--- /dev/null
+/*
+ * Copyright (c) 2017-2018 ARM Limited
+ * All rights reserved
+ *
+ * The license below extends only to copyright in the software and shall
+ * not be construed as granting a license to any other intellectual
+ * property including but not limited to intellectual property relating
+ * to a hardware implementation of the functionality of the software
+ * licensed hereunder. You may use the software subject to the license
+ * terms below provided that you ensure that this notice is replicated
+ * unmodified and in its entirety in all distributions of the software,
+ * modified or unmodified, in source code or in binary form.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Authors: Rekai Gonzalez-Alberquilla
+ */
+
+#ifndef __BASE_CIRCULAR_QUEUE_HH__
+#define __BASE_CIRCULAR_QUEUE_HH__
+
+#include <vector>
+
+/** Circular queue.
+ * Circular queue implemented on top of a standard vector. Instead of using
+ * a sentinel entry, we use a boolean to distinguish the case in which the
+ * queue is full or empty.
+ * Thus, a circular queue is represented by the 5-tuple
+ * (Capacity, IsEmpty?, Head, Tail, Round)
+ * Where:
+ * - Capacity is the size of the underlying vector.
+ * - IsEmpty? can be T or F.
+ * - Head is the index in the vector of the first element of the queue.
+ * - Tail is the index in the vector of the last element of the queue.
+ * - Round is the counter of how many times the Tail has wrapped around.
+ * A queue is empty when
+ * Head == (Tail + 1 mod Capacity) && IsEmpty?.
+ * Conversely, a queue if full when
+ * Head == (Tail + 1 mod Capacity) && !IsEmpty?.
+ * Comments may show depictions of the underlying vector in the following
+ * format: '|' delimit the 'cells' of the underlying vector. '-' represents
+ * an element of the vector that is out-of-bounds of the circular queue,
+ * while 'o' represents and element that is inside the bounds. The
+ * characters '[' and ']' are added to mark the entries that hold the head
+ * and tail of the circular queue respectively.
+ * E.g.:
+ * - Empty queues of capacity 4:
+ * (4,T,1,0,_): |-]|[-|-|-| (4,T,3,2): |-|-|-]|[-|
+ * - Full queues of capacity 4:
+ * (4,F,1,0,_): |o]|[o|o|o| (4,F,3,2): |o|o|o]|[o|
+ * - Queues of capacity 4 with 2 elements:
+ * (4,F,0,1,_): |[o|o]|-|-| (4,F,3,0): |o]|-|-|[o|
+ *
+ * The Round number is only relevant for checking validity of indices,
+ * therefore it will be omitted or shown as '_'
+ */
+template <typename T>
+class CircularQueue : private std::vector<T>
+{
+ protected:
+ using Base = std::vector<T>;
+ using typename Base::reference;
+ using typename Base::const_reference;
+ const uint32_t _capacity;
+ uint32_t _head;
+ uint32_t _tail;
+ uint32_t _empty;
+
+ /** Counter for how many times the tail wraps around.
+ * Some parts of the code rely on getting the past the end iterator, and
+ * expect to use it after inserting on the tail. To support this without
+ * ambiguity, we need the round number to guarantee that it did not become
+ * a before-the-beginning iterator.
+ */
+ uint32_t _round;
+
+ /** General modular addition. */
+ static uint32_t
+ moduloAdd(uint32_t op1, uint32_t op2, uint32_t size)
+ {
+ return (op1 + op2) % size;
+ }
+
+ /** General modular subtraction. */
+ static uint32_t
+ moduloSub(uint32_t op1, uint32_t op2, uint32_t size)
+ {
+ int ret = (uint32_t)(op1 - op2) % size;
+ return ret >= 0 ? ret : ret + size;
+ }
+
+ void increase(uint32_t& v, size_t delta = 1)
+ {
+ v = moduloAdd(v, delta, _capacity);
+ }
+
+ void decrease(uint32_t& v)
+ {
+ v = (v ? v : _capacity) - 1;
+ }
+
+ /** Iterator to the circular queue.
