**
** \brief Implementation of counterexample-guided quantifier instantiation
**/
+
#include "theory/quantifiers/ceg_instantiator.h"
+#include "theory/quantifiers/ceg_t_instantiator.h"
#include "options/quantifiers_options.h"
#include "smt/ite_removal.h"
-#include "theory/arith/partial_model.h"
-#include "theory/arith/theory_arith.h"
-#include "theory/arith/theory_arith_private.h"
#include "theory/quantifiers/first_order_model.h"
#include "theory/quantifiers/term_database.h"
#include "theory/quantifiers/quantifiers_rewriter.h"
#include "theory/quantifiers/trigger.h"
#include "theory/theory_engine.h"
-#include "theory/quantifiers/term_database.h"
-#include "theory/bv/theory_bv_utils.h"
-#include "util/bitvector.h"
using namespace std;
using namespace CVC4;
CegInstantiator::CegInstantiator( QuantifiersEngine * qe, CegqiOutput * out, bool use_vts_delta, bool use_vts_inf ) :
d_qe( qe ), d_out( out ), d_use_vts_delta( use_vts_delta ), d_use_vts_inf( use_vts_inf ){
- d_zero = NodeManager::currentNM()->mkConst( Rational( 0 ) );
- d_one = NodeManager::currentNM()->mkConst( Rational( 1 ) );
- d_true = NodeManager::currentNM()->mkConst( true );
d_is_nested_quant = false;
}
bool CegInstantiator::doAddInstantiation( SolvedForm& sf, unsigned i, unsigned effort ){
if( i==d_vars.size() ){
//solved for all variables, now construct instantiation
- bool needsPostprocess = !sf.d_has_coeff.empty();
+ bool needsPostprocess = false;
+ std::map< Instantiator *, Node > pp_inst;
+ for( std::map< Node, Instantiator * >::iterator ita = d_active_instantiators.begin(); ita != d_active_instantiators.end(); ++ita ){
+ if( ita->second->needsPostProcessInstantiation( this, sf, ita->first, effort ) ){
+ needsPostprocess = true;
+ pp_inst[ ita->second ] = ita->first;
+ }
+ }
if( needsPostprocess ){
//must make copy so that backtracking reverts sf
SolvedForm sf_tmp;
sf_tmp.copy( sf );
bool postProcessSuccess = true;
- if( !processInstantiationCoeff( sf_tmp ) ){
- postProcessSuccess = false;
- }
+ for( std::map< Instantiator *, Node >::iterator itp = pp_inst.begin(); itp != pp_inst.end(); ++itp ){
+ if( !itp->first->postProcessInstantiation( this, sf_tmp, itp->second, effort ) ){
+ postProcessSuccess = false;
+ break;
+ }
+ }
if( postProcessSuccess ){
return doAddInstantiation( sf_tmp.d_subs, sf_tmp.d_vars );
}else{
vinst = itin->second;
}
Assert( vinst!=NULL );
- d_active_instantiators[vinst] = true;
+ d_active_instantiators[pv] = vinst;
vinst->reset( this, sf, pv, effort );
TypeNode pvtn = pv.getType();
d_stack_vars.push_back( pv );
}
if( vinst!=NULL ){
- d_active_instantiators.erase( vinst );
+ d_active_instantiators.erase( pv );
}
unregisterInstantiationVariable( pv );
return false;
}
}
-bool CegInstantiator::processInstantiationCoeff( SolvedForm& sf ) {
- for( unsigned j=0; j<sf.d_has_coeff.size(); j++ ){
- Assert( std::find( sf.d_vars.begin(), sf.d_vars.end(), sf.d_has_coeff[j] )!=sf.d_vars.end() );
- unsigned index = std::find( sf.d_vars.begin(), sf.d_vars.end(), sf.d_has_coeff[j] )-sf.d_vars.begin();
- Assert( !sf.d_coeff[index].isNull() );
- Trace("cbqi-inst-debug") << "Normalize substitution for " << sf.d_coeff[index] << " * " << sf.d_vars[index] << " = " << sf.d_subs[index] << std::endl;
- Assert( sf.d_vars[index].getType().isInteger() );
- //must ensure that divisibility constraints are met
- //solve updated rewritten equality for vars[index], if coefficient is one, then we are successful
- Node eq_lhs = NodeManager::currentNM()->mkNode( MULT, sf.d_coeff[index], sf.d_vars[index] );
- Node eq_rhs = sf.d_subs[index];
- Node eq = eq_lhs.eqNode( eq_rhs );
- eq = Rewriter::rewrite( eq );
- Trace("cbqi-inst-debug") << "...equality is " << eq << std::endl;
- std::map< Node, Node > msum;
- if( QuantArith::getMonomialSumLit( eq, msum ) ){
- Node veq;
- if( QuantArith::isolate( sf.d_vars[index], msum, veq, EQUAL, true )!=0 ){
- Node veq_c;
- if( veq[0]!=sf.d_vars[index] ){
- Node veq_v;
- if( QuantArith::getMonomial( veq[0], veq_c, veq_v ) ){
- Assert( veq_v==sf.d_vars[index] );
- }
- }
- sf.d_subs[index] = veq[1];
- if( !veq_c.isNull() ){
- sf.d_subs[index] = NodeManager::currentNM()->mkNode( INTS_DIVISION_TOTAL, veq[1], veq_c );
- Trace("cbqi-inst-debug") << "...bound type is : " << sf.d_btyp[index] << std::endl;
- //intger division rounding up if from a lower bound
- if( sf.d_btyp[index]==1 && options::cbqiRoundUpLowerLia() ){
- sf.d_subs[index] = NodeManager::currentNM()->mkNode( PLUS, sf.d_subs[index],
- NodeManager::currentNM()->mkNode( ITE,
- NodeManager::currentNM()->mkNode( EQUAL,
- NodeManager::currentNM()->mkNode( INTS_MODULUS_TOTAL, veq[1], veq_c ),
- d_zero ),
- d_zero, d_one )
- );
- }
- }
- Trace("cbqi-inst-debug") << "...normalize integers : " << sf.d_vars[index] << " -> " << sf.d_subs[index] << std::endl;
- }else{
- Trace("cbqi-inst-debug") << "...failed." << std::endl;
- return false;
- }
- }else{
- Trace("cbqi-inst-debug") << "...failed." << std::endl;
- return false;
- }
- }
- return true;
-}
-
bool CegInstantiator::doAddInstantiation( std::vector< Node >& subs, std::vector< Node >& vars ) {
if( vars.size()>d_vars.size() ){
Trace("cbqi-inst-debug") << "Reconstructing instantiations...." << std::endl;
return false;
}
-bool ArithInstantiator::needsPostProcessInstantiation( CegInstantiator * ci, SolvedForm& sf, unsigned effort ) {
- return !sf.d_has_coeff.empty();
+bool ArithInstantiator::needsPostProcessInstantiation( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) {
+ return std::find( sf.d_has_coeff.begin(), sf.d_has_coeff.end(), pv )!=sf.d_has_coeff.end();
}
-bool ArithInstantiator::postProcessInstantiation( CegInstantiator * ci, SolvedForm& sf, unsigned effort ) {
+bool ArithInstantiator::postProcessInstantiation( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) {
+ Assert( std::find( sf.d_has_coeff.begin(), sf.d_has_coeff.end(), pv )!=sf.d_has_coeff.end() );
+ Assert( std::find( sf.d_vars.begin(), sf.d_vars.end(), pv )!=sf.d_vars.end() );
+ unsigned index = std::find( sf.d_vars.begin(), sf.d_vars.end(), pv )-sf.d_vars.begin();
+ Assert( !sf.d_coeff[index].isNull() );
+ Trace("cbqi-inst-debug") << "Normalize substitution for " << sf.d_coeff[index] << " * " << sf.d_vars[index] << " = " << sf.d_subs[index] << std::endl;
+ Assert( sf.d_vars[index].getType().isInteger() );
+ //must ensure that divisibility constraints are met
+ //solve updated rewritten equality for vars[index], if coefficient is one, then we are successful
+ Node eq_lhs = NodeManager::currentNM()->mkNode( MULT, sf.d_coeff[index], sf.d_vars[index] );
+ Node eq_rhs = sf.d_subs[index];
+ Node eq = eq_lhs.eqNode( eq_rhs );
+ eq = Rewriter::rewrite( eq );
+ Trace("cbqi-inst-debug") << "...equality is " << eq << std::endl;
+ std::map< Node, Node > msum;
+ if( QuantArith::getMonomialSumLit( eq, msum ) ){
+ Node veq;
+ if( QuantArith::isolate( sf.d_vars[index], msum, veq, EQUAL, true )!=0 ){
+ Node veq_c;
+ if( veq[0]!=sf.d_vars[index] ){
+ Node veq_v;
+ if( QuantArith::getMonomial( veq[0], veq_c, veq_v ) ){
+ Assert( veq_v==sf.d_vars[index] );
+ }
+ }
+ sf.d_subs[index] = veq[1];
+ if( !veq_c.isNull() ){
+ sf.d_subs[index] = NodeManager::currentNM()->mkNode( INTS_DIVISION_TOTAL, veq[1], veq_c );
+ Trace("cbqi-inst-debug") << "...bound type is : " << sf.d_btyp[index] << std::endl;
+ //intger division rounding up if from a lower bound
+ if( sf.d_btyp[index]==1 && options::cbqiRoundUpLowerLia() ){
+ sf.d_subs[index] = NodeManager::currentNM()->mkNode( PLUS, sf.d_subs[index],
+ NodeManager::currentNM()->mkNode( ITE,
+ NodeManager::currentNM()->mkNode( EQUAL,
+ NodeManager::currentNM()->mkNode( INTS_MODULUS_TOTAL, veq[1], veq_c ),
+ ci->getQuantifiersEngine()->getTermDatabase()->d_zero ),
+ ci->getQuantifiersEngine()->getTermDatabase()->d_zero, ci->getQuantifiersEngine()->getTermDatabase()->d_one )
+ );
+ }
+ }
+ Trace("cbqi-inst-debug") << "...normalize integers : " << sf.d_vars[index] << " -> " << sf.d_subs[index] << std::endl;
+ }else{
+ Trace("cbqi-inst-debug") << "...failed to isolate." << std::endl;
+ return false;
+ }
+ }else{
+ Trace("cbqi-inst-debug") << "...failed to get monomial sum." << std::endl;
+ return false;
+ }
return true;
}
private:
QuantifiersEngine * d_qe;
CegqiOutput * d_out;
- //constants
- Node d_zero;
- Node d_one;
- Node d_true;
bool d_use_vts_delta;
bool d_use_vts_inf;
//program variable contains cache
//atoms of the CE lemma
bool d_is_nested_quant;
std::vector< Node > d_ce_atoms;
+ //collect atoms
+ void collectCeAtoms( Node n, std::map< Node, bool >& visited );
private:
//map from variables to their instantiators
std::map< Node, Instantiator * > d_instantiator;
//stack of temporary variables we are solving (e.g. subfields of datatypes)
std::vector< Node > d_stack_vars;
//used instantiators
- std::map< Instantiator *, bool > d_active_instantiators;
+ std::map< Node, Instantiator * > d_active_instantiators;
//register variable
void registerInstantiationVariable( Node v, unsigned index );
void unregisterInstantiationVariable( Node v );
private:
- //collect atoms
- void collectCeAtoms( Node n, std::map< Node, bool >& visited );
//for adding instantiations during check
void computeProgVars( Node n );
// effort=0 : do not use model value, 1: use model value, 2: one must use model value
bool doAddInstantiation( SolvedForm& sf, unsigned i, unsigned effort );
- bool processInstantiationCoeff( SolvedForm& sf );
bool doAddInstantiation( std::vector< Node >& subs, std::vector< Node >& vars );
-
+ //process
void processAssertions();
void addToAuxVarSubstitution( std::vector< Node >& subs_lhs, std::vector< Node >& subs_rhs, Node l, Node r );
public:
void registerCounterexampleLemma( std::vector< Node >& lems, std::vector< Node >& ce_vars );
//output
CegqiOutput * getOutput() { return d_out; }
-//interface for instantiators
-public:
//get quantifiers engine
QuantifiersEngine* getQuantifiersEngine() { return d_qe; }
+
+//interface for instantiators
+public:
void pushStackVariable( Node v );
void popStackVariable();
bool doAddInstantiationInc( Node pv, Node n, Node pv_coeff, int bt, SolvedForm& sf, unsigned effort );
Node getModelValue( Node n );
+ Node applySubstitution( TypeNode tn, Node n, SolvedForm& sf, Node& pv_coeff, bool try_coeff = true ) {
+ return applySubstitution( tn, n, sf.d_subs, sf.d_coeff, sf.d_has_coeff, sf.d_vars, pv_coeff, try_coeff );
+ }
+ Node applySubstitution( TypeNode tn, Node n, std::vector< Node >& subs, std::vector< Node >& coeff, std::vector< Node >& has_coeff,
+ std::vector< Node >& vars, Node& pv_coeff, bool try_coeff = true );
+public:
unsigned getNumCEAtoms() { return d_ce_atoms.size(); }
Node getCEAtom( unsigned i ) { return d_ce_atoms[i]; }
// is eligible
bool isEligible( Node n );
// has variable
bool hasVariable( Node n, Node pv );
- Node applySubstitution( TypeNode tn, Node n, SolvedForm& sf, Node& pv_coeff, bool try_coeff = true ) {
- return applySubstitution( tn, n, sf.d_subs, sf.d_coeff, sf.d_has_coeff, sf.d_vars, pv_coeff, try_coeff );
- }
- Node applySubstitution( TypeNode tn, Node n, std::vector< Node >& subs, std::vector< Node >& coeff, std::vector< Node >& has_coeff,
- std::vector< Node >& vars, Node& pv_coeff, bool try_coeff = true );
bool useVtsDelta() { return d_use_vts_delta; }
bool useVtsInfinity() { return d_use_vts_inf; }
bool hasNestedQuantification() { return d_is_nested_quant; }
virtual bool hasProcessEquality( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return false; }
virtual bool processEquality( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& term_coeffs, std::vector< Node >& terms, unsigned effort ) { return false; }
- //called when assertion lit holds and contains pv
+ //called when assertion lit holds. note that lit is unsubstituted, first must substitute/solve/check eligible
virtual bool hasProcessAssertion( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return false; }
virtual bool processAssertion( CegInstantiator * ci, SolvedForm& sf, Node pv, Node lit, unsigned effort ) { return false; }
virtual bool processAssertions( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& lits, unsigned effort ) { return false; }
virtual bool allowModelValue( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return d_closed_enum_type; }
//do we need to postprocess the solved form? did we successfully postprocess
- virtual bool needsPostProcessInstantiation( CegInstantiator * ci, SolvedForm& sf, unsigned effort ) { return false; }
- virtual bool postProcessInstantiation( CegInstantiator * ci, SolvedForm& sf, unsigned effort ) { return true; }
+ virtual bool needsPostProcessInstantiation( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return false; }
+ virtual bool postProcessInstantiation( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return true; }
/** Identify this module (for debugging) */
virtual std::string identify() const { return "Default"; }
std::string identify() const { return "ModelValue"; }
};
-class ArithInstantiator : public Instantiator {
-private:
- Node d_vts_sym[2];
- std::vector< Node > d_mbp_bounds[2];
- std::vector< Node > d_mbp_coeff[2];
- std::vector< Node > d_mbp_vts_coeff[2][2];
- std::vector< Node > d_mbp_lit[2];
- int solve_arith( CegInstantiator * ci, Node v, Node atom, Node & veq_c, Node & val, Node& vts_coeff_inf, Node& vts_coeff_delta );
- Node getModelBasedProjectionValue( CegInstantiator * ci, Node e, Node t, bool isLower, Node c, Node me, Node mt, Node theta, Node inf_coeff, Node delta_coeff );
-public:
- ArithInstantiator( QuantifiersEngine * qe, TypeNode tn ) : Instantiator( qe, tn ){}
- virtual ~ArithInstantiator(){}
- void reset( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort );
- bool hasProcessEquality( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return true; }
- bool processEquality( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& term_coeffs, std::vector< Node >& terms, unsigned effort );
- bool hasProcessAssertion( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return true; }
- bool processAssertion( CegInstantiator * ci, SolvedForm& sf, Node pv, Node lit, unsigned effort );
- bool processAssertions( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& lits, unsigned effort );
- bool needsPostProcessInstantiation( CegInstantiator * ci, SolvedForm& sf, unsigned effort );
- bool postProcessInstantiation( CegInstantiator * ci, SolvedForm& sf, unsigned effort );
- std::string identify() const { return "Arith"; }
-};
-
-class DtInstantiator : public Instantiator {
-private:
- Node solve_dt( Node v, Node a, Node b, Node sa, Node sb );
-public:
- DtInstantiator( QuantifiersEngine * qe, TypeNode tn ) : Instantiator( qe, tn ){}
- virtual ~DtInstantiator(){}
- void reset( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort );
- bool processEqualTerms( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& eqc, unsigned effort );
- bool hasProcessEquality( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return true; }
- bool processEquality( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& term_coeffs, std::vector< Node >& terms, unsigned effort );
- std::string identify() const { return "Dt"; }
-};
-
-class TermArgTrie;
-
-class EprInstantiator : public Instantiator {
-private:
- std::vector< Node > d_equal_terms;
- void computeMatchScore( CegInstantiator * ci, Node pv, Node catom, std::vector< Node >& arg_reps, TermArgTrie * tat, unsigned index, std::map< Node, int >& match_score );
- void computeMatchScore( CegInstantiator * ci, Node pv, Node catom, Node eqc, std::map< Node, int >& match_score );
-public:
- EprInstantiator( QuantifiersEngine * qe, TypeNode tn ) : Instantiator( qe, tn ){}
- virtual ~EprInstantiator(){}
- void reset( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort );
- bool processEqualTerm( CegInstantiator * ci, SolvedForm& sf, Node pv, Node pv_coeff, Node n, unsigned effort );
- bool processEqualTerms( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& eqc, unsigned effort );
- std::string identify() const { return "Epr"; }
-};
-
-class BvInstantiator : public Instantiator {
-public:
- BvInstantiator( QuantifiersEngine * qe, TypeNode tn ) : Instantiator( qe, tn ){}
- virtual ~BvInstantiator(){}
- bool processAssertion( CegInstantiator * ci, SolvedForm& sf, Node pv, Node lit, unsigned effort );
- bool useModelValue( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return true; }
- std::string identify() const { return "Bv"; }
-};
-
}
}
--- /dev/null
+/********************* */
+/*! \file ceg_t_instantiator.cpp
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Andrew Reynolds
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2016 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief Implementation of theory-specific counterexample-guided quantifier instantiation
+ **/
+
+#include "theory/quantifiers/ceg_t_instantiator.h"
+
+#include "options/quantifiers_options.h"
+#include "theory/quantifiers/first_order_model.h"
+#include "theory/quantifiers/term_database.h"
+#include "theory/quantifiers/quantifiers_rewriter.h"
+#include "theory/quantifiers/trigger.h"
+
+#include "theory/arith/partial_model.h"
+#include "theory/arith/theory_arith.h"
+#include "theory/arith/theory_arith_private.h"
+#include "theory/bv/theory_bv_utils.h"
+#include "util/bitvector.h"
+
+using namespace std;
+using namespace CVC4;
+using namespace CVC4::kind;
+using namespace CVC4::context;
+using namespace CVC4::theory;
+using namespace CVC4::theory::quantifiers;
+
+Node ArithInstantiator::getModelBasedProjectionValue( CegInstantiator * ci, Node e, Node t, bool isLower, Node c, Node me, Node mt, Node theta, Node inf_coeff, Node delta_coeff ) {
+ Node val = t;
+ Trace("cbqi-bound2") << "Value : " << val << std::endl;
+ Assert( !e.getType().isInteger() || t.getType().isInteger() );
+ Assert( !e.getType().isInteger() || mt.getType().isInteger() );
+ //add rho value
+ //get the value of c*e
+ Node ceValue = me;
+ Node new_theta = theta;
+ if( !c.isNull() ){
+ Assert( c.getType().isInteger() );
+ ceValue = NodeManager::currentNM()->mkNode( MULT, ceValue, c );
+ ceValue = Rewriter::rewrite( ceValue );
+ if( new_theta.isNull() ){
+ new_theta = c;
+ }else{
+ new_theta = NodeManager::currentNM()->mkNode( MULT, new_theta, c );
+ new_theta = Rewriter::rewrite( new_theta );
+ }
+ Trace("cbqi-bound2") << "...c*e = " << ceValue << std::endl;
+ Trace("cbqi-bound2") << "...theta = " << new_theta << std::endl;
+ }
+ if( !new_theta.isNull() && e.getType().isInteger() ){
+ Node rho;
+ //if( !mt.getType().isInteger() ){
+ //round up/down
+ //mt = NodeManager::currentNM()->mkNode(
+ //}
+ if( isLower ){
+ rho = NodeManager::currentNM()->mkNode( MINUS, ceValue, mt );
+ }else{
+ rho = NodeManager::currentNM()->mkNode( MINUS, mt, ceValue );
+ }
+ rho = Rewriter::rewrite( rho );
+ Trace("cbqi-bound2") << "...rho = " << me << " - " << mt << " = " << rho << std::endl;
+ Trace("cbqi-bound2") << "..." << rho << " mod " << new_theta << " = ";
+ rho = NodeManager::currentNM()->mkNode( INTS_MODULUS_TOTAL, rho, new_theta );
+ rho = Rewriter::rewrite( rho );
+ Trace("cbqi-bound2") << rho << std::endl;
+ Kind rk = isLower ? PLUS : MINUS;
+ val = NodeManager::currentNM()->mkNode( rk, val, rho );
+ val = Rewriter::rewrite( val );
+ Trace("cbqi-bound2") << "(after rho) : " << val << std::endl;
+ }
+ if( !inf_coeff.isNull() ){
+ Assert( !d_vts_sym[0].isNull() );
+ val = NodeManager::currentNM()->mkNode( PLUS, val, NodeManager::currentNM()->mkNode( MULT, inf_coeff, d_vts_sym[0] ) );
+ val = Rewriter::rewrite( val );
+ }
+ if( !delta_coeff.isNull() ){
+ //create delta here if necessary
+ val = NodeManager::currentNM()->mkNode( PLUS, val, NodeManager::currentNM()->mkNode( MULT, delta_coeff, ci->getQuantifiersEngine()->getTermDatabase()->getVtsDelta() ) );
+ val = Rewriter::rewrite( val );
+ }
+ return val;
+}
+
+//this isolates the atom into solved form
+// veq_c * pv <> val + vts_coeff_delta * delta + vts_coeff_inf * inf
+// ensures val is Int if pv is Int, and val does not contain vts symbols
+int ArithInstantiator::solve_arith( CegInstantiator * ci, Node pv, Node atom, Node& veq_c, Node& val, Node& vts_coeff_inf, Node& vts_coeff_delta ) {
+ int ires = 0;
+ Trace("cbqi-inst-debug") << "isolate for " << pv << " in " << atom << std::endl;
+ std::map< Node, Node > msum;
+ if( QuantArith::getMonomialSumLit( atom, msum ) ){
+ Trace("cbqi-inst-debug") << "got monomial sum: " << std::endl;
+ if( Trace.isOn("cbqi-inst-debug") ){
+ QuantArith::debugPrintMonomialSum( msum, "cbqi-inst-debug" );
+ }
+ TypeNode pvtn = pv.getType();
+ //remove vts symbols from polynomial
+ Node vts_coeff[2];
+ for( unsigned t=0; t<2; t++ ){
+ if( !d_vts_sym[t].isNull() ){
+ std::map< Node, Node >::iterator itminf = msum.find( d_vts_sym[t] );
+ if( itminf!=msum.end() ){
+ vts_coeff[t] = itminf->second;
+ if( vts_coeff[t].isNull() ){
+ vts_coeff[t] = NodeManager::currentNM()->mkConst( Rational( 1 ) );
+ }
+ //negate if coefficient on variable is positive
+ std::map< Node, Node >::iterator itv = msum.find( pv );
+ if( itv!=msum.end() ){
+ //multiply by the coefficient we will isolate for
+ if( itv->second.isNull() ){
+ vts_coeff[t] = QuantArith::negate(vts_coeff[t]);
+ }else{
+ if( !pvtn.isInteger() ){
+ vts_coeff[t] = NodeManager::currentNM()->mkNode( MULT, NodeManager::currentNM()->mkConst( Rational(-1) / itv->second.getConst<Rational>() ), vts_coeff[t] );
+ vts_coeff[t] = Rewriter::rewrite( vts_coeff[t] );
+ }else if( itv->second.getConst<Rational>().sgn()==1 ){
+ vts_coeff[t] = QuantArith::negate(vts_coeff[t]);
+ }
+ }
+ }
+ Trace("cbqi-inst-debug") << "vts[" << t << "] coefficient is " << vts_coeff[t] << std::endl;
+ msum.erase( d_vts_sym[t] );
+ }
+ }
+ }
+
+ ires = QuantArith::isolate( pv, msum, veq_c, val, atom.getKind() );
+ if( ires!=0 ){
+ Node realPart;
+ if( Trace.isOn("cbqi-inst-debug") ){
+ Trace("cbqi-inst-debug") << "Isolate : ";
+ if( !veq_c.isNull() ){
+ Trace("cbqi-inst-debug") << veq_c << " * ";
+ }
+ Trace("cbqi-inst-debug") << pv << " " << atom.getKind() << " " << val << std::endl;
+ }
+ if( options::cbqiAll() ){
+ // when not pure LIA/LRA, we must check whether the lhs contains pv
+ if( TermDb::containsTerm( val, pv ) ){
+ Trace("cbqi-inst-debug") << "fail : contains bad term" << std::endl;
+ return 0;
+ }
+ }
+ if( pvtn.isInteger() && ( ( !veq_c.isNull() && !veq_c.getType().isInteger() ) || !val.getType().isInteger() ) ){
+ //redo, split integer/non-integer parts
+ bool useCoeff = false;
+ Integer coeff = ci->getQuantifiersEngine()->getTermDatabase()->d_one.getConst<Rational>().getNumerator();
+ for( std::map< Node, Node >::iterator it = msum.begin(); it != msum.end(); ++it ){
+ if( it->first.isNull() || it->first.getType().isInteger() ){
+ if( !it->second.isNull() ){
+ coeff = coeff.lcm( it->second.getConst<Rational>().getDenominator() );
+ useCoeff = true;
+ }
+ }
+ }
+ //multiply everything by this coefficient
+ Node rcoeff = NodeManager::currentNM()->mkConst( Rational( coeff ) );
+ std::vector< Node > real_part;
+ for( std::map< Node, Node >::iterator it = msum.begin(); it != msum.end(); ++it ){
+ if( useCoeff ){
+ if( it->second.isNull() ){
+ msum[it->first] = rcoeff;
+ }else{
+ msum[it->first] = Rewriter::rewrite( NodeManager::currentNM()->mkNode( MULT, it->second, rcoeff ) );
+ }
+ }
+ if( !it->first.isNull() && !it->first.getType().isInteger() ){
+ real_part.push_back( msum[it->first].isNull() ? it->first : NodeManager::currentNM()->mkNode( MULT, msum[it->first], it->first ) );
+ }
+ }
+ //remove delta TODO: check this
+ vts_coeff[1] = Node::null();
+ //multiply inf
+ if( !vts_coeff[0].isNull() ){
+ vts_coeff[0] = Rewriter::rewrite( NodeManager::currentNM()->mkNode( MULT, rcoeff, vts_coeff[0] ) );
+ }
+ realPart = real_part.empty() ? ci->getQuantifiersEngine()->getTermDatabase()->d_zero : ( real_part.size()==1 ? real_part[0] : NodeManager::currentNM()->mkNode( PLUS, real_part ) );
+ Assert( ci->getOutput()->isEligibleForInstantiation( realPart ) );
+ //re-isolate
+ Trace("cbqi-inst-debug") << "Re-isolate..." << std::endl;
+ ires = QuantArith::isolate( pv, msum, veq_c, val, atom.getKind() );
+ Trace("cbqi-inst-debug") << "Isolate for mixed Int/Real : " << veq_c << " * " << pv << " " << atom.getKind() << " " << val << std::endl;
+ Trace("cbqi-inst-debug") << " real part : " << realPart << std::endl;
+ if( ires!=0 ){
+ int ires_use = ( msum[pv].isNull() || msum[pv].getConst<Rational>().sgn()==1 ) ? 1 : -1;
+ val = Rewriter::rewrite( NodeManager::currentNM()->mkNode( ires_use==-1 ? PLUS : MINUS,
+ NodeManager::currentNM()->mkNode( ires_use==-1 ? MINUS : PLUS, val, realPart ),
+ NodeManager::currentNM()->mkNode( TO_INTEGER, realPart ) ) ); //TODO: round up for upper bounds?
+ Trace("cbqi-inst-debug") << "result : " << val << std::endl;
+ Assert( val.getType().isInteger() );
+ }
+ }
+ }
+ vts_coeff_inf = vts_coeff[0];
+ vts_coeff_delta = vts_coeff[1];
+ Trace("cbqi-inst-debug") << "Return " << veq_c << " * " << pv << " " << atom.getKind() << " " << val << ", vts = (" << vts_coeff_inf << ", " << vts_coeff_delta << ")" << std::endl;
+ }else{
+ Trace("cbqi-inst-debug") << "fail : could not get monomial sum" << std::endl;
+ }
+ return ires;
+}
+
+void ArithInstantiator::reset( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) {
+ d_vts_sym[0] = ci->getQuantifiersEngine()->getTermDatabase()->getVtsInfinity( d_type, false, false );
+ d_vts_sym[1] = ci->getQuantifiersEngine()->getTermDatabase()->getVtsDelta( false, false );
+ for( unsigned i=0; i<2; i++ ){
+ d_mbp_bounds[i].clear();
+ d_mbp_coeff[i].clear();
+ for( unsigned j=0; j<2; j++ ){
+ d_mbp_vts_coeff[i][j].clear();
+ }
+ d_mbp_lit[i].clear();
+ }
+}
+
+bool ArithInstantiator::processEquality( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& term_coeffs, std::vector< Node >& terms, unsigned effort ) {
+ Node eq_lhs = terms[0];
+ Node eq_rhs = terms[1];
+ Node lhs_coeff = term_coeffs[0];
+ Node rhs_coeff = term_coeffs[1];
+ //make the same coefficient
+ if( rhs_coeff!=lhs_coeff ){
+ if( !rhs_coeff.isNull() ){
+ Trace("cbqi-inst-debug") << "...mult lhs by " << rhs_coeff << std::endl;
+ eq_lhs = NodeManager::currentNM()->mkNode( MULT, rhs_coeff, eq_lhs );
+ eq_lhs = Rewriter::rewrite( eq_lhs );
+ }
+ if( !lhs_coeff.isNull() ){
+ Trace("cbqi-inst-debug") << "...mult rhs by " << lhs_coeff << std::endl;
+ eq_rhs = NodeManager::currentNM()->mkNode( MULT, lhs_coeff, eq_rhs );
+ eq_rhs = Rewriter::rewrite( eq_rhs );
+ }
+ }
+ Node eq = eq_lhs.eqNode( eq_rhs );
+ eq = Rewriter::rewrite( eq );
+ Node val;
+ Node veq_c;
+ Node vts_coeff_inf;
+ Node vts_coeff_delta;
+ //isolate pv in the equality
+ int ires = solve_arith( ci, pv, eq, veq_c, val, vts_coeff_inf, vts_coeff_delta );
+ if( ires!=0 ){
+ if( ci->doAddInstantiationInc( pv, val, veq_c, 0, sf, effort ) ){
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool ArithInstantiator::processAssertion( CegInstantiator * ci, SolvedForm& sf, Node pv, Node lit, unsigned effort ) {
+ Trace("cbqi-inst-debug2") << " look at " << lit << std::endl;
+ Node atom = lit.getKind()==NOT ? lit[0] : lit;
+ bool pol = lit.getKind()!=NOT;
+ //arithmetic inequalities and disequalities
+ if( atom.getKind()==GEQ || ( atom.getKind()==EQUAL && !pol && atom[0].getType().isReal() ) ){
+ Assert( atom.getKind()!=GEQ || atom[1].isConst() );
+ Node atom_lhs;
+ Node atom_rhs;
+ if( atom.getKind()==GEQ ){
+ atom_lhs = atom[0];
+ atom_rhs = atom[1];
+ }else{
+ atom_lhs = NodeManager::currentNM()->mkNode( MINUS, atom[0], atom[1] );
+ atom_lhs = Rewriter::rewrite( atom_lhs );
+ atom_rhs = ci->getQuantifiersEngine()->getTermDatabase()->d_zero;
+ }
+ //must be an eligible term
+ if( ci->isEligible( atom_lhs ) ){
+ //apply substitution to LHS of atom
+ Node atom_lhs_coeff;
+ atom_lhs = ci->applySubstitution( d_type, atom_lhs, sf, atom_lhs_coeff );
+ if( !atom_lhs.isNull() ){
+ if( !atom_lhs_coeff.isNull() ){
+ atom_rhs = Rewriter::rewrite( NodeManager::currentNM()->mkNode( MULT, atom_lhs_coeff, atom_rhs ) );
+ }
+ }
+ //if it contains pv, not infinity
+ if( !atom_lhs.isNull() && ci->hasVariable( atom_lhs, pv ) ){
+ Node pv_value = ci->getModelValue( pv );
+ Node satom = NodeManager::currentNM()->mkNode( atom.getKind(), atom_lhs, atom_rhs );
+ //cannot contain infinity?
+ Trace("cbqi-inst-debug") << "..[3] From assertion : " << atom << ", pol = " << pol << std::endl;
+ Trace("cbqi-inst-debug") << " substituted : " << satom << ", pol = " << pol << std::endl;
+ Node vts_coeff_inf;
+ Node vts_coeff_delta;
+ Node val;
+ Node veq_c;
+ //isolate pv in the inequality
+ int ires = solve_arith( ci, pv, satom, veq_c, val, vts_coeff_inf, vts_coeff_delta );
+ if( ires!=0 ){
+ //disequalities are either strict upper or lower bounds
+ unsigned rmax = ( atom.getKind()==GEQ || options::cbqiModel() ) ? 1 : 2;
+ for( unsigned r=0; r<rmax; r++ ){
+ int uires = ires;
+ Node uval = val;
+ if( atom.getKind()==GEQ ){
+ //push negation downwards
+ if( !pol ){
+ uires = -ires;
+ if( d_type.isInteger() ){
+ uval = NodeManager::currentNM()->mkNode( PLUS, val, NodeManager::currentNM()->mkConst( Rational( uires ) ) );
+ uval = Rewriter::rewrite( uval );
+ }else{
+ Assert( d_type.isReal() );
+ //now is strict inequality
+ uires = uires*2;
+ }
+ }
+ }else{
+ bool is_upper;
+ if( options::cbqiModel() ){
+ // disequality is a disjunction : only consider the bound in the direction of the model
+ //first check if there is an infinity...
+ if( !vts_coeff_inf.isNull() ){
+ //coefficient or val won't make a difference, just compare with zero
+ Trace("cbqi-inst-debug") << "Disequality : check infinity polarity " << vts_coeff_inf << std::endl;
+ Assert( vts_coeff_inf.isConst() );
+ is_upper = ( vts_coeff_inf.getConst<Rational>().sgn()==1 );
+ }else{
+ Node rhs_value = ci->getModelValue( val );
+ Node lhs_value = pv_value;
+ if( !veq_c.isNull() ){
+ lhs_value = NodeManager::currentNM()->mkNode( MULT, lhs_value, veq_c );
+ lhs_value = Rewriter::rewrite( lhs_value );
+ }
+ Trace("cbqi-inst-debug") << "Disequality : check model values " << lhs_value << " " << rhs_value << std::endl;
+ Assert( lhs_value!=rhs_value );
+ Node cmp = NodeManager::currentNM()->mkNode( GEQ, lhs_value, rhs_value );
+ cmp = Rewriter::rewrite( cmp );
+ Assert( cmp.isConst() );
+ is_upper = ( cmp!=ci->getQuantifiersEngine()->getTermDatabase()->d_true );
+ }
+ }else{
+ is_upper = (r==0);
+ }
+ Assert( atom.getKind()==EQUAL && !pol );
+ if( d_type.isInteger() ){
+ uires = is_upper ? -1 : 1;
+ uval = NodeManager::currentNM()->mkNode( PLUS, val, NodeManager::currentNM()->mkConst( Rational( uires ) ) );
+ uval = Rewriter::rewrite( uval );
+ }else{
+ Assert( d_type.isReal() );
+ uires = is_upper ? -2 : 2;
+ }
+ }
+ Trace("cbqi-bound-inf") << "From " << lit << ", got : ";
+ if( !veq_c.isNull() ){
+ Trace("cbqi-bound-inf") << veq_c << " * ";
+ }
+ Trace("cbqi-bound-inf") << pv << " -> " << uval << ", styp = " << uires << std::endl;
+ //take into account delta
+ if( ci->useVtsDelta() && ( uires==2 || uires==-2 ) ){
+ if( options::cbqiModel() ){
+ Node delta_coeff = NodeManager::currentNM()->mkConst( Rational( uires > 0 ? 1 : -1 ) );
+ if( vts_coeff_delta.isNull() ){
+ vts_coeff_delta = delta_coeff;
+ }else{
+ vts_coeff_delta = NodeManager::currentNM()->mkNode( PLUS, vts_coeff_delta, delta_coeff );
+ vts_coeff_delta = Rewriter::rewrite( vts_coeff_delta );
+ }
+ }else{
+ Node delta = ci->getQuantifiersEngine()->getTermDatabase()->getVtsDelta();
+ uval = NodeManager::currentNM()->mkNode( uires==2 ? PLUS : MINUS, uval, delta );
+ uval = Rewriter::rewrite( uval );
+ }
+ }
+ if( options::cbqiModel() ){
+ //just store bounds, will choose based on tighest bound
+ unsigned index = uires>0 ? 0 : 1;
+ d_mbp_bounds[index].push_back( uval );
+ d_mbp_coeff[index].push_back( veq_c );
+ Trace("cbqi-inst-debug") << "Store bound " << index << " " << uval << " " << veq_c << " " << vts_coeff_inf << " " << vts_coeff_delta << " " << lit << std::endl;
+ for( unsigned t=0; t<2; t++ ){
+ d_mbp_vts_coeff[index][t].push_back( t==0 ? vts_coeff_inf : vts_coeff_delta );
+ }
+ d_mbp_lit[index].push_back( lit );
+ }else{
+ //try this bound
+ if( ci->doAddInstantiationInc( pv, uval, veq_c, uires>0 ? 1 : -1, sf, effort ) ){
+ return true;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+
+ return false;
+}
+
+bool ArithInstantiator::processAssertions( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& lits, unsigned effort ) {
+ if( options::cbqiModel() ){
+ bool use_inf = ci->useVtsInfinity() && ( d_type.isInteger() ? options::cbqiUseInfInt() : options::cbqiUseInfReal() );
+ bool upper_first = false;
+ if( options::cbqiMinBounds() ){
+ upper_first = d_mbp_bounds[1].size()<d_mbp_bounds[0].size();
+ }
+ int best_used[2];
+ std::vector< Node > t_values[3];
+ Node zero = ci->getQuantifiersEngine()->getTermDatabase()->d_zero;
+ Node one = ci->getQuantifiersEngine()->getTermDatabase()->d_one;
+ Node pv_value = ci->getModelValue( pv );
+ //try optimal bounds
+ for( unsigned r=0; r<2; r++ ){
+ int rr = upper_first ? (1-r) : r;
+ best_used[rr] = -1;
+ if( d_mbp_bounds[rr].empty() ){
+ if( use_inf ){
+ Trace("cbqi-bound") << "No " << ( rr==0 ? "lower" : "upper" ) << " bounds for " << pv << " (type=" << d_type << ")" << std::endl;
+ //no bounds, we do +- infinity
+ Node val = ci->getQuantifiersEngine()->getTermDatabase()->getVtsInfinity( d_type );
+ //TODO : rho value for infinity?
+ if( rr==0 ){
+ val = NodeManager::currentNM()->mkNode( UMINUS, val );
+ val = Rewriter::rewrite( val );
+ }
+ if( ci->doAddInstantiationInc( pv, val, Node::null(), 0, sf, effort ) ){
+ return true;
+ }
+ }
+ }else{
+ Trace("cbqi-bound") << ( rr==0 ? "Lower" : "Upper" ) << " bounds for " << pv << " (type=" << d_type << ") : " << std::endl;
+ int best = -1;
+ Node best_bound_value[3];
+ for( unsigned j=0; j<d_mbp_bounds[rr].size(); j++ ){
+ Node value[3];
+ if( Trace.isOn("cbqi-bound") ){
+ Assert( !d_mbp_bounds[rr][j].isNull() );
+ Trace("cbqi-bound") << " " << j << ": " << d_mbp_bounds[rr][j];
+ if( !d_mbp_vts_coeff[rr][0][j].isNull() ){
+ Trace("cbqi-bound") << " (+ " << d_mbp_vts_coeff[rr][0][j] << " * INF)";
+ }
+ if( !d_mbp_vts_coeff[rr][1][j].isNull() ){
+ Trace("cbqi-bound") << " (+ " << d_mbp_vts_coeff[rr][1][j] << " * DELTA)";
+ }
+ if( !d_mbp_coeff[rr][j].isNull() ){
+ Trace("cbqi-bound") << " (div " << d_mbp_coeff[rr][j] << ")";
+ }
+ Trace("cbqi-bound") << ", value = ";
+ }
+ t_values[rr].push_back( Node::null() );
+ //check if it is better than the current best bound : lexicographic order infinite/finite/infinitesimal parts
+ bool new_best = true;
+ for( unsigned t=0; t<3; t++ ){
+ //get the value
+ if( t==0 ){
+ value[0] = d_mbp_vts_coeff[rr][0][j];
+ if( !value[0].isNull() ){
+ Trace("cbqi-bound") << "( " << value[0] << " * INF ) + ";
+ }else{
+ value[0] = zero;
+ }
+ }else if( t==1 ){
+ Node t_value = ci->getModelValue( d_mbp_bounds[rr][j] );
+ t_values[rr][j] = t_value;
+ value[1] = t_value;
+ Trace("cbqi-bound") << value[1];
+ }else{
+ value[2] = d_mbp_vts_coeff[rr][1][j];
+ if( !value[2].isNull() ){
+ Trace("cbqi-bound") << " + ( " << value[2] << " * DELTA )";
+ }else{
+ value[2] = zero;
+ }
+ }
+ //multiply by coefficient
+ if( value[t]!=zero && !d_mbp_coeff[rr][j].isNull() ){
+ Assert( d_mbp_coeff[rr][j].isConst() );
+ value[t] = NodeManager::currentNM()->mkNode( MULT, NodeManager::currentNM()->mkConst( Rational(1) / d_mbp_coeff[rr][j].getConst<Rational>() ), value[t] );
+ value[t] = Rewriter::rewrite( value[t] );
+ }
+ //check if new best
+ if( best!=-1 ){
+ Assert( !value[t].isNull() && !best_bound_value[t].isNull() );
+ if( value[t]!=best_bound_value[t] ){
+ Kind k = rr==0 ? GEQ : LEQ;
+ Node cmp_bound = NodeManager::currentNM()->mkNode( k, value[t], best_bound_value[t] );
+ cmp_bound = Rewriter::rewrite( cmp_bound );
+ if( cmp_bound!=ci->getQuantifiersEngine()->getTermDatabase()->d_true ){
+ new_best = false;
+ break;
+ }
+ }
+ }
+ }
+ Trace("cbqi-bound") << std::endl;
+ if( new_best ){
+ for( unsigned t=0; t<3; t++ ){
+ best_bound_value[t] = value[t];
+ }
+ best = j;
+ }
+ }
+ if( best!=-1 ){
+ Trace("cbqi-bound") << "...best bound is " << best << " : ";
+ if( best_bound_value[0]!=zero ){
+ Trace("cbqi-bound") << "( " << best_bound_value[0] << " * INF ) + ";
+ }
+ Trace("cbqi-bound") << best_bound_value[1];
+ if( best_bound_value[2]!=zero ){
+ Trace("cbqi-bound") << " + ( " << best_bound_value[2] << " * DELTA )";
+ }
+ Trace("cbqi-bound") << std::endl;
+ best_used[rr] = best;
+ //if using cbqiMidpoint, only add the instance based on one bound if the bound is non-strict
+ if( !options::cbqiMidpoint() || d_type.isInteger() || d_mbp_vts_coeff[rr][1][best].isNull() ){
+ Node val = d_mbp_bounds[rr][best];
+ val = getModelBasedProjectionValue( ci, pv, val, rr==0, d_mbp_coeff[rr][best], pv_value, t_values[rr][best], sf.d_theta,
+ d_mbp_vts_coeff[rr][0][best], d_mbp_vts_coeff[rr][1][best] );
+ if( !val.isNull() ){
+ if( ci->doAddInstantiationInc( pv, val, d_mbp_coeff[rr][best], rr==0 ? 1 : -1, sf, effort ) ){
+ return true;
+ }
+ }
+ }
+ }
+ }
+ }
+ //if not using infinity, use model value of zero
+ if( !use_inf && d_mbp_bounds[0].empty() && d_mbp_bounds[1].empty() ){
+ Node val = zero;
+ Node c; //null (one) coefficient
+ val = getModelBasedProjectionValue( ci, pv, val, true, c, pv_value, zero, sf.d_theta, Node::null(), Node::null() );
+ if( !val.isNull() ){
+ if( ci->doAddInstantiationInc( pv, val, c, 0, sf, effort ) ){
+ return true;
+ }
+ }
+ }
+ if( options::cbqiMidpoint() && !d_type.isInteger() ){
+ Node vals[2];
+ bool bothBounds = true;
+ Trace("cbqi-bound") << "Try midpoint of bounds..." << std::endl;
+ for( unsigned rr=0; rr<2; rr++ ){
+ int best = best_used[rr];
+ if( best==-1 ){
+ bothBounds = false;
+ }else{
+ vals[rr] = d_mbp_bounds[rr][best];
+ vals[rr] = getModelBasedProjectionValue( ci, pv, vals[rr], rr==0, Node::null(), pv_value, t_values[rr][best], sf.d_theta,
+ d_mbp_vts_coeff[rr][0][best], Node::null() );
+ }
+ Trace("cbqi-bound") << "Bound : " << vals[rr] << std::endl;
+ }
+ Node val;
+ if( bothBounds ){
+ Assert( !vals[0].isNull() && !vals[1].isNull() );
+ if( vals[0]==vals[1] ){
+ val = vals[0];
+ }else{
+ val = NodeManager::currentNM()->mkNode( MULT, NodeManager::currentNM()->mkNode( PLUS, vals[0], vals[1] ),
+ NodeManager::currentNM()->mkConst( Rational(1)/Rational(2) ) );
+ val = Rewriter::rewrite( val );
+ }
+ }else{
+ if( !vals[0].isNull() ){
+ val = NodeManager::currentNM()->mkNode( PLUS, vals[0], one );
+ val = Rewriter::rewrite( val );
+ }else if( !vals[1].isNull() ){
+ val = NodeManager::currentNM()->mkNode( MINUS, vals[1], one );
+ val = Rewriter::rewrite( val );
+ }
+ }
+ Trace("cbqi-bound") << "Midpoint value : " << val << std::endl;
+ if( !val.isNull() ){
+ if( ci->doAddInstantiationInc( pv, val, Node::null(), 0, sf, effort ) ){
+ return true;
+ }
+ }
+ }
+ //generally should not make it to this point FIXME: write proper assertion
+ //Assert( ( ci->hasNestedQuantification() && !options::cbqiNestedQE() ) || options::cbqiAll() );
+
+ if( options::cbqiNopt() ){
+ //try non-optimal bounds (heuristic, may help when nested quantification) ?
+ Trace("cbqi-bound") << "Try non-optimal bounds..." << std::endl;
+ for( unsigned r=0; r<2; r++ ){
+ int rr = upper_first ? (1-r) : r;
+ for( unsigned j=0; j<d_mbp_bounds[rr].size(); j++ ){
+ if( (int)j!=best_used[rr] && ( !options::cbqiMidpoint() || d_mbp_vts_coeff[rr][1][j].isNull() ) ){
+ Node val = getModelBasedProjectionValue( ci, pv, d_mbp_bounds[rr][j], rr==0, d_mbp_coeff[rr][j], pv_value, t_values[rr][j], sf.d_theta,
+ d_mbp_vts_coeff[rr][0][j], d_mbp_vts_coeff[rr][1][j] );
+ if( !val.isNull() ){
+ if( ci->doAddInstantiationInc( pv, val, d_mbp_coeff[rr][j], rr==0 ? 1 : -1, sf, effort ) ){
+ return true;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ return false;
+}
+
+bool ArithInstantiator::needsPostProcessInstantiation( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) {
+ return std::find( sf.d_has_coeff.begin(), sf.d_has_coeff.end(), pv )!=sf.d_has_coeff.end();
+}
+
+bool ArithInstantiator::postProcessInstantiation( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) {
+ Assert( std::find( sf.d_has_coeff.begin(), sf.d_has_coeff.end(), pv )!=sf.d_has_coeff.end() );
+ Assert( std::find( sf.d_vars.begin(), sf.d_vars.end(), pv )!=sf.d_vars.end() );
+ unsigned index = std::find( sf.d_vars.begin(), sf.d_vars.end(), pv )-sf.d_vars.begin();
+ Assert( !sf.d_coeff[index].isNull() );
+ Trace("cbqi-inst-debug") << "Normalize substitution for " << sf.d_coeff[index] << " * " << sf.d_vars[index] << " = " << sf.d_subs[index] << std::endl;
+ Assert( sf.d_vars[index].getType().isInteger() );
+ //must ensure that divisibility constraints are met
+ //solve updated rewritten equality for vars[index], if coefficient is one, then we are successful
+ Node eq_lhs = NodeManager::currentNM()->mkNode( MULT, sf.d_coeff[index], sf.d_vars[index] );
+ Node eq_rhs = sf.d_subs[index];
+ Node eq = eq_lhs.eqNode( eq_rhs );
+ eq = Rewriter::rewrite( eq );
+ Trace("cbqi-inst-debug") << "...equality is " << eq << std::endl;
+ std::map< Node, Node > msum;
+ if( QuantArith::getMonomialSumLit( eq, msum ) ){
+ Node veq;
+ if( QuantArith::isolate( sf.d_vars[index], msum, veq, EQUAL, true )!=0 ){
+ Node veq_c;
+ if( veq[0]!=sf.d_vars[index] ){
+ Node veq_v;
+ if( QuantArith::getMonomial( veq[0], veq_c, veq_v ) ){
+ Assert( veq_v==sf.d_vars[index] );
+ }
+ }
+ sf.d_subs[index] = veq[1];
+ if( !veq_c.isNull() ){
+ sf.d_subs[index] = NodeManager::currentNM()->mkNode( INTS_DIVISION_TOTAL, veq[1], veq_c );
+ Trace("cbqi-inst-debug") << "...bound type is : " << sf.d_btyp[index] << std::endl;
+ //intger division rounding up if from a lower bound
+ if( sf.d_btyp[index]==1 && options::cbqiRoundUpLowerLia() ){
+ sf.d_subs[index] = NodeManager::currentNM()->mkNode( PLUS, sf.d_subs[index],
+ NodeManager::currentNM()->mkNode( ITE,
+ NodeManager::currentNM()->mkNode( EQUAL,
+ NodeManager::currentNM()->mkNode( INTS_MODULUS_TOTAL, veq[1], veq_c ),
+ ci->getQuantifiersEngine()->getTermDatabase()->d_zero ),
+ ci->getQuantifiersEngine()->getTermDatabase()->d_zero, ci->getQuantifiersEngine()->getTermDatabase()->d_one )
+ );
+ }
+ }
+ Trace("cbqi-inst-debug") << "...normalize integers : " << sf.d_vars[index] << " -> " << sf.d_subs[index] << std::endl;
+ }else{
+ Trace("cbqi-inst-debug") << "...failed to isolate." << std::endl;
+ return false;
+ }
+ }else{
+ Trace("cbqi-inst-debug") << "...failed to get monomial sum." << std::endl;
+ return false;
+ }
+ return true;
+}
+
+void DtInstantiator::reset( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) {
+
+}
+
+Node DtInstantiator::solve_dt( Node v, Node a, Node b, Node sa, Node sb ) {
+ Trace("cbqi-inst-debug2") << "Solve dt : " << v << " " << a << " " << b << " " << sa << " " << sb << std::endl;
+ Node ret;
+ if( !a.isNull() && a==v ){
+ ret = sb;
+ }else if( !b.isNull() && b==v ){
+ ret = sa;
+ }else if( !a.isNull() && a.getKind()==APPLY_CONSTRUCTOR ){
+ if( !b.isNull() && b.getKind()==APPLY_CONSTRUCTOR ){
+ if( a.getOperator()==b.getOperator() ){
+ for( unsigned i=0; i<a.getNumChildren(); i++ ){
+ Node s = solve_dt( v, a[i], b[i], sa[i], sb[i] );
+ if( !s.isNull() ){
+ return s;
+ }
+ }
+ }
+ }else{
+ unsigned cindex = Datatype::indexOf( a.getOperator().toExpr() );
+ TypeNode tn = a.getType();
+ const Datatype& dt = ((DatatypeType)(tn).toType()).getDatatype();
+ for( unsigned i=0; i<a.getNumChildren(); i++ ){
+ Node nn = NodeManager::currentNM()->mkNode( APPLY_SELECTOR_TOTAL, Node::fromExpr( dt[cindex][i].getSelector() ), sb );
+ Node s = solve_dt( v, a[i], Node::null(), sa[i], nn );
+ if( !s.isNull() ){
+ return s;
+ }
+ }
+ }
+ }else if( !b.isNull() && b.getKind()==APPLY_CONSTRUCTOR ){
+ return solve_dt( v, b, a, sb, sa );
+ }
+ if( !ret.isNull() ){
+ //ensure does not contain
+ if( TermDb::containsTerm( ret, v ) ){
+ ret = Node::null();
+ }
+ }
+ return ret;
+}
+
+bool DtInstantiator::processEqualTerms( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& eqc, unsigned effort ) {
+ Trace("cbqi-inst-debug") << "[2] try based on constructors in equivalence class." << std::endl;
+ //[2] look in equivalence class for a constructor
+ for( unsigned k=0; k<eqc.size(); k++ ){
+ Node n = eqc[k];
+ if( n.getKind()==APPLY_CONSTRUCTOR ){
+ Trace("cbqi-inst-debug") << "...try based on constructor term " << n << std::endl;
+ std::vector< Node > children;
+ children.push_back( n.getOperator() );
+ const Datatype& dt = ((DatatypeType)(d_type).toType()).getDatatype();
+ unsigned cindex = Datatype::indexOf( n.getOperator().toExpr() );
+ //now must solve for selectors applied to pv
+ for( unsigned j=0; j<dt[cindex].getNumArgs(); j++ ){
+ Node c = NodeManager::currentNM()->mkNode( APPLY_SELECTOR_TOTAL, Node::fromExpr( dt[cindex][j].getSelector() ), pv );
+ ci->pushStackVariable( c );
+ children.push_back( c );
+ }
+ Node val = NodeManager::currentNM()->mkNode( kind::APPLY_CONSTRUCTOR, children );
+ if( ci->doAddInstantiationInc( pv, val, Node::null(), 0, sf, effort ) ){
+ return true;
+ }else{
+ //cleanup
+ for( unsigned j=0; j<dt[cindex].getNumArgs(); j++ ){
+ ci->popStackVariable();
+ }
+ break;
+ }
+ }
+ }
+ return false;
+}
+
+bool DtInstantiator::processEquality( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& term_coeffs, std::vector< Node >& terms, unsigned effort ) {
+ Node val = solve_dt( pv, terms[0], terms[1], terms[0], terms[1] );
+ if( !val.isNull() ){
+ Node veq_c;
+ if( ci->doAddInstantiationInc( pv, val, veq_c, 0, sf, effort ) ){
+ return true;
+ }
+ }
+ return false;
+}
+
+void EprInstantiator::reset( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) {
+ d_equal_terms.clear();
+}
+
+bool EprInstantiator::processEqualTerm( CegInstantiator * ci, SolvedForm& sf, Node pv, Node pv_coeff, Node n, unsigned effort ) {
+ if( options::quantEprMatching() ){
+ Assert( pv_coeff.isNull() );
+ d_equal_terms.push_back( n );
+ return false;
+ }else{
+ return ci->doAddInstantiationInc( pv, n, pv_coeff, 0, sf, effort );
+ }
+}
+
+void EprInstantiator::computeMatchScore( CegInstantiator * ci, Node pv, Node catom, std::vector< Node >& arg_reps, TermArgTrie * tat, unsigned index, std::map< Node, int >& match_score ) {
+ if( index==catom.getNumChildren() ){
+ Assert( tat->hasNodeData() );
+ Node gcatom = tat->getNodeData();
+ Trace("epr-inst") << "Matched : " << catom << " and " << gcatom << std::endl;
+ for( unsigned i=0; i<catom.getNumChildren(); i++ ){
+ if( catom[i]==pv ){
+ Trace("epr-inst") << "...increment " << gcatom[i] << std::endl;
+ match_score[gcatom[i]]++;
+ }else{
+ //recursive matching
+ computeMatchScore( ci, pv, catom[i], gcatom[i], match_score );
+ }
+ }
+ }else{
+ std::map< TNode, TermArgTrie >::iterator it = tat->d_data.find( arg_reps[index] );
+ if( it!=tat->d_data.end() ){
+ computeMatchScore( ci, pv, catom, arg_reps, &it->second, index+1, match_score );
+ }
+ }
+}
+
+void EprInstantiator::computeMatchScore( CegInstantiator * ci, Node pv, Node catom, Node eqc, std::map< Node, int >& match_score ) {
+ if( inst::Trigger::isAtomicTrigger( catom ) && TermDb::containsTerm( catom, pv ) ){
+ Trace("epr-inst") << "Find matches for " << catom << "..." << std::endl;
+ std::vector< Node > arg_reps;
+ for( unsigned j=0; j<catom.getNumChildren(); j++ ){
+ arg_reps.push_back( ci->getQuantifiersEngine()->getMasterEqualityEngine()->getRepresentative( catom[j] ) );
+ }
+ if( ci->getQuantifiersEngine()->getMasterEqualityEngine()->hasTerm( eqc ) ){
+ Node rep = ci->getQuantifiersEngine()->getMasterEqualityEngine()->getRepresentative( eqc );
+ Node op = ci->getQuantifiersEngine()->getTermDatabase()->getMatchOperator( catom );
+ TermArgTrie * tat = ci->getQuantifiersEngine()->getTermDatabase()->getTermArgTrie( rep, op );
+ Trace("epr-inst") << "EPR instantiation match term : " << catom << ", check ground terms=" << (tat!=NULL) << std::endl;
+ if( tat ){
+ computeMatchScore( ci, pv, catom, arg_reps, tat, 0, match_score );
+ }
+ }
+ }
+}
+
+struct sortEqTermsMatch {
+ std::map< Node, int > d_match_score;
+ bool operator() (Node i, Node j) {
+ int match_score_i = d_match_score[i];
+ int match_score_j = d_match_score[j];
+ return match_score_i>match_score_j || ( match_score_i==match_score_j && i<j );
+ }
+};
+
+
+bool EprInstantiator::processEqualTerms( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& eqc, unsigned effort ) {
+ if( options::quantEprMatching() ){
+ //heuristic for best matching constant
+ sortEqTermsMatch setm;
+ for( unsigned i=0; i<ci->getNumCEAtoms(); i++ ){
+ Node catom = ci->getCEAtom( i );
+ computeMatchScore( ci, pv, catom, catom, setm.d_match_score );
+ }
+ //sort by match score
+ std::sort( d_equal_terms.begin(), d_equal_terms.end(), setm );
+ Node pv_coeff;
+ for( unsigned i=0; i<d_equal_terms.size(); i++ ){
+ if( ci->doAddInstantiationInc( pv, d_equal_terms[i], pv_coeff, 0, sf, effort ) ){
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+bool BvInstantiator::processAssertion( CegInstantiator * ci, SolvedForm& sf, Node pv, Node lit, unsigned effort ) {
+ /* TODO: algebraic reasoning for bitvector instantiation
+ if( atom.getKind()==BITVECTOR_ULT || atom.getKind()==BITVECTOR_ULE ){
+ for( unsigned t=0; t<2; t++ ){
+ if( atom[t]==pv ){
+ computeProgVars( atom[1-t] );
+ if( d_inelig.find( atom[1-t] )==d_inelig.end() ){
+ //only ground terms TODO: more
+ if( d_prog_var[atom[1-t]].empty() ){
+ Node veq_c;
+ Node uval;
+ if( ( !pol && atom.getKind()==BITVECTOR_ULT ) || ( pol && atom.getKind()==BITVECTOR_ULE ) ){
+ uval = atom[1-t];
+ }else{
+ uval = NodeManager::currentNM()->mkNode( (atom.getKind()==BITVECTOR_ULT)==(t==1) ? BITVECTOR_PLUS : BITVECTOR_SUB, atom[1-t],
+ bv::utils::mkConst(pvtn.getConst<BitVectorSize>(), 1) );
+ }
+ if( doAddInstantiationInc( pv, uval, veq_c, 0, sf, effort ) ){
+ return true;
+ }
+ }
+ }
+ }
+ }
+ }
+ */
+
+ return false;
+}
+
+