
-genvar i;
-generate begin
- for (i = 0; i < WIDTH; i=i+1) begin:stage
- wire [WIDTH-1:0] stage_in;
-
- if (i == 0) begin:cp
- assign stage_in = A;
- end else begin:cp
- assign stage_in = chaindata[i*WIDTH-1:(i-1)*WIDTH];
- end
-
- assign Y[WIDTH-(i+1)] = stage_in >= {B, {WIDTH-(i+1){1'b0}}};
- assign chaindata[(i+1)*WIDTH-1:i*WIDTH] = Y[WIDTH-(i+1)] ? stage_in - {B, {WIDTH-(i+1){1'b0}}} : stage_in;
- end
-end endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$div_mod (A, B, Y, R);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-localparam WIDTH =
- A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH :
- B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y, R;
-
-wire [WIDTH-1:0] A_buf, B_buf;
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
-\$pos #(.A_SIGNED(A_SIGNED && B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
-
-wire [WIDTH-1:0] A_buf_u, B_buf_u, Y_u, R_u;
-assign A_buf_u = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -A_buf : A_buf;
-assign B_buf_u = A_SIGNED && B_SIGNED && B_buf[WIDTH-1] ? -B_buf : B_buf;
-
-\$div_mod_u #(
- .WIDTH(WIDTH)
-) div_mod_u (
- .A(A_buf_u),
- .B(B_buf_u),
- .Y(Y_u),
- .R(R_u),
-);
-
-assign Y = A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? -Y_u : Y_u;
-assign R = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -R_u : R_u;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$div (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-wire [Y_WIDTH-1:0] Y_buf;
-wire [Y_WIDTH-1:0] Y_div_zero;
-
-\$div_mod #(
- .A_SIGNED(A_SIGNED),
- .B_SIGNED(B_SIGNED),
- .A_WIDTH(A_WIDTH),
- .B_WIDTH(B_WIDTH),
- .Y_WIDTH(Y_WIDTH)
-) div_mod (
- .A(A),
- .B(B),
- .Y(Y_buf)
-);
-
-// explicitly force the division-by-zero behavior found in other synthesis tools
-generate begin
- if (A_SIGNED && B_SIGNED) begin:make_div_zero
- assign Y_div_zero = A[A_WIDTH-1] ? {Y_WIDTH{1'b0}} | 1'b1 : {Y_WIDTH{1'b1}};
- end else begin:make_div_zero
- assign Y_div_zero = {A_WIDTH{1'b1}};
- end
-end endgenerate
-
-assign Y = B ? Y_buf : Y_div_zero;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$mod (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-wire [Y_WIDTH-1:0] Y_buf;
-wire [Y_WIDTH-1:0] Y_div_zero;
-
-\$div_mod #(
- .A_SIGNED(A_SIGNED),
- .B_SIGNED(B_SIGNED),
- .A_WIDTH(A_WIDTH),
- .B_WIDTH(B_WIDTH),
- .Y_WIDTH(Y_WIDTH)
-) div_mod (
- .A(A),
- .B(B),
- .R(Y_buf)
-);
-
-// explicitly force the division-by-zero behavior found in other synthesis tools
-localparam div_zero_copy_a_bits = A_WIDTH < B_WIDTH ? A_WIDTH : B_WIDTH;
-generate begin
- if (A_SIGNED && B_SIGNED) begin:make_div_zero
- assign Y_div_zero = $signed(A[div_zero_copy_a_bits-1:0]);
- end else begin:make_div_zero
- assign Y_div_zero = $unsigned(A[div_zero_copy_a_bits-1:0]);
- end
-end endgenerate
-
-assign Y = B ? Y_buf : Y_div_zero;
-
-endmodule
-
-/****
-// --------------------------------------------------------
-
-module \$pow (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-wire signed [A_WIDTH:0] buffer_a = A_SIGNED ? $signed(A) : A;
-wire signed [B_WIDTH:0] buffer_b = B_SIGNED ? $signed(B) : B;
-
-assign Y = buffer_a ** buffer_b;
-
-endmodule
-
-// --------------------------------------------------------
-****/
-
-module \$logic_not (A, Y);
-
-parameter A_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-output [Y_WIDTH-1:0] Y;
-
-wire A_buf;
-
-\$reduce_bool #(
- .A_SIGNED(A_SIGNED),
- .A_WIDTH(A_WIDTH)
-) A_logic (
- .A(A),
- .Y(A_buf)
-);
-
- \$_INV_ gate (
- .A(A_buf),
- .Y(Y[0])
-);
-
-generate
- if (Y_WIDTH > 1) begin:V
- assign Y[Y_WIDTH-1:1] = 0;
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$logic_and (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-wire A_buf, B_buf;
-
-\$reduce_bool #(
- .A_SIGNED(A_SIGNED),
- .A_WIDTH(A_WIDTH)
-) A_logic (
- .A(A),
- .Y(A_buf)
-);
-
-\$reduce_bool #(
- .A_SIGNED(B_SIGNED),
- .A_WIDTH(B_WIDTH)
-) B_logic (
- .A(B),
- .Y(B_buf)
-);
-
- \$_AND_ gate (
- .A(A_buf),
- .B(B_buf),
- .Y(Y[0])
-);
-
-generate
- if (Y_WIDTH > 1) begin:V
- assign Y[Y_WIDTH-1:1] = 0;
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$logic_or (A, B, Y);
-
-parameter A_SIGNED = 0;
-parameter B_SIGNED = 0;
-parameter A_WIDTH = 1;
-parameter B_WIDTH = 1;
-parameter Y_WIDTH = 1;
-
-input [A_WIDTH-1:0] A;
-input [B_WIDTH-1:0] B;
-output [Y_WIDTH-1:0] Y;
-
-wire A_buf, B_buf;
-
-\$reduce_bool #(
- .A_SIGNED(A_SIGNED),
- .A_WIDTH(A_WIDTH)
-) A_logic (
- .A(A),
- .Y(A_buf)
-);
-
-\$reduce_bool #(
- .A_SIGNED(B_SIGNED),
- .A_WIDTH(B_WIDTH)
-) B_logic (
- .A(B),
- .Y(B_buf)
-);
-
- \$_OR_ gate (
- .A(A_buf),
- .B(B_buf),
- .Y(Y[0])
-);
-
-generate
- if (Y_WIDTH > 1) begin:V
- assign Y[Y_WIDTH-1:1] = 0;
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$mux (A, B, S, Y);
-
-parameter WIDTH = 1;
-
-input [WIDTH-1:0] A, B;
-input S;
-output [WIDTH-1:0] Y;
-
-genvar i;
-generate
- for (i = 0; i < WIDTH; i = i + 1) begin:V
- \$_MUX_ gate (
- .A(A[i]),
- .B(B[i]),
- .S(S),
- .Y(Y[i])
- );
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$pmux (A, B, S, Y);
-
-parameter WIDTH = 1;
-parameter S_WIDTH = 1;
-
-input [WIDTH-1:0] A;
-input [WIDTH*S_WIDTH-1:0] B;
-input [S_WIDTH-1:0] S;
-output [WIDTH-1:0] Y;
-
-wire [WIDTH-1:0] Y_B;
-
-genvar i, j;
-generate
- wire [WIDTH*S_WIDTH-1:0] B_AND_S;
- for (i = 0; i < S_WIDTH; i = i + 1) begin:B_AND
- assign B_AND_S[WIDTH*(i+1)-1:WIDTH*i] = B[WIDTH*(i+1)-1:WIDTH*i] & {WIDTH{S[i]}};
- end:B_AND
- for (i = 0; i < WIDTH; i = i + 1) begin:B_OR
- wire [S_WIDTH-1:0] B_AND_BITS;
- for (j = 0; j < S_WIDTH; j = j + 1) begin:B_AND_BITS_COLLECT
- assign B_AND_BITS[j] = B_AND_S[WIDTH*j+i];
- end:B_AND_BITS_COLLECT
- assign Y_B[i] = |B_AND_BITS;
- end:B_OR
-endgenerate
-
-assign Y = |S ? Y_B : A;
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$safe_pmux (A, B, S, Y);
-
-parameter WIDTH = 1;
-parameter S_WIDTH = 1;
-
-input [WIDTH-1:0] A;
-input [WIDTH*S_WIDTH-1:0] B;
-input [S_WIDTH-1:0] S;
-output [WIDTH-1:0] Y;
-
-wire [S_WIDTH-1:0] status_found_first;
-wire [S_WIDTH-1:0] status_found_second;
-
-genvar i;
-generate
- for (i = 0; i < S_WIDTH; i = i + 1) begin:GEN1
- wire pre_first;
- if (i > 0) begin:GEN2
- assign pre_first = status_found_first[i-1];
- end:GEN2 else begin:GEN3
- assign pre_first = 0;
- end:GEN3
- assign status_found_first[i] = pre_first | S[i];
- assign status_found_second[i] = pre_first & S[i];
- end:GEN1
-endgenerate
-
-\$pmux #(
- .WIDTH(WIDTH),
- .S_WIDTH(S_WIDTH)
-) pmux_cell (
- .A(A),
- .B(B),
- .S(S & {S_WIDTH{~|status_found_second}}),
- .Y(Y)
-);
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$dff (CLK, D, Q);
-
-parameter WIDTH = 1;
-parameter CLK_POLARITY = 1'b1;
-
-input CLK;
-input [WIDTH-1:0] D;
-output [WIDTH-1:0] Q;
-
-genvar i;
-generate
- if (CLK_POLARITY == 0)
- for (i = 0; i < WIDTH; i = i + 1) begin:V
- \$_DFF_N_ ff (
- .D(D[i]),
- .Q(Q[i]),
- .C(CLK)
- );
- end
- if (CLK_POLARITY != 0)
- for (i = 0; i < WIDTH; i = i + 1) begin:V
- \$_DFF_P_ ff (
- .D(D[i]),
- .Q(Q[i]),
- .C(CLK)
- );
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
-module \$adff (CLK, ARST, D, Q);
-
-parameter WIDTH = 1;
-parameter CLK_POLARITY = 1'b1;
-parameter ARST_POLARITY = 1'b1;
-parameter ARST_VALUE = 0;
-
-input CLK, ARST;
-input [WIDTH-1:0] D;
-output [WIDTH-1:0] Q;
-
-genvar i;
-generate
- for (i = 0; i < WIDTH; i = i + 1) begin:V
- if (CLK_POLARITY == 0) begin:N
- if (ARST_POLARITY == 0) begin:NN
- if (ARST_VALUE[i] == 0) begin:NN0
- \$_DFF_NN0_ ff (
- .D(D[i]),
- .Q(Q[i]),
- .C(CLK),
- .R(ARST)
- );
- end else begin:NN1
- \$_DFF_NN1_ ff (
- .D(D[i]),
- .Q(Q[i]),
- .C(CLK),
- .R(ARST)
- );
- end
- end else begin:NP
- if (ARST_VALUE[i] == 0) begin:NP0
- \$_DFF_NP0_ ff (
- .D(D[i]),
- .Q(Q[i]),
- .C(CLK),
- .R(ARST)
- );
- end else begin:NP1
- \$_DFF_NP1_ ff (
- .D(D[i]),
- .Q(Q[i]),
- .C(CLK),
- .R(ARST)
- );
- end
- end
- end else begin:P
- if (ARST_POLARITY == 0) begin:PN
- if (ARST_VALUE[i] == 0) begin:PN0
- \$_DFF_PN0_ ff (
- .D(D[i]),
- .Q(Q[i]),
- .C(CLK),
- .R(ARST)
- );
- end else begin:PN1
- \$_DFF_PN1_ ff (
- .D(D[i]),
- .Q(Q[i]),
- .C(CLK),
- .R(ARST)
- );
- end
- end else begin:PP
- if (ARST_VALUE[i] == 0) begin:PP0
- \$_DFF_PP0_ ff (
- .D(D[i]),
- .Q(Q[i]),
- .C(CLK),
- .R(ARST)
- );
- end else begin:PP1
- \$_DFF_PP1_ ff (
- .D(D[i]),
- .Q(Q[i]),
- .C(CLK),
- .R(ARST)
- );
- end
- end
- end
- end
-endgenerate
-
-endmodule
-
-// --------------------------------------------------------
-
+++ /dev/null
-/*
- * yosys -- Yosys Open SYnthesis Suite
- *
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
- *
- * Permission to use, copy, modify, and/or distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- *
- * ---
- *
- * The internal logic cell simulation library.
- *
- * This verilog library contains simple simulation models for the internal
- * logic cells ($_INV_ , $_AND_ , ...) that are generated by the default technology
- * mapper (see "stdcells.v" in this directory) and expected by the "abc" pass.
- *
- */
-
-module \$_INV_ (A, Y);
-input A;
-output Y;
-assign Y = ~A;
-endmodule
-
-module \$_AND_ (A, B, Y);
-input A, B;
-output Y;
-assign Y = A & B;
-endmodule
-
-module \$_OR_ (A, B, Y);
-input A, B;
-output Y;
-assign Y = A | B;
-endmodule
-
-module \$_XOR_ (A, B, Y);
-input A, B;
-output Y;
-assign Y = A ^ B;
-endmodule
-
-module \$_MUX_ (A, B, S, Y);
-input A, B, S;
-output reg Y;
-always @* begin
- if (S)
- Y = B;
- else
- Y = A;
-end
-endmodule
-
-module \$_DFF_N_ (D, Q, C);
-input D, C;
-output reg Q;
-always @(negedge C) begin
- Q <= D;
-end
-endmodule
-
-module \$_DFF_P_ (D, Q, C);
-input D, C;
-output reg Q;
-always @(posedge C) begin
- Q <= D;
-end
-endmodule
-
-module \$_DFF_NN0_ (D, Q, C, R);
-input D, C, R;
-output reg Q;
-always @(negedge C or negedge R) begin
- if (R == 0)
- Q <= 0;
- else
- Q <= D;
-end
-endmodule
-
-module \$_DFF_NN1_ (D, Q, C, R);
-input D, C, R;
-output reg Q;
-always @(negedge C or negedge R) begin
- if (R == 0)
- Q <= 1;
- else
- Q <= D;
-end
-endmodule
-
-module \$_DFF_NP0_ (D, Q, C, R);
-input D, C, R;
-output reg Q;
-always @(negedge C or posedge R) begin
- if (R == 1)
- Q <= 0;
- else
- Q <= D;
-end
-endmodule
-
-module \$_DFF_NP1_ (D, Q, C, R);
-input D, C, R;
-output reg Q;
-always @(negedge C or posedge R) begin
- if (R == 1)
- Q <= 1;
- else
- Q <= D;
-end
-endmodule
-
-module \$_DFF_PN0_ (D, Q, C, R);
-input D, C, R;
-output reg Q;
-always @(posedge C or negedge R) begin
- if (R == 0)
- Q <= 0;
- else
- Q <= D;
-end
-endmodule
-
-module \$_DFF_PN1_ (D, Q, C, R);
-input D, C, R;
-output reg Q;
-always @(posedge C or negedge R) begin
- if (R == 0)
- Q <= 1;
- else
- Q <= D;
-end
-endmodule
-
-module \$_DFF_PP0_ (D, Q, C, R);
-input D, C, R;
-output reg Q;
-always @(posedge C or posedge R) begin
- if (R == 1)
- Q <= 0;
- else
- Q <= D;
-end
-endmodule
-
-module \$_DFF_PP1_ (D, Q, C, R);
-input D, C, R;
-output reg Q;
-always @(posedge C or posedge R) begin
- if (R == 1)
- Q <= 1;
- else
- Q <= D;
-end
-endmodule
-
./testbench_ref -tclbatch testbench_ref.tcl
vlogcomp --work syn i2c_master_syn.v
-vlogcomp --work syn ../../techlibs/simlib.v
-vlogcomp --work syn ../../techlibs/stdcells_sim.v
+vlogcomp --work syn ../../techlibs/common/simlib.v
+vlogcomp --work syn ../../techlibs/common/stdcells_sim.v
vlogcomp --work syn i2c_slave_model.v
vlogcomp --work syn spi_slave_model.v
vlogcomp --work syn tst_bench_top.v
"$toolsdir"/../../yosys -b "verilog $backend_opts" "$@" -o ${bn}_syn${test_count}.v $fn $scriptfiles
compile_and_run ${bn}_tb_syn${test_count} ${bn}_out_syn${test_count} \
${bn}_tb.v ${bn}_syn${test_count}.v $libs \
- "$toolsdir"/../../techlibs/simlib.v \
- "$toolsdir"/../../techlibs/stdcells_sim.v
+ "$toolsdir"/../../techlibs/common/simlib.v \
+ "$toolsdir"/../../techlibs/common/stdcells_sim.v
if $genvcd; then mv testbench.vcd ${bn}_syn${test_count}.vcd; fi
$toolsdir/cmp_tbdata ${bn}_out_ref ${bn}_out_syn${test_count}
test_count=$(( test_count + 1 ))
mkdir -p "$prjdir"
cp "$1" "$prjdir"/schematic.v
-cp "$(dirname $0)"/../../techlibs/blackbox.v "$prjdir"/blackbox.v
+cp "$(dirname $0)"/../../techlibs/common/blackbox.v "$prjdir"/blackbox.v
cd "$prjdir"
if fuser -s ise.out; then