+ * iterator implementation to provide the circular-ness that the
+ * standard std::vector<T>::iterator does not implement.
+ * Iterators to a queue are represented by a pair of a character and the
+ * round counter. For the character, '*' denotes the element pointed to by
+ * the iterator if it is valid. 'x' denotes the element pointed to by the
+ * iterator when it is BTB or PTE.
+ * E.g.:
+ * - Iterator to the head of a queue of capacity 4 with 2 elems.
+ * (4,F,0,1,R): |[(*,R)|o]|-|-| (4,F,3,0): |o]|-|-|[(*,R)|
+ * - Iterator to the tail of a queue of capacity 4 with 2 elems.
+ * (4,F,0,1,R): |[o|(*,R)]|-|-| (4,F,3,0): |(*,R)]|-|-|[o|
+ * - Iterator to the end of a queue of capacity 4 with 2 elems.
+ * (4,F,0,1,R): |[o|o]|(x,R)|-| (4,F,3,0): |o]|(x,R)|-|[o|
+ */
+ public:
+ struct iterator {
+ CircularQueue* _cq;
+ uint32_t _idx;
+ uint32_t _round;
+
+ public:
+ iterator(CircularQueue* cq, uint32_t idx, uint32_t round)
+ : _cq(cq), _idx(idx), _round(round) {}
+
+ /** Iterator Traits */
+ using value_type = T;
+ using difference_type = std::ptrdiff_t;
+ using reference = value_type&;
+ using const_reference = const value_type&;
+ using pointer = value_type*;
+ using const_pointer = const value_type*;
+ using iterator_category = std::random_access_iterator_tag;
+
+ /** Trait reference type
+ * iterator satisfies OutputIterator, therefore reference
+ * must be T& */
+ static_assert(std::is_same<reference, T&>::value,
+ "reference type is not assignable as required");
+
+ iterator() : _cq(nullptr), _idx(0), _round(0) { }
+
+ iterator(const iterator& it)
+ : _cq(it._cq), _idx(it._idx), _round(it._round) {}
+
+ iterator&
+ operator=(const iterator& it)
+ {
+ _cq = it._cq;
+ _idx = it._idx;
+ _round = it._round;
+ return *this;
+ }
+
+ ~iterator() { _cq = nullptr; _idx = 0; _round = 0; }
+
+ /** Test dereferenceability.
+ * An iterator is dereferenceable if it is pointing to a non-null
+ * circular queue, it is not the past-the-end iterator and the
+ * index is a valid index to that queue. PTE test is required to
+ * distinguish between:
+ * - An iterator to the first element of a full queue
+ * (4,F,1,0): |o]|[*|o|o|
+ * - The end() iterator of a full queue
+ * (4,F,1,0): |o]|x[o|o|o|
+ * Sometimes, though, users will get the PTE iterator and expect it
+ * to work after growing the buffer on the tail, so we have to
+ * check if the iterator is still PTE.
+ */
+ bool
+ dereferenceable() const
+ {
+ return _cq != nullptr && _cq->isValidIdx(_idx, _round);
+ }
+
+ /** InputIterator. */
+
+ /** Equality operator.
+ * Two iterators must point to the same, possibly null, circular
+ * queue and the same element on it, including PTE, to be equal.
+ * In case the clients the the PTE iterator and then grow on the back
+ * and expect it to work, we have to check if the PTE is still PTE
+ */
+ bool operator==(const iterator& that) const
+ {
+ return _cq == that._cq && _idx == that._idx &&
+ _round == that._round;
+ }
+
+ /** Inequality operator.
+ * Conversely, two iterators are different if they both point to
+ * different circular queues or they point to different elements.
+ */
+ bool operator!=(const iterator& that)
+ {
+ return !(*this == that);
+ }
+
+ /** Dereference operator. */
+ reference operator*()
+ {
+ /* this has to be dereferenceable. */
+ return (*_cq)[_idx];
+ }
+
+ const_reference operator*() const
+ {
+ /* this has to be dereferenceable. */
+ return (*_cq)[_idx];
+ }
+
+ /** Dereference operator.
+ * Rely on operator* to check for dereferenceability.
+ */
+ pointer operator->()
+ {
+ return &((*_cq)[_idx]);
+ }
+
+ const_pointer operator->() const
+ {
+ return &((*_cq)[_idx]);
+ }
+
+ /** Pre-increment operator. */
+ iterator& operator++()
+ {
+ /* this has to be dereferenceable. */
+ _cq->increase(_idx);
+ if (_idx == 0)
+ ++_round;
+ return *this;
+ }
+
+ /** Post-increment operator. */
+ iterator
+ operator++(int)
+ {
+ iterator t = *this;
+ ++*this;
+ return t;
+ }
+
+ /** ForwardIterator
+ * The multipass guarantee is provided by the reliance on _idx.
+ */
+
+ /** BidirectionalIterator requirements. */
+ private:
+ /** Test decrementability.
+ * An iterator to a non-null circular queue is not-decrementable
+ * if it is pointing to the head element, unless the queue is full
+ * and we are talking about the past-the-end iterator. In that case,
+ * the iterator round equals the cq round unless the head is at the
+ * zero position and the round is one more than the cq round.
+ */
+ bool
+ decrementable() const
+ {
+ return _cq && !(_idx == _cq->head() &&
+ (_cq->empty() ||
+ (_idx == 0 && _round != _cq->_round + 1) ||
+ (_idx !=0 && _round != _cq->_round)));
+ }
+
+ public:
+ /** Pre-decrement operator. */
+ iterator& operator--()
+ {
+ /* this has to be decrementable. */
+ assert(decrementable());
+ if (_idx == 0)
+ --_round;
+ _cq->decrease(_idx);
+ return *this;
+ }
+
+ /** Post-decrement operator. */
+ iterator operator--(int ) { iterator t = *this; --*this; return t; }
+
+ /** RandomAccessIterator requirements.*/
+ iterator& operator+=(const difference_type& t)
+ {
+ assert(_cq);
+ _round += (t + _idx) / _cq->capacity();
+ _idx = _cq->moduloAdd(_idx, t);
+ return *this;
+ }
+
+ iterator& operator-=(const difference_type& t)
+ {
+ assert(_cq);
+
+ /* C does not do euclidean division, so we have to adjust */
+ if (t >= 0)
+ _round += (-t + _idx) / _cq->capacity();
+ else
+ _round += (-t + _idx - _cq->capacity() + 1) / _cq->capacity();
+
+ _idx = _cq->moduloSub(_idx, t);
+ return *this;
+ }
+
+ /** Addition operator. */
+ iterator operator+(const difference_type& t)
+ {
+ iterator ret(*this);
+ return ret += t;
+ }
+
+ friend iterator operator+(const difference_type& t, iterator& it)
+ {
+ iterator ret = it;
+ return ret += t;
+ }
+
+ /** Substraction operator. */
+ iterator operator-(const difference_type& t)
+ {
+ iterator ret(*this);
+ return ret -= t;
+ }
+
+ friend iterator operator-(const difference_type& t, iterator& it)
+ {
+ iterator ret = it;
+ return ret -= t;
+ }
+
+ /** Difference operator.
+ * that + ret == this
+ */
+ difference_type operator-(const iterator& that)
+ {
+ /* If a is already at the end, we can safely return 0. */
+ auto ret = _cq->moduloSub(this->_idx, that._idx);
+
+ if (ret == 0 && this->_round != that._round) {
+ ret += this->_round * _cq->capacity();
+ }
+ return ret;
+ }
+
+ /** Index operator.
+ * The use of * tests for dereferenceability.
+ */
+ template<typename Idx>
+ typename std::enable_if<std::is_integral<Idx>::value,reference>::type
+ operator[](const Idx& index) { return *(*this + index); }
+
+ /** Comparisons. */
+ bool
+ operator<(const iterator& that) const
+ {
+ assert(_cq && that._cq == _cq);
+ return (this->_round < that._round) ||
+ (this->_round == that._round && _idx < that._idx);
+ }
+
+ bool
+ operator>(const iterator& that) const
+ { return !(*this <= that); }
+
+ bool operator>=(const iterator& that) const
+ { return !(*this < that); }
+
+ bool operator<=(const iterator& that) const
+ { return !(that < *this); }
+
+ /** OutputIterator has no extra requirements.*/
+ size_t idx() const { return _idx; }
+ };
+
+ public:
+ using typename Base::operator[];
+
+ explicit CircularQueue(uint32_t size = 0)
+ : _capacity(size), _head(1), _tail(0), _empty(true), _round(0)
+ {
+ Base::resize(size);
+ }
+
+ /**
+ * Remove all the elements in the queue.
+ *
+ * Note: This does not actually remove elements from the backing
+ * store.
+ */
+ void flush()
+ {
+ _head = 1;
+ _round = 0;
+ _tail = 0;
+ _empty = true;
+ }
+
+ /** Test if the index is in the range of valid elements. */
+ bool isValidIdx(size_t idx) const
+ {
+ /* An index is invalid if:
+ * - The queue is empty.
+ * (6,T,3,2): |-|-|-]|[-|-|x|
+ * - head is small than tail and:
+ * - It is greater than both head and tail.
+ * (6,F,1,3): |-|[o|o|o]|-|x|
+ * - It is less than both head and tail.
+ * (6,F,1,3): |x|[o|o|o]|-|-|
+ * - It is greater than the tail and not than the head.
+ * (6,F,4,1): |o|o]|-|x|[o|o|
+ */
+ return !(_empty || (
+ (_head < _tail) && (
+ (_head < idx && _tail < idx) ||
+ (_head > idx && _tail > idx)
+ )) || (_tail < idx && idx < _head));
+ }
+
+ /** Test if the index is in the range of valid elements.
+ * The round counter is used to disambiguate aliasing.
+ */
+ bool isValidIdx(size_t idx, uint32_t round) const
+ {
+ /* An index is valid if:
+ * - The queue is not empty.
+ * - round == R and
+ * - index <= tail (if index > tail, that would be PTE)
+ * - Either:
+ * - head <= index
+ * (6,F,1,3,R): |-|[o|(*,r)|o]|-|-|
+ * - head > tail
+ * (6,F,5,3,R): |o|o|(*,r)|o]|-|[o|
+ * The remaining case means the the iterator is BTB:
+ * (6,F,3,4,R): |-|-|(x,r)|[o|o]|-|
+ * - round + 1 == R and:
+ * - index > tail. If index <= tail, that would be BTB:
+ * (6,F,2,3,r): | -|- |[(*,r)|o]|-|-|
+ * (6,F,0,1,r+1): |[o|o]| (x,r)|- |-|-|
+ * (6,F,0,3,r+1): |[o|o | (*,r)|o]|-|-|
+ * - index >= head. If index < head, that would be BTB:
+ * (6,F,5,2,R): |o|o]|-|-|(x,r)|[o|
+ * - head > tail. If head <= tail, that would be BTB:
+ * (6,F,3,4,R): |[o|o]|(x,r)|-|-|-|
+ * Other values of the round meand that the index is PTE or BTB
+ */
+ return (!_empty && (
+ (round == _round && idx <= _tail && (
+ _head <= idx || _head > _tail)) ||
+ (round + 1 == _round &&
+ idx > _tail &&
+ idx >= _head &&
+ _head > _tail)
+ ));
+ }
+
+ reference front() { return (*this)[_head]; }
+ reference back() { return (*this)[_tail]; }
+ uint32_t head() const { return _head; }
+ uint32_t tail() const { return _tail; }
+ size_t capacity() const { return _capacity; }
+
+ uint32_t size() const
+ {
+ if (_empty)
+ return 0;
+ else if (_head <= _tail)
+ return _tail - _head + 1;
+ else
+ return _capacity - _head + _tail + 1;
+ }
+
+ uint32_t moduloAdd(uint32_t s1, uint32_t s2) const
+ {
+ return moduloAdd(s1, s2, _capacity);
+ }
+
+ uint32_t moduloSub(uint32_t s1, uint32_t s2) const
+ {
+ return moduloSub(s1, s2, _capacity);
+ }
+
+ /** Circularly increase the head pointer.
+ * By increasing the head pointer we are removing elements from
+ * the begin of the circular queue.
+ * Check that the queue is not empty. And set it to empty if it
+ * had only one value prior to insertion.
+ *
+ * @params num_elem number of elements to remove
+ */
+ void pop_front(size_t num_elem = 1)
+ {
+ if (num_elem == 0) return;
+ auto hIt = begin();
+ hIt += num_elem;
+ assert(hIt <= end());
+ _empty = hIt == end();
+ _head = hIt._idx;
+ }
+
+ /** Circularly decrease the tail pointer. */
+ void pop_back()
+ {
+ assert (!_empty);
+ _empty = _head == _tail;
+ if (_tail == 0)
+ --_round;
+ decrease(_tail);
+ }
+
+ /** Pushes an element at the end of the queue. */
+ void push_back(typename Base::value_type val)
+ {
+ advance_tail();
+ (*this)[_tail] = val;
+ }
+
+ /** Increases the tail by one.
+ * Check for wrap-arounds to update the round counter.
+ */
+ void advance_tail()
+ {
+ increase(_tail);
+ if (_tail == 0)
+ ++_round;
+
+ if (_tail == _head && !_empty)
+ increase(_head);
+
+ _empty = false;
+ }
+
+ /** Increases the tail by a specified number of steps
+ *
+ * @param len Number of steps
+ */
+ void advance_tail(uint32_t len)
+ {
+ for (auto idx = 0; idx < len; idx++)
+ advance_tail();
+ }
+
+ /** Is the queue empty? */
+ bool empty() const { return _empty; }
+
+ /** Is the queue full?
+ * A queue is full if the head is the 0^{th} element and the tail is
+ * the (size-1)^{th} element, or if the head is the n^{th} element and
+ * the tail the (n-1)^{th} element.
+ */
+ bool full() const
+ {
+ return !_empty &&
+ (_tail + 1 == _head || (_tail + 1 == _capacity && _head == 0));
+ }
+
+ /** Iterators. */
+ iterator begin()
+ {
+ if (_empty)
+ return end();
+ else if (_head > _tail)
+ return iterator(this, _head, _round - 1);
+ else
+ return iterator(this, _head, _round);
+ }
+
+ /* TODO: This should return a const_iterator. */
+ iterator begin() const
+ {
+ if (_empty)
+ return end();
+ else if (_head > _tail)
+ return iterator(const_cast<CircularQueue*>(this), _head,
+ _round - 1);
+ else
+ return iterator(const_cast<CircularQueue*>(this), _head,
+ _round);
+ }
+
+ iterator end()
+ {
+ auto poi = moduloAdd(_tail, 1);
+ auto round = _round;
+ if (poi == 0)
+ ++round;
+ return iterator(this, poi, round);
+ }
+
+ iterator end() const
+ {
+ auto poi = moduloAdd(_tail, 1);
+ auto round = _round;
+ if (poi == 0)
+ ++round;
+ return iterator(const_cast<CircularQueue*>(this), poi, round);
+ }
+
+ /** Return an iterator to an index in the vector.
+ * This poses the problem of round determination. By convention, the round
+ * is picked so that isValidIndex(idx, round) is true. If that is not
+ * possible, then the round value is _round, unless _tail is at the end of
+ * the storage, in which case the PTE wraps up and becomes _round + 1
+ */
+ iterator getIterator(size_t idx)
+ {
+ assert(isValidIdx(idx) || moduloAdd(_tail, 1) == idx);
+ if (_empty)
+ return end();
+
+ uint32_t round = _round;
+ if (idx > _tail) {
+ if (idx >= _head && _head > _tail) {
+ round -= 1;
+ }
+ } else if (idx < _head && _tail + 1 == _capacity) {
+ round += 1;
+ }
+ return iterator(this, idx, round);
+ }
+};
+
+#endif /* __BASE_CIRCULARQUEUE_HH__ */
--- /dev/null
+/*
+ * Copyright (c) 2018 ARM Limited
+ * All rights reserved
+ *
+ * The license below extends only to copyright in the software and shall
+ * not be construed as granting a license to any other intellectual
+ * property including but not limited to intellectual property relating
+ * to a hardware implementation of the functionality of the software
+ * licensed hereunder. You may use the software subject to the license
+ * terms below provided that you ensure that this notice is replicated
+ * unmodified and in its entirety in all distributions of the software,
+ * modified or unmodified, in source code or in binary form.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Authors: Giacomo Travaglini
+ */
+
+#include <gtest/gtest.h>
+
+#include "base/circular_queue.hh"
+
+/** Testing that once instantiated with a fixed size,
+ * the queue is still empty */
+TEST(CircularQueueTest, Empty)
+{
+ const auto cq_size = 8;
+ CircularQueue<uint32_t> cq(cq_size);
+
+ ASSERT_EQ(cq.capacity(), cq_size);
+ ASSERT_EQ(cq.size(), 0);
+ ASSERT_TRUE(cq.empty());
+}
+
+/** Testing that once instantiated with a fixed size,
+ * the queue has Head = Tail + 1 */
+TEST(CircularQueueTest, HeadTailEmpty)
+{
+ const auto cq_size = 8;
+ CircularQueue<uint32_t> cq(cq_size);
+ ASSERT_EQ(cq.head(), cq.tail() + 1);
+}
+
+/** Adding elements to the circular queue.
+ * Once an element has been added we test the new value
+ * of front() and back() (head an tail). Since we are just
+ * adding elements and not removing them, we expect the front
+ * value to be fixed and the back value to change, matching
+ * the latest pushed value.*/
+TEST(CircularQueueTest, AddingElements)
+{
+ const auto cq_size = 8;
+ CircularQueue<uint32_t> cq(cq_size);
+
+ const auto first_element = 0xAAAAAAAA;
+ cq.push_back(first_element);
+ ASSERT_EQ(cq.front(), first_element);
+ ASSERT_EQ(cq.back(), first_element);
+
+ const auto second_element = 0x55555555;
+ cq.push_back(second_element);
+ ASSERT_EQ(cq.front(), first_element);
+ ASSERT_EQ(cq.back(), second_element);
+
+ ASSERT_EQ(cq.size(), 2);
+}
+
+/** Removing elements from the circular queue.
+ * We add two elements and we consequently remove them.
+ * After removing them we check that the elements have been
+ * effectively removed, which means the circular queue is
+ * empty */
+TEST(CircularQueueTest, RemovingElements)
+{
+ const auto cq_size = 8;
+ CircularQueue<uint32_t> cq(cq_size);
+
+ // Adding first element
+ const auto first_element = 0xAAAAAAAA;
+ cq.push_back(first_element);
+
+ // Adding second element
+ const auto second_element = 0x55555555;
+ cq.push_back(second_element);
+
+ auto initial_head = cq.head();
+ auto initial_tail = cq.tail();
+
+ // Removing first and second element
+ cq.pop_front();
+ ASSERT_EQ(cq.head(), initial_head + 1);
+ ASSERT_EQ(cq.tail(), initial_tail);
+
+ cq.pop_front();
+ ASSERT_EQ(cq.head(), initial_head + 2);
+ ASSERT_EQ(cq.tail(), initial_tail);
+
+ ASSERT_EQ(cq.size(), 0);
+ ASSERT_TRUE(cq.empty());
+}
+
+/** Testing CircularQueue::full
+ * This tests adds elements to the queue and checks that it is full,
+ * which means:
+ * - CircularQueue::full == true
+ * - Head = Tail + 1
+ */
+TEST(CircularQueueTest, Full)
+{
+ const auto cq_size = 8;
+ CircularQueue<uint32_t> cq(cq_size);
+
+ const auto value = 0xAAAAAAAA;
+ for (auto idx = 0; idx < cq_size; idx++) {
+ cq.push_back(value);
+ }
+
+ ASSERT_TRUE(cq.full());
+ ASSERT_EQ(cq.head(), cq.tail() + 1);
+}
+
+/** Testing CircularQueue::begin(), CircularQueue::end()
+ * This tests the following:
+ * - In an empty queue, begin() == end()
+ * - After pushing some elements in the queue, the begin()
+ * and end() iterators are correctly misaligned
+ */
+TEST(CircularQueueTest, BeginEnd)
+{
+ const auto cq_size = 8;
+ CircularQueue<uint32_t> cq(cq_size);
+
+ // Begin/End are the same (empty)
+ ASSERT_EQ(cq.begin(), cq.end());
+
+ const auto first_value = 0xAAAAAAAA;
+ const auto second_value = 0x55555555;
+
+ cq.push_back(first_value);
+ cq.push_back(second_value);
+
+ // End = Begin + 2
+ ASSERT_EQ(cq.begin() + 2, cq.end());
+}
+
+/** Testing that begin() and end() (-1) iterators
+ * actually point to the correct values
+ * so that dereferencing them leads to a match with the
+ * values of (front() and back())
+ */
+TEST(CircularQueueTest, BeginFrontEndBack)
+{
+ const auto cq_size = 8;
+ CircularQueue<uint32_t> cq(cq_size);
+
+ const auto front_value = 0xAAAAAAAA;
+ const auto back_value = 0x55555555;
+
+ cq.push_back(front_value);
+ cq.push_back(back_value);
+
+ ASSERT_EQ(*(cq.begin()), cq.front());
+ ASSERT_EQ(*(cq.end() - 1), cq.back());
+}
+
+/** Testing circular queue iterators:
+ * By allocating two iterators to a queue we test several
+ * operators.
+ */
+TEST(CircularQueueTest, IteratorsOp)
+{
+ const auto cq_size = 8;
+ CircularQueue<uint32_t> cq(cq_size);
+
+ const auto first_value = 0xAAAAAAAA;
+ const auto second_value = 0x55555555;
+ cq.push_back(first_value);
+ cq.push_back(second_value);
+
+ auto it_1 = cq.begin();
+ auto it_2 = cq.begin() + 1;
+
+ // Operators test
+ ASSERT_TRUE(it_1 != it_2);
+ ASSERT_FALSE(it_1 == it_2);
+ ASSERT_FALSE(it_1 > it_2);
+ ASSERT_FALSE(it_1 >= it_2);
+ ASSERT_TRUE(it_1 < it_2);
+ ASSERT_TRUE(it_1 <= it_2);
+ ASSERT_EQ(*it_1, first_value);
+ ASSERT_EQ(it_1 + 1, it_2);
+ ASSERT_EQ(it_1, it_2 - 1);
+ ASSERT_EQ(it_2 - it_1, 1);
+
+ auto temp_it = it_1;
+ ASSERT_EQ(++temp_it, it_2);
+ ASSERT_EQ(--temp_it, it_1);
+ ASSERT_EQ(temp_it++, it_1);
+ ASSERT_EQ(temp_it, it_2);
+ ASSERT_EQ(temp_it--, it_2);
+ ASSERT_EQ(temp_it, it_1);
+}
+
+/**
+ * Testing a full loop, which is incrementing one iterator until
+ * it wraps and has the same index as the starting iterator.
+ * This test checks that even if they have the same index, they are
+ * not the same iterator since they have different round.
+ */
+TEST(CircularQueueTest, FullLoop)
+{
+ const auto cq_size = 8;
+ CircularQueue<uint32_t> cq(cq_size);
+
+ // ending_it does a full loop and points at the same
+ // index as starting_it but with a different round
+ auto starting_it = cq.begin();
+ auto ending_it = starting_it + cq_size;
+
+ ASSERT_EQ(starting_it._idx, ending_it._idx);
+ ASSERT_TRUE(starting_it != ending_it);
+}