#include "gimple.h"
#include "params.h"
#include "fold-const.h"
+#include "gimple-fold.h"
#include "gimple-iterator.h"
+#include "gimplify.h"
+#include "gimplify-me.h"
+#include "tree-eh.h"
#include "tree-ssa-loop.h"
+#include "tree-ssa-operands.h"
+#include "tree-ssa-propagate.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-phinodes.h"
#include "tree-into-ssa.h"
#include "ssa-iterators.h"
-#include <map>
#include "graphite-isl-ast-to-gimple.h"
#include "tree-cfg.h"
#include "gimple-pretty-print.h"
+#include "cfganal.h"
+#include "value-prof.h"
+
+#include <map>
/* We always try to use signed 128 bit types, but fall back to smaller types
in case a platform does not provide types of these sizes. In the future we
{
ast_build_info()
: is_parallelizable(false)
- { };
+ { }
bool is_parallelizable;
};
public:
translate_isl_ast_to_gimple (sese_info_p r)
: region (r), codegen_error (false)
- { }
+ { }
/* Translates an ISL AST node NODE to GCC representation in the
context of a SESE. */
__isl_keep isl_ast_expr *user_expr, ivs_params &ip,
sese_l ®ion);
+ /* Patch the missing arguments of the phi nodes. */
+
void translate_pending_phi_nodes (void);
- bool codegen_error_p () { return codegen_error; }
+ /* Add ISL's parameter identifiers and corresponding trees to ivs_params. */
+
+ void add_parameters_to_ivs_params (scop_p scop, ivs_params &ip);
+
+ /* Get the maximal number of schedule dimensions in the scop SCOP. */
+
+ int get_max_schedule_dimensions (scop_p scop);
+
+ /* Generates a build, which specifies the constraints on the parameters. */
+
+ __isl_give isl_ast_build *generate_isl_context (scop_p scop);
+
+ /* Extend the schedule to NB_SCHEDULE_DIMS schedule dimensions.
+
+ For schedules with different dimensionality, the isl AST generator can not
+ define an order and will just randomly choose an order. The solution to
+ this problem is to extend all schedules to the maximal number of schedule
+ dimensions (using '0's for the remaining values). */
+
+ __isl_give isl_map *extend_schedule (__isl_take isl_map *schedule,
+ int nb_schedule_dims);
+
+ /* Generates a schedule, which specifies an order used to
+ visit elements in a domain. */
+
+ __isl_give isl_union_map *generate_isl_schedule (scop_p scop);
+
+ /* Set the separate option for all dimensions.
+ This helps to reduce control overhead. */
+
+ __isl_give isl_ast_build * set_options (__isl_take isl_ast_build *control,
+ __isl_keep isl_union_map *schedule);
+
+ /* Generate isl AST from schedule of SCOP. Also, collects IVS_PARAMS in
+ IP. */
+
+ __isl_give isl_ast_node * scop_to_isl_ast (scop_p scop, ivs_params &ip);
+
+
+ /* Return true if RENAME (defined in BB) is a valid use in NEW_BB. The
+ definition should flow into use, and the use should respect the loop-closed
+ SSA form. */
+
+ bool is_valid_rename (tree rename, basic_block def_bb, basic_block use_bb,
+ bool loop_phi, tree old_name, basic_block old_bb) const;
+
+ /* Returns the expression associated to OLD_NAME (which is used in OLD_BB), in
+ NEW_BB from RENAME_MAP. LOOP_PHI is true when we want to rename OLD_NAME
+ within a loop PHI instruction. */
+
+ tree get_rename (basic_block new_bb, tree old_name,
+ basic_block old_bb, bool loop_phi) const;
+
+ /* For ops which are scev_analyzeable, we can regenerate a new name from
+ its scalar evolution around LOOP. */
+
+ tree get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop,
+ basic_block new_bb, basic_block old_bb,
+ vec<tree> iv_map);
+
+ /* Returns a basic block that could correspond to where a constant was defined
+ in the original code. In the original code OLD_BB had the definition, we
+ need to find which basic block out of the copies of old_bb, in the new
+ region, should a definition correspond to if it has to reach BB. */
+
+ basic_block get_def_bb_for_const (basic_block bb, basic_block old_bb) const;
+
+ /* Get the new name of OP (from OLD_BB) to be used in NEW_BB. LOOP_PHI is
+ true when we want to rename an OP within a loop PHI instruction. */
+
+ tree get_new_name (basic_block new_bb, tree op,
+ basic_block old_bb, bool loop_phi) const;
+
+ /* Collect all the operands of NEW_EXPR by recursively visiting each
+ operand. */
+
+ void collect_all_ssa_names (tree new_expr, vec<tree> *vec_ssa);
+
+ /* Copy the PHI arguments from OLD_PHI to the NEW_PHI. The arguments to
+ NEW_PHI must be found unless they can be POSTPONEd for later. */
+
+ void copy_loop_phi_args (gphi *old_phi, init_back_edge_pair_t &ibp_old_bb,
+ gphi *new_phi, init_back_edge_pair_t &ibp_new_bb,
+ bool postpone);
+
+ /* Copy loop phi nodes from BB to NEW_BB. */
+
+ bool copy_loop_phi_nodes (basic_block bb, basic_block new_bb);
+
+ /* Copy all the loop-close phi args from BB to NEW_BB. */
+
+ bool copy_loop_close_phi_args (basic_block old_bb, basic_block new_bb,
+ bool postpone);
+
+ /* Copy loop close phi nodes from BB to NEW_BB. */
+
+ bool copy_loop_close_phi_nodes (basic_block old_bb, basic_block new_bb);
+
+ /* Copy the arguments of cond-phi node PHI, to NEW_PHI in the codegenerated
+ region. If postpone is true and it isn't possible to copy any arg of PHI,
+ the PHI is added to the REGION->INCOMPLETE_PHIS to be codegenerated later.
