*/
#include "compiler.h"
+#include "midgard_ops.h"
#include "util/register_allocate.h"
+#include "util/u_math.h"
+
+/* For work registers, we can subdivide in various ways. So we create
+ * classes for the various sizes and conflict accordingly, keeping in
+ * mind that physical registers are divided along 128-bit boundaries.
+ * The important part is that 128-bit boundaries are not crossed.
+ *
+ * For each 128-bit register, we can subdivide to 32-bits 10 ways
+ *
+ * vec4: xyzw
+ * vec3: xyz, yzw
+ * vec2: xy, yz, zw,
+ * vec1: x, y, z, w
+ *
+ * For each 64-bit register, we can subdivide similarly to 16-bit
+ * (TODO: half-float RA, not that we support fp16 yet)
+ */
+
+#define WORK_STRIDE 10
+
+/* Prepacked masks/swizzles for virtual register types */
+static unsigned reg_type_to_mask[WORK_STRIDE] = {
+ 0xF, /* xyzw */
+ 0x7, 0x7 << 1, /* xyz */
+ 0x3, 0x3 << 1, 0x3 << 2, /* xy */
+ 0x1, 0x1 << 1, 0x1 << 2, 0x1 << 3 /* x */
+};
+
+static unsigned reg_type_to_swizzle[WORK_STRIDE] = {
+ SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
+
+ SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
+ SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_W, COMPONENT_W),
+
+ SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
+ SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_Z, COMPONENT_W),
+ SWIZZLE(COMPONENT_Z, COMPONENT_W, COMPONENT_Z, COMPONENT_W),
+
+ SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
+ SWIZZLE(COMPONENT_Y, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
+ SWIZZLE(COMPONENT_Z, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
+ SWIZZLE(COMPONENT_W, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
+};
+
+struct phys_reg {
+ unsigned reg;
+ unsigned mask;
+ unsigned swizzle;
+};
+
+/* Given the mask/swizzle of both the register and the original source,
+ * compose to find the actual mask/swizzle to give the hardware */
+
+static unsigned
+compose_writemask(unsigned mask, struct phys_reg reg)
+{
+ /* Note: the reg mask is guaranteed to be contiguous. So we shift
+ * into the X place, compose via a simple AND, and shift back */
+
+ unsigned shift = __builtin_ctz(reg.mask);
+ return ((reg.mask >> shift) & mask) << shift;
+}
+
+static unsigned
+compose_swizzle(unsigned swizzle, unsigned mask, struct phys_reg reg, struct phys_reg dst)
+{
+ unsigned out = 0;
+
+ for (unsigned c = 0; c < 4; ++c) {
+ unsigned s = (swizzle >> (2*c)) & 0x3;
+ unsigned q = (reg.swizzle >> (2*s)) & 0x3;
+
+ out |= (q << (2*c));
+ }
+
+ /* Based on the register mask, we need to adjust over. E.g if we're
+ * writing to yz, a base swizzle of xy__ becomes _xy_. Save the
+ * original first component (x). But to prevent duplicate shifting
+ * (only applies to ALU -- mask param is set to xyzw out on L/S to
+ * prevent changes), we have to account for the shift inherent to the
+ * original writemask */
+
+ unsigned rep = out & 0x3;
+ unsigned shift = __builtin_ctz(dst.mask) - __builtin_ctz(mask);
+ unsigned shifted = out << (2*shift);
+
+ /* ..but we fill in the gaps so it appears to replicate */
+
+ for (unsigned s = 0; s < shift; ++s)
+ shifted |= rep << (2*s);
+
+ return shifted;
+}
/* When we're 'squeezing down' the values in the IR, we maintain a hash
* as such */
{
/* Choose the first available register to minimise reported register pressure */
- for (int i = 0; i < 16; ++i) {
+ for (int i = 0; i < (16 * WORK_STRIDE); ++i) {
if (BITSET_TEST(regs, i)) {
return i;
}
return 0;
}
-/* Determine the actual hardware from the index based on the RA results or special values */
+/* Helper to return the default phys_reg for a given register */
-static int
-dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
+static struct phys_reg
+default_phys_reg(int reg)
{
- if (reg >= SSA_FIXED_MINIMUM)
- return SSA_REG_FROM_FIXED(reg);
-
- if (reg >= 0) {
- assert(reg < maxreg);
- assert(g);
- int r = ra_get_node_reg(g, reg);
- ctx->work_registers = MAX2(ctx->work_registers, r);
- return r;
- }
+ struct phys_reg r = {
+ .reg = reg,
+ .mask = 0xF, /* xyzw */
+ .swizzle = 0xE4 /* xyzw */
+ };
+
+ return r;
+}
- switch (reg) {
- case SSA_UNUSED_0:
- case SSA_UNUSED_1:
- return REGISTER_UNUSED;
+/* Determine which physical register, swizzle, and mask a virtual
+ * register corresponds to */
- default:
- unreachable("Unknown SSA register alias");
- }
+static struct phys_reg
+index_to_reg(compiler_context *ctx, struct ra_graph *g, int reg)
+{
+ /* Check for special cases */
+ if (reg >= SSA_FIXED_MINIMUM)
+ return default_phys_reg(SSA_REG_FROM_FIXED(reg));
+ else if ((reg < 0) || !g)
+ return default_phys_reg(REGISTER_UNUSED);
+
+ /* Special cases aside, we pick the underlying register */
+ int virt = ra_get_node_reg(g, reg);
+
+ /* Divide out the register and classification */
+ int phys = virt / WORK_STRIDE;
+ int type = virt % WORK_STRIDE;
+
+ struct phys_reg r = {
+ .reg = phys,
+ .mask = reg_type_to_mask[type],
+ .swizzle = reg_type_to_swizzle[type]
+ };
+
+ /* Report that we actually use this register, and return it */
+ ctx->work_registers = MAX2(ctx->work_registers, phys);
+ return r;
}
/* This routine performs the actual register allocation. It should be succeeded
struct ra_graph *
allocate_registers(compiler_context *ctx)
{
+ /* The number of vec4 work registers available depends on when the
+ * uniforms start, so compute that first */
+
+ int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
+
+ int virtual_count = work_count * WORK_STRIDE;
+
/* First, initialize the RA */
- struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
+ struct ra_regs *regs = ra_alloc_reg_set(NULL, virtual_count, true);
- /* Create a primary (general purpose) class, as well as special purpose
- * pipeline register classes */
+ int work_vec4 = ra_alloc_reg_class(regs);
+ int work_vec3 = ra_alloc_reg_class(regs);
+ int work_vec2 = ra_alloc_reg_class(regs);
+ int work_vec1 = ra_alloc_reg_class(regs);
- int primary_class = ra_alloc_reg_class(regs);
- int varying_class = ra_alloc_reg_class(regs);
+ unsigned classes[4] = {
+ work_vec1,
+ work_vec2,
+ work_vec3,
+ work_vec4
+ };
/* Add the full set of work registers */
- int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
- for (int i = 0; i < work_count; ++i)
- ra_class_add_reg(regs, primary_class, i);
-
- /* Add special registers */
- ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
- ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
+ for (int i = 0; i < work_count; ++i) {
+ int base = WORK_STRIDE * i;
+
+ /* Build a full set of subdivisions */
+ ra_class_add_reg(regs, work_vec4, base);
+ ra_class_add_reg(regs, work_vec3, base + 1);
+ ra_class_add_reg(regs, work_vec3, base + 2);
+ ra_class_add_reg(regs, work_vec2, base + 3);
+ ra_class_add_reg(regs, work_vec2, base + 4);
+ ra_class_add_reg(regs, work_vec2, base + 5);
+ ra_class_add_reg(regs, work_vec1, base + 6);
+ ra_class_add_reg(regs, work_vec1, base + 7);
+ ra_class_add_reg(regs, work_vec1, base + 8);
+ ra_class_add_reg(regs, work_vec1, base + 9);
+
+ for (unsigned i = 0; i < 10; ++i) {
+ for (unsigned j = 0; j < 10; ++j) {
+ unsigned mask1 = reg_type_to_mask[i];
+ unsigned mask2 = reg_type_to_mask[j];
+
+ if (mask1 & mask2)
+ ra_add_reg_conflict(regs, base + i, base + j);
+ }
+ }
+ }
/* We're done setting up */
ra_set_finalize(regs, NULL);
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
- ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
- ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
+ ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
+
+ if (!ins->ssa_args.inline_constant)
+ ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
+
}
}
int nodes = ctx->temp_count;
struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
- /* Set everything to the work register class, unless it has somewhere
- * special to go */
+ /* Determine minimum size needed to hold values, to indirectly
+ * determine class */
+
+ unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
-
if (ins->ssa_args.dest < 0) continue;
-
if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
- int class = primary_class;
+ /* Default to vec4 if we're not sure */
+
+ int mask = 0xF;
- ra_set_node_class(g, ins->ssa_args.dest, class);
+ if (ins->type == TAG_ALU_4)
+ mask = squeeze_writemask(ins->alu.mask);
+ else if (ins->type == TAG_LOAD_STORE_4)
+ mask = ins->load_store.mask;
+
+ int class = util_logbase2(mask) + 1;
+
+ /* Use the largest class if there's ambiguity, this
+ * handles partial writes */
+
+ int dest = ins->ssa_args.dest;
+ found_class[dest] = MAX2(found_class[dest], class);
}
}
+ for (unsigned i = 0; i < ctx->temp_count; ++i) {
+ unsigned class = found_class[i];
+ if (!class) continue;
+ ra_set_node_class(g, i, classes[class - 1]);
+ }
+
/* Determine liveness */
int *live_start = malloc(nodes * sizeof(int));
/* Once registers have been decided via register allocation
* (allocate_registers), we need to rewrite the MIR to use registers instead of
- * SSA */
+ * indices */
-void
-install_registers(compiler_context *ctx, struct ra_graph *g)
+static void
+install_registers_instr(
+ compiler_context *ctx,
+ struct ra_graph *g,
+ midgard_instruction *ins)
{
- mir_foreach_block(ctx, block) {
- mir_foreach_instr_in_block(block, ins) {
- if (ins->compact_branch) continue;
+ ssa_args args = ins->ssa_args;
- ssa_args args = ins->ssa_args;
+ switch (ins->type) {
+ case TAG_ALU_4: {
+ int adjusted_src = args.inline_constant ? -1 : args.src1;
+ struct phys_reg src1 = index_to_reg(ctx, g, args.src0);
+ struct phys_reg src2 = index_to_reg(ctx, g, adjusted_src);
+ struct phys_reg dest = index_to_reg(ctx, g, args.dest);
- switch (ins->type) {
- case TAG_ALU_4:
- ins->registers.src1_reg = dealias_register(ctx, g, args.src0, ctx->temp_count);
+ unsigned mask = squeeze_writemask(ins->alu.mask);
+ ins->alu.mask = expand_writemask(compose_writemask(mask, dest));
- ins->registers.src2_imm = args.inline_constant;
+ /* Adjust the dest mask if necessary. Mostly this is a no-op
+ * but it matters for dot products */
+ dest.mask = effective_writemask(&ins->alu);
- if (args.inline_constant) {
- /* Encode inline 16-bit constant as a vector by default */
+ midgard_vector_alu_src mod1 =
+ vector_alu_from_unsigned(ins->alu.src1);
+ mod1.swizzle = compose_swizzle(mod1.swizzle, mask, src1, dest);
+ ins->alu.src1 = vector_alu_srco_unsigned(mod1);
- ins->registers.src2_reg = ins->inline_constant >> 11;
+ ins->registers.src1_reg = src1.reg;
- int lower_11 = ins->inline_constant & ((1 << 12) - 1);
+ ins->registers.src2_imm = args.inline_constant;
- uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
- ins->alu.src2 = imm << 2;
- } else {
- ins->registers.src2_reg = dealias_register(ctx, g, args.src1, ctx->temp_count);
- }
+ if (args.inline_constant) {
+ /* Encode inline 16-bit constant as a vector by default */
- ins->registers.out_reg = dealias_register(ctx, g, args.dest, ctx->temp_count);
+ ins->registers.src2_reg = ins->inline_constant >> 11;
- break;
+ int lower_11 = ins->inline_constant & ((1 << 12) - 1);
- case TAG_LOAD_STORE_4: {
- if (OP_IS_STORE_VARY(ins->load_store.op)) {
- /* TODO: use ssa_args for st_vary */
- ins->load_store.reg = 0;
- } else {
- bool has_dest = args.dest >= 0;
- int ssa_arg = has_dest ? args.dest : args.src0;
+ uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
+ ins->alu.src2 = imm << 2;
+ } else {
+ midgard_vector_alu_src mod2 =
+ vector_alu_from_unsigned(ins->alu.src2);
+ mod2.swizzle = compose_swizzle(mod2.swizzle, mask, src2, dest);
+ ins->alu.src2 = vector_alu_srco_unsigned(mod2);
- ins->load_store.reg = dealias_register(ctx, g, ssa_arg, ctx->temp_count);
- }
+ ins->registers.src2_reg = src2.reg;
+ }
- break;
- }
+ ins->registers.out_reg = dest.reg;
+ break;
+ }
- default:
- break;
- }
+ case TAG_LOAD_STORE_4: {
+ if (OP_IS_STORE(ins->load_store.op)) {
+ /* TODO: use ssa_args for st_vary */
+ ins->load_store.reg = 0;
+ } else {
+ struct phys_reg src = index_to_reg(ctx, g, args.dest);
+
+ ins->load_store.reg = src.reg;
+
+ ins->load_store.swizzle = compose_swizzle(
+ ins->load_store.swizzle, 0xF,
+ default_phys_reg(0), src);
+
+ ins->load_store.mask = compose_writemask(
+ ins->load_store.mask, src);
+ }
+
+ break;
+ }
+
+ default:
+ break;
+ }
+}
+
+void
+install_registers(compiler_context *ctx, struct ra_graph *g)
+{
+ mir_foreach_block(ctx, block) {
+ mir_foreach_instr_in_block(block, ins) {
+ if (ins->compact_branch) continue;
+ install_registers_instr(ctx, g, ins);
}
}