+ Returns false if the copying was unsuccessful. */
+
+ bool copy_cond_phi_args (gphi *phi, gphi *new_phi, vec<tree> iv_map,
+ bool postpone);
+
+ /* Copy cond phi nodes from BB to NEW_BB. A cond-phi node is a basic block
+ containing phi nodes coming from two predecessors, and none of them are back
+ edges. */
+
+ bool copy_cond_phi_nodes (basic_block bb, basic_block new_bb,
+ vec<tree> iv_map);
+
+ /* Duplicates the statements of basic block BB into basic block NEW_BB
+ and compute the new induction variables according to the IV_MAP.
+ CODEGEN_ERROR is set when the code generation cannot continue. */
+
+ bool graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb,
+ vec<tree> iv_map);
+
+ /* Copies BB and includes in the copied BB all the statements that can
+ be reached following the use-def chains from the memory accesses,
+ and returns the next edge following this new block. codegen_error is
+ set when the code generation cannot continue. */
+
+ edge copy_bb_and_scalar_dependences (basic_block bb, edge next_e,
+ vec<tree> iv_map);
+
+ /* Add NEW_NAME as the ARGNUM-th arg of NEW_PHI which is in NEW_BB.
+ DOMINATING_PRED is the predecessor basic block of OLD_BB which dominates
+ the other pred of OLD_BB as well. If no such basic block exists then it is
+ NULL. NON_DOMINATING_PRED is a pred which does not dominate OLD_BB, it
+ cannot be NULL.
+
+ Case1: OLD_BB->preds {BB1, BB2} and BB1 does not dominate BB2 and vice
+ versa. In this case DOMINATING_PRED = NULL.
+
+ Case2: OLD_BB->preds {BB1, BB2} and BB1 dominates BB2.
+
+ Returns true on successful copy of the args, false otherwise. */
+
+ bool add_phi_arg_for_new_expr (tree old_phi_args[2], tree new_phi_args[2],
+ edge old_bb_dominating_edge,
+ edge old_bb_non_dominating_edge,
+ gphi *phi, gphi *new_phi,
+ basic_block new_bb);
+
+ /* Renames the scalar uses of the statement COPY, using the substitution map
+ RENAME_MAP, inserting the gimplification code at GSI_TGT, for the
+ translation REGION, with the original copied statement in LOOP, and using
+ the induction variable renaming map IV_MAP. Returns true when something
+ has been renamed. codegen_error is set when the code generation cannot
+ continue. */
+
+ bool rename_uses (gimple *copy, gimple_stmt_iterator *gsi_tgt,
+ basic_block old_bb, loop_p loop, vec<tree> iv_map);
+
+ /* Register in RENAME_MAP the rename tuple (OLD_NAME, EXPR).
+ When OLD_NAME and EXPR are the same we assert. */
+
+ void set_rename (tree old_name, tree expr);
+
+ /* Create new names for all the definitions created by COPY and add
+ replacement mappings for each new name. */
+
+ void set_rename_for_each_def (gimple *stmt);
+
+ /* Insert each statement from SEQ at its earliest insertion p. */
+
+ void gsi_insert_earliest (gimple_seq seq);
+
+ /* Rename all the operands of NEW_EXPR by recursively visiting each
+ operand. */
+
+ tree rename_all_uses (tree new_expr, basic_block new_bb, basic_block old_bb);
+
+ bool codegen_error_p () const
+ { return codegen_error; }
+
+ /* Prints NODE to FILE. */
+
+ void print_isl_ast_node (FILE *file, __isl_keep isl_ast_node *node,
+ __isl_keep isl_ctx *ctx) const;
private:
sese_info_p region;
isl_ast_node_free (for_body);
/* Early return if we failed to translate loop body. */
- if (!next_e || codegen_error)
+ if (!next_e || codegen_error_p ())
return NULL;
redirect_edge_succ_nodup (next_e, after);
set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
if (flag_loop_parallelize_all)
- {
- isl_id *id = isl_ast_node_get_annotation (node_for);
- gcc_assert (id);
- ast_build_info *for_info = (ast_build_info *) isl_id_get_user (id);
- loop->can_be_parallel = for_info->is_parallelizable;
- free (for_info);
- isl_id_free (id);
- }
+ {
+ isl_id *id = isl_ast_node_get_annotation (node_for);
+ gcc_assert (id);
+ ast_build_info *for_info = (ast_build_info *) isl_id_get_user (id);
+ loop->can_be_parallel = for_info->is_parallelizable;
+ free (for_info);
+ isl_id_free (id);
+ }
return last_e;
}
{
- ...
+ ...
}
case isl_ast_op_lt:
{
- // (iterator < ub) => (iterator <= ub - 1)
+ /* (iterator < ub) => (iterator <= ub - 1). */
isl_val *one =
isl_val_int_from_si (isl_ast_expr_get_ctx (for_cond), 1);
isl_ast_expr *ub = isl_ast_expr_get_op_arg (for_cond, 1);
gcc_assert (GBB_BB (gbb) != ENTRY_BLOCK_PTR_FOR_FN (cfun) &&
"The entry block should not even appear within a scop");
- int nb_loops = number_of_loops (cfun);
+ const int nb_loops = number_of_loops (cfun);
vec<tree> iv_map;
iv_map.create (nb_loops);
iv_map.safe_grow_cleared (nb_loops);
print_loops_bb (dump_file, next_e->src, 0, 3);
}
- next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb),
- pbb->scop->scop_info, next_e,
- iv_map,
- &codegen_error);
- if (codegen_error)
+ next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), next_e,
+ iv_map);
+
+ iv_map.release ();
+
+ if (codegen_error_p ())
return NULL;
if (dump_file)
print_loops_bb (dump_file, next_e->src, 0, 3);
}
- iv_map.release ();
mark_virtual_operands_for_renaming (cfun);
update_ssa (TODO_update_ssa);
__isl_keep isl_ast_node *node,
edge next_e, ivs_params &ip)
{
- if (codegen_error)
+ if (codegen_error_p ())
return NULL;
switch (isl_ast_node_get_type (node))
}
}
-/* Patch the missing arguments of the phi nodes. */
+/* Returns the first successor edge of BB with EDGE_TRUE_VALUE flag set. */
-void
-translate_isl_ast_to_gimple::translate_pending_phi_nodes ()
+edge
+get_true_edge_from_guard_bb (basic_block bb)
{
- int i;
- phi_rename *rename;
- FOR_EACH_VEC_ELT (region->incomplete_phis, i, rename)
- {
- gphi *old_phi = rename->first;
- gphi *new_phi = rename->second;
- basic_block old_bb = gimple_bb (old_phi);
- basic_block new_bb = gimple_bb (new_phi);
-
- /* First edge is the init edge and second is the back edge. */
- init_back_edge_pair_t ibp_old_bb = get_edges (old_bb);
- init_back_edge_pair_t ibp_new_bb = get_edges (new_bb);
-
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] translating pending old-phi: ");
- print_gimple_stmt (dump_file, old_phi, 0, 0);
- }
+ edge e;
+ edge_iterator ei;
- auto_vec <tree, 1> iv_map;
- if (bb_contains_loop_phi_nodes (new_bb))
- copy_loop_phi_args (old_phi, ibp_old_bb, new_phi,
- ibp_new_bb, region, false);
- else if (bb_contains_loop_close_phi_nodes (new_bb))
- copy_loop_close_phi_args (old_bb, new_bb, region, false);
- else if (!copy_cond_phi_args (old_phi, new_phi, iv_map, region, false))
- gcc_unreachable ();
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (e->flags & EDGE_TRUE_VALUE)
+ return e;
- if (dump_file)
- {
- fprintf (dump_file, "[codegen] to new-phi: ");
- print_gimple_stmt (dump_file, new_phi, 0, 0);
- }
- }
+ gcc_unreachable ();
+ return NULL;
}
-/* Prints NODE to FILE. */
+/* Returns the first successor edge of BB with EDGE_TRUE_VALUE flag cleared. */
-void
-print_isl_ast_node (FILE *file, __isl_keep isl_ast_node *node,
- __isl_keep isl_ctx *ctx)
+edge
+get_false_edge_from_guard_bb (basic_block bb)
{
- isl_printer *prn = isl_printer_to_file (ctx, file);
- prn = isl_printer_set_output_format (prn, ISL_FORMAT_C);
- prn = isl_printer_print_ast_node (prn, node);
- prn = isl_printer_print_str (prn, "\n");
- isl_printer_free (prn);
-}
+ edge e;
+ edge_iterator ei;
-/* Add ISL's parameter identifiers and corresponding.trees to ivs_params */
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (!(e->flags & EDGE_TRUE_VALUE))
+ return e;
-static void
-add_parameters_to_ivs_params (scop_p scop, ivs_params &ip)
-{
- sese_info_p region = scop->scop_info;
- unsigned nb_parameters = isl_set_dim (scop->param_context, isl_dim_param);
- gcc_assert (nb_parameters == region->params.length ());
- unsigned i;
- for (i = 0; i < nb_parameters; i++)
- {
- isl_id *tmp_id = isl_set_get_dim_id (scop->param_context,
- isl_dim_param, i);
- ip[tmp_id] = region->params[i];
- }
+ gcc_unreachable ();
+ return NULL;
}
+/* Return true when BB contains loop close phi nodes. A loop close phi node is
+ at the exit of loop which takes one argument that is the last value of the
+ variable being used out of the loop. */
-/* Generates a build, which specifies the constraints on the parameters. */
-
-static __isl_give isl_ast_build *
-generate_isl_context (scop_p scop)
+bool
+bb_contains_loop_close_phi_nodes (basic_block bb)
{
- isl_set *context_isl = isl_set_params (isl_set_copy (scop->param_context));
- return isl_ast_build_from_context (context_isl);
+ return single_pred_p (bb)
+ && bb->loop_father != single_pred_edge (bb)->src->loop_father;
}
-/* Get the maximal number of schedule dimensions in the scop SCOP. */
+/* Return true when BB contains loop phi nodes. A loop phi node is the loop
+ header containing phi nodes which has one init-edge and one back-edge. */
-static
-int get_max_schedule_dimensions (scop_p scop)
+bool
+bb_contains_loop_phi_nodes (basic_block bb)
{
- int i;
- poly_bb_p pbb;
- int schedule_dims = 0;
+ gcc_assert (EDGE_COUNT (bb->preds) <= 2);
- FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
- {
- int pbb_schedule_dims = isl_map_dim (pbb->transformed, isl_dim_out);
- if (pbb_schedule_dims > schedule_dims)
- schedule_dims = pbb_schedule_dims;
- }
+ if (bb->preds->length () == 1)
+ return false;
- return schedule_dims;
-}
+ unsigned depth = loop_depth (bb->loop_father);
-/* Extend the schedule to NB_SCHEDULE_DIMS schedule dimensions.
+ edge preds[2] = { (*bb->preds)[0], (*bb->preds)[1] };
- For schedules with different dimensionality, the isl AST generator can not
- define an order and will just randomly choose an order. The solution to this
- problem is to extend all schedules to the maximal number of schedule
- dimensions (using '0's for the remaining values). */
+ if (depth > loop_depth (preds[0]->src->loop_father)
+ || depth > loop_depth (preds[1]->src->loop_father))
+ return true;
-static __isl_give isl_map *
-extend_schedule (__isl_take isl_map *schedule, int nb_schedule_dims)
-{
- int tmp_dims = isl_map_dim (schedule, isl_dim_out);
- schedule =
- isl_map_add_dims (schedule, isl_dim_out, nb_schedule_dims - tmp_dims);
- isl_val *zero =
- isl_val_int_from_si (isl_map_get_ctx (schedule), 0);
- int i;
- for (i = tmp_dims; i < nb_schedule_dims; i++)
- {
- schedule =
- isl_map_fix_val (schedule, isl_dim_out, i, isl_val_copy (zero));
- }
- isl_val_free (zero);
- return schedule;
+ /* When one of the edges correspond to the same loop father and other
+ doesn't. */
+ if (bb->loop_father != preds[0]->src->loop_father
+ && bb->loop_father == preds[1]->src->loop_father)
+ return true;
+
+ if (bb->loop_father != preds[1]->src->loop_father
+ && bb->loop_father == preds[0]->src->loop_father)
+ return true;
+
+ return false;
}
-/* Generates a schedule, which specifies an order used to
- visit elements in a domain. */
+/* Check if USE is defined in a basic block from where the definition of USE can
+ propagate from all the paths. FIXME: Verify checks for virtual operands. */
-static __isl_give isl_union_map *
-generate_isl_schedule (scop_p scop)
+static bool
+is_loop_closed_ssa_use (basic_block bb, tree use)
{
- int nb_schedule_dims = get_max_schedule_dimensions (scop);
- int i;
- poly_bb_p pbb;
- isl_union_map *schedule_isl =
- isl_union_map_empty (isl_set_get_space (scop->param_context));
+ if (TREE_CODE (use) != SSA_NAME || virtual_operand_p (use))
+ return true;
- FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
- {
- /* Dead code elimination: when the domain of a PBB is empty,
- don't generate code for the PBB. */
- if (isl_set_is_empty (pbb->domain))
- continue;
+ /* For close-phi nodes def always comes from a loop which has a back-edge. */
+ if (bb_contains_loop_close_phi_nodes (bb))
+ return true;
- isl_map *bb_schedule = isl_map_copy (pbb->transformed);
- bb_schedule = isl_map_intersect_domain (bb_schedule,
- isl_set_copy (pbb->domain));
- bb_schedule = extend_schedule (bb_schedule, nb_schedule_dims);
- schedule_isl =
- isl_union_map_union (schedule_isl,
- isl_union_map_from_map (bb_schedule));
- }
- return schedule_isl;
+ gimple *def = SSA_NAME_DEF_STMT (use);
+ basic_block def_bb = gimple_bb (def);
+ return (!def_bb
+ || flow_bb_inside_loop_p (def_bb->loop_father, bb));
}
-/* This method is executed before the construction of a for node. */
-static __isl_give isl_id *
-ast_build_before_for (__isl_keep isl_ast_build *build, void *user)
+/* Return the number of phi nodes in BB. */
+
+static int
+number_of_phi_nodes (basic_block bb)
{
- isl_union_map *dependences = (isl_union_map *) user;
- ast_build_info *for_info = XNEW (struct ast_build_info);
- isl_union_map *schedule = isl_ast_build_get_schedule (build);
- isl_space *schedule_space = isl_ast_build_get_schedule_space (build);
- int dimension = isl_space_dim (schedule_space, isl_dim_out);
- for_info->is_parallelizable =
- !carries_deps (schedule, dependences, dimension);
- isl_union_map_free (schedule);
- isl_space_free (schedule_space);
- isl_id *id = isl_id_alloc (isl_ast_build_get_ctx (build), "", for_info);
- return id;
+ int num_phis = 0;
+ for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
+ gsi_next (&psi))
+ num_phis++;
+ return num_phis;
}
-/* Set the separate option for all dimensions.
- This helps to reduce control overhead. */
+/* Returns true if BB uses name in one of its PHIs. */
-static __isl_give isl_ast_build *
-set_options (__isl_take isl_ast_build *control,
- __isl_keep isl_union_map *schedule)
+static bool
+phi_uses_name (basic_block bb, tree name)
{
- isl_ctx *ctx = isl_union_map_get_ctx (schedule);
- isl_space *range_space = isl_space_set_alloc (ctx, 0, 1);
- range_space =
- isl_space_set_tuple_name (range_space, isl_dim_set, "separate");
- isl_union_set *range =
- isl_union_set_from_set (isl_set_universe (range_space));
- isl_union_set *domain = isl_union_map_range (isl_union_map_copy (schedule));
- domain = isl_union_set_universe (domain);
- isl_union_map *options = isl_union_map_from_domain_and_range (domain, range);
- return isl_ast_build_set_options (control, options);
+ for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
+ gsi_next (&psi))
+ {
+ gphi *phi = psi.phi ();
+ for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ tree use_arg = gimple_phi_arg_def (phi, i);
+ if (use_arg == name)
+ return true;
+ }
+ }
+ return false;
}
-static __isl_give isl_ast_node *
-scop_to_isl_ast (scop_p scop, ivs_params &ip)
+/* Return true if RENAME (defined in BB) is a valid use in NEW_BB. The
+ definition should flow into use, and the use should respect the loop-closed
+ SSA form. */
+
+bool
+translate_isl_ast_to_gimple::
+is_valid_rename (tree rename, basic_block def_bb, basic_block use_bb,
+ bool loop_phi, tree old_name, basic_block old_bb) const
{
- /* Generate loop upper bounds that consist of the current loop iterator,
- an operator (< or <=) and an expression not involving the iterator.
- If this option is not set, then the current loop iterator may appear several
- times in the upper bound. See the isl manual for more details. */
- isl_options_set_ast_build_atomic_upper_bound (scop->isl_context, true);
+ /* The def of the rename must either dominate the uses or come from a
+ back-edge. Also the def must respect the loop closed ssa form. */
+ if (!is_loop_closed_ssa_use (use_bb, rename))
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] rename not in loop closed ssa:");
+ print_generic_expr (dump_file, rename, 0);
+ }
+ return false;
+ }
- add_parameters_to_ivs_params (scop, ip);
- isl_union_map *schedule_isl = generate_isl_schedule (scop);
- isl_ast_build *context_isl = generate_isl_context (scop);
- context_isl = set_options (context_isl, schedule_isl);
- isl_union_map *dependences = NULL;
- if (flag_loop_parallelize_all)
- {
- dependences = scop_get_dependences (scop);
- context_isl =
- isl_ast_build_set_before_each_for (context_isl, ast_build_before_for,
- dependences);
- }
- isl_ast_node *ast_isl = isl_ast_build_ast_from_schedule (context_isl,
- schedule_isl);
- if(dependences)
- isl_union_map_free (dependences);
- isl_ast_build_free (context_isl);
- return ast_isl;
-}
+ if (dominated_by_p (CDI_DOMINATORS, use_bb, def_bb))
+ return true;
-/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
- the given SCOP. Return true if code generation succeeded.
+ if (bb_contains_loop_phi_nodes (use_bb) && loop_phi)
+ {
+ /* The loop-header dominates the loop-body. */
+ if (!dominated_by_p (CDI_DOMINATORS, def_bb, use_bb))
+ return false;
+
+ /* RENAME would be used in loop-phi. */
+ gcc_assert (number_of_phi_nodes (use_bb));
+
+ /* For definitions coming from back edges, we should check that
+ old_name is used in a loop PHI node.
+ FIXME: Verify if this is true. */
+ if (phi_uses_name (old_bb, old_name))
+ return true;
+ }
+ return false;
+}
- FIXME: This is not yet a full implementation of the code generator
- with ISL ASTs. Generation of GIMPLE code has to be completed. */
+/* Returns the expression associated to OLD_NAME (which is used in OLD_BB), in
+ NEW_BB from RENAME_MAP. LOOP_PHI is true when we want to rename OLD_NAME
+ within a loop PHI instruction. */
-bool
-graphite_regenerate_ast_isl (scop_p scop)
+tree
+translate_isl_ast_to_gimple::get_rename (basic_block new_bb,
+ tree old_name,
+ basic_block old_bb,
+ bool loop_phi) const
{
- loop_p context_loop;
- sese_info_p region = scop->scop_info;
- ifsese if_region = NULL;
- isl_ast_node *root_node;
- ivs_params ip;
+ gcc_assert (TREE_CODE (old_name) == SSA_NAME);
+ vec <tree> *renames = region->rename_map->get (old_name);
- timevar_push (TV_GRAPHITE_CODE_GEN);
- root_node = scop_to_isl_ast (scop, ip);
+ if (!renames || renames->is_empty ())
+ return NULL_TREE;
- if (dump_file && (dump_flags & TDF_DETAILS))
+ if (1 == renames->length ())
{
- fprintf (dump_file, "\nISL AST generated by ISL: \n");
- print_isl_ast_node (dump_file, root_node, scop->isl_context);
- fprintf (dump_file, "\n");
+ tree rename = (*renames)[0];
+ basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (rename));
+ if (is_valid_rename (rename, bb, new_bb, loop_phi, old_name, old_bb))
+ return rename;
+ return NULL_TREE;
}
- recompute_all_dominators ();
- graphite_verify ();
+ /* More than one renames corresponding to the old_name. Find the rename for
+ which the definition flows into usage at new_bb. */
+ int i;
+ tree t1 = NULL_TREE, t2;
+ basic_block t1_bb = NULL;
+ FOR_EACH_VEC_ELT (*renames, i, t2)
+ {
+ basic_block t2_bb = gimple_bb (SSA_NAME_DEF_STMT (t2));
- if_region = move_sese_in_condition (region);
- region->if_region = if_region;
- recompute_all_dominators ();
+ /* Defined in the same basic block as used. */
+ if (t2_bb == new_bb)
+ return t2;
- context_loop = region->region.entry->src->loop_father;
+ /* NEW_BB and T2_BB are in two unrelated if-clauses. */
+ if (!dominated_by_p (CDI_DOMINATORS, new_bb, t2_bb))
+ continue;
+
+ /* Compute the nearest dominator. */
+ if (!t1 || dominated_by_p (CDI_DOMINATORS, t2_bb, t1_bb))
+ {
+ t1_bb = t2_bb;
+ t1 = t2;
+ }
+ }
+
+ return t1;
+}
+
+/* Register in RENAME_MAP the rename tuple (OLD_NAME, EXPR).
+ When OLD_NAME and EXPR are the same we assert. */
+
+void
+translate_isl_ast_to_gimple::set_rename (tree old_name, tree expr)
+{
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] setting rename: old_name = ");
+ print_generic_expr (dump_file, old_name, 0);
+ fprintf (dump_file, ", new_name = ");
+ print_generic_expr (dump_file, expr, 0);
+ }
+
+ if (old_name == expr)
+ return;
+
+ vec <tree> *renames = region->rename_map->get (old_name);
+
+ if (renames)
+ renames->safe_push (expr);
+ else
+ {
+ vec<tree> r;
+ r.create (2);
+ r.safe_push (expr);
+ region->rename_map->put (old_name, r);
+ }
+}
+
+/* Return an iterator to the instructions comes last in the execution order.
+ Either GSI1 and GSI2 should belong to the same basic block or one of their
+ respective basic blocks should dominate the other. */
+
+gimple_stmt_iterator
+later_of_the_two (gimple_stmt_iterator gsi1, gimple_stmt_iterator gsi2)
+{
+ basic_block bb1 = gsi_bb (gsi1);
+ basic_block bb2 = gsi_bb (gsi2);
+
+ /* Find the iterator which is the latest. */
+ if (bb1 == bb2)
+ {
+ /* For empty basic blocks gsis point to the end of the sequence. Since
+ there is no operator== defined for gimple_stmt_iterator and for gsis
+ not pointing to a valid statement gsi_next would assert. */
+ gimple_stmt_iterator gsi = gsi1;
+ do {
+ if (gsi_stmt (gsi) == gsi_stmt (gsi2))
+ return gsi2;
+ gsi_next (&gsi);
+ } while (!gsi_end_p (gsi));
+
+ return gsi1;
+ }
+
+ /* Find the basic block closest to the basic block which defines stmt. */
+ if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
+ return gsi1;
+
+ gcc_assert (dominated_by_p (CDI_DOMINATORS, bb2, bb1));
+ return gsi2;
+}
+
+/* Insert each statement from SEQ at its earliest insertion p. */
+
+void
+translate_isl_ast_to_gimple::gsi_insert_earliest (gimple_seq seq)
+{
+ update_modified_stmts (seq);
+ sese_l &codegen_region = region->if_region->true_region->region;
+ basic_block begin_bb = get_entry_bb (codegen_region);
+
+ /* Inserting the gimple statements in a vector because gimple_seq behave
+ in strage ways when inserting the stmts from it into different basic
+ blocks one at a time. */
+ auto_vec<gimple *, 3> stmts;
+ for (gimple_stmt_iterator gsi = gsi_start (seq); !gsi_end_p (gsi);
+ gsi_next (&gsi))
+ stmts.safe_push (gsi_stmt (gsi));
+
+ int i;
+ gimple *use_stmt;
+ FOR_EACH_VEC_ELT (stmts, i, use_stmt)
+ {
+ gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
+ gimple_stmt_iterator gsi_def_stmt = gsi_start_bb_nondebug (begin_bb);
+
+ use_operand_p use_p;
+ ssa_op_iter op_iter;
+ FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, op_iter, SSA_OP_USE)
+ {
+ /* Iterator to the current def of use_p. For function parameters or
+ anything where def is not found, insert at the beginning of the
+ generated region. */
+ gimple_stmt_iterator gsi_stmt = gsi_def_stmt;
+
+ tree op = USE_FROM_PTR (use_p);
+ gimple *stmt = SSA_NAME_DEF_STMT (op);
+ if (stmt && (gimple_code (stmt) != GIMPLE_NOP))
+ gsi_stmt = gsi_for_stmt (stmt);
+
+ /* For region parameters, insert at the beginning of the generated
+ region. */
+ if (!bb_in_sese_p (gsi_bb (gsi_stmt), codegen_region))
+ gsi_stmt = gsi_def_stmt;
+
+ gsi_def_stmt = later_of_the_two (gsi_stmt, gsi_def_stmt);
+ }
+
+ if (!gsi_stmt (gsi_def_stmt))
+ {
+ gimple_stmt_iterator gsi = gsi_after_labels (gsi_bb (gsi_def_stmt));
+ gsi_insert_before (&gsi, use_stmt, GSI_NEW_STMT);
+ }
+ else if (gimple_code (gsi_stmt (gsi_def_stmt)) == GIMPLE_PHI)
+ {
+ gimple_stmt_iterator bsi
+ = gsi_start_bb_nondebug (gsi_bb (gsi_def_stmt));
+ /* Insert right after the PHI statements. */
+ gsi_insert_before (&bsi, use_stmt, GSI_NEW_STMT);
+ }
+ else
+ gsi_insert_after (&gsi_def_stmt, use_stmt, GSI_NEW_STMT);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] inserting statement: ");
+ print_gimple_stmt (dump_file, use_stmt, 0, TDF_VOPS | TDF_MEMSYMS);
+ print_loops_bb (dump_file, gimple_bb (use_stmt), 0, 3);
+ }
+ }
+}
+
+/* Collect all the operands of NEW_EXPR by recursively visiting each
+ operand. */
+
+void
+translate_isl_ast_to_gimple::collect_all_ssa_names (tree new_expr,
+ vec<tree> *vec_ssa)
+{
+
+ /* Rename all uses in new_expr. */
+ if (TREE_CODE (new_expr) == SSA_NAME)
+ {
+ vec_ssa->safe_push (new_expr);
+ return;
+ }
+
+ /* Iterate over SSA_NAMES in NEW_EXPR. */
+ for (int i = 0; i < (TREE_CODE_LENGTH (TREE_CODE (new_expr))); i++)
+ {
+ tree op = TREE_OPERAND (new_expr, i);
+ collect_all_ssa_names (op, vec_ssa);
+ }
+}
+
+/* This is abridged version of the function:
+ tree.c:substitute_in_expr (tree exp, tree f, tree r). */
+
+static tree
+substitute_ssa_name (tree exp, tree f, tree r)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree op0, op1, op2, op3;
+ tree new_tree;
+
+ /* We handle TREE_LIST and COMPONENT_REF separately. */
+ if (code == TREE_LIST)
+ {
+ op0 = substitute_ssa_name (TREE_CHAIN (exp), f, r);
+ op1 = substitute_ssa_name (TREE_VALUE (exp), f, r);
+ if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
+ return exp;
+
+ return tree_cons (TREE_PURPOSE (exp), op1, op0);
+ }
+ else if (code == COMPONENT_REF)
+ {
+ tree inner;
+
+ /* If this expression is getting a value from a PLACEHOLDER_EXPR
+ and it is the right field, replace it with R. */
+ for (inner = TREE_OPERAND (exp, 0);
+ REFERENCE_CLASS_P (inner);
+ inner = TREE_OPERAND (inner, 0))
+ ;
+
+ /* The field. */
+ op1 = TREE_OPERAND (exp, 1);
+
+ if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
+ return r;
+
+ /* If this expression hasn't been completed let, leave it alone. */
+ if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
+ return exp;
+
+ op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+
+ new_tree
+ = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
+ }
+ else
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_constant:
+ return exp;
+
+ case tcc_declaration:
+ if (exp == f)
+ return r;
+ else
+ return exp;
+
+ case tcc_expression:
+ if (exp == f)
+ return r;
+
+ /* Fall through... */
+
+ case tcc_exceptional:
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_reference:
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 0:
+ if (exp == f)
+ return r;
+ return exp;
+
+ case 1:
+ op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+
+ new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
+ break;
+
+ case 2:
+ op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
+ op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
+ return exp;
+
+ new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
+ break;
+
+ case 3:
+ op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
+ op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r);
+ op2 = substitute_ssa_name (TREE_OPERAND (exp, 2), f, r);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2))
+ return exp;
+
+ new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
+ break;
+
+ case 4:
+ op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
+ op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r);
+ op2 = substitute_ssa_name (TREE_OPERAND (exp, 2), f, r);
+ op3 = substitute_ssa_name (TREE_OPERAND (exp, 3), f, r);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2)
+ && op3 == TREE_OPERAND (exp, 3))
+ return exp;
+
+ new_tree
+ = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case tcc_vl_exp:
+ default:
+ gcc_unreachable ();
+ }
+
+ TREE_READONLY (new_tree) |= TREE_READONLY (exp);
+
+ if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
+ TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
+
+ return new_tree;
+}
+
+/* Rename all the operands of NEW_EXPR by recursively visiting each operand. */
+
+tree
+translate_isl_ast_to_gimple::rename_all_uses (tree new_expr, basic_block new_bb,
+ basic_block old_bb)
+{
+ auto_vec<tree, 2> ssa_names;
+ collect_all_ssa_names (new_expr, &ssa_names);
+ tree t;
+ int i;
+ FOR_EACH_VEC_ELT (ssa_names, i, t)
+ if (tree r = get_rename (new_bb, t, old_bb, false))
+ new_expr = substitute_ssa_name (new_expr, t, r);
+
+ return new_expr;
+}
+
+/* For ops which are scev_analyzeable, we can regenerate a new name from
+its scalar evolution around LOOP. */
+
+tree
+translate_isl_ast_to_gimple::
+get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop,
+ basic_block new_bb, basic_block old_bb,
+ vec<tree> iv_map)
+{
+ tree scev = scalar_evolution_in_region (region->region, loop, old_name);
+
+ /* At this point we should know the exact scev for each
+ scalar SSA_NAME used in the scop: all the other scalar
+ SSA_NAMEs should have been translated out of SSA using
+ arrays with one element. */
+ tree new_expr;
+ if (chrec_contains_undetermined (scev))
+ {
+ codegen_error = true;
+ return build_zero_cst (TREE_TYPE (old_name));
+ }
+
+ new_expr = chrec_apply_map (scev, iv_map);
+
+ /* The apply should produce an expression tree containing
+ the uses of the new induction variables. We should be
+ able to use new_expr instead of the old_name in the newly
+ generated loop nest. */
+ if (chrec_contains_undetermined (new_expr)
+ || tree_contains_chrecs (new_expr, NULL))
+ {
+ codegen_error = true;
+ return build_zero_cst (TREE_TYPE (old_name));
+ }
+
+ /* We should check all the operands and all of them should dominate the use at
+ new_expr. */
+ if (TREE_CODE (new_expr) == SSA_NAME)
+ {
+ basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (new_expr));
+ if (bb && !dominated_by_p (CDI_DOMINATORS, new_bb, bb))
+ {
+ /* FIXME: Remove if bootstrap passes. */
+ codegen_error = true;
+ gcc_unreachable ();
+ return build_zero_cst (TREE_TYPE (old_name));
+ }
+ }
+
+ new_expr = rename_all_uses (new_expr, new_bb, old_bb);
+ /* We should check all the operands and all of them should dominate the use at
+ new_expr. */
+ if (TREE_CODE (new_expr) == SSA_NAME)
+ {
+ basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (new_expr));
+ if (bb && !dominated_by_p (CDI_DOMINATORS, new_bb, bb))
+ {
+ /* FIXME: Remove if bootstrap passes. */
+ codegen_error = true;
+ gcc_unreachable ();
+ return build_zero_cst (TREE_TYPE (old_name));
+ }
+ }
+
+ /* Replace the old_name with the new_expr. */
+ return force_gimple_operand (unshare_expr (new_expr), stmts,
+ true, NULL_TREE);
+}
+
+/* Renames the scalar uses of the statement COPY, using the
+ substitution map RENAME_MAP, inserting the gimplification code at
+ GSI_TGT, for the translation REGION, with the original copied
+ statement in LOOP, and using the induction variable renaming map
+ IV_MAP. Returns true when something has been renamed. codegen_error
+ is set when the code generation cannot continue. */
+
+bool
+translate_isl_ast_to_gimple::rename_uses (gimple *copy,
+ gimple_stmt_iterator *gsi_tgt,
+ basic_block old_bb,
+ loop_p loop, vec<tree> iv_map)
+{
+ bool changed = false;
+
+ if (is_gimple_debug (copy))
+ {
+ if (gimple_debug_bind_p (copy))
+ gimple_debug_bind_reset_value (copy);
+ else if (gimple_debug_source_bind_p (copy))
+ return false;
+ else
+ gcc_unreachable ();
+
+ return false;
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] renaming uses of stmt: ");
+ print_gimple_stmt (dump_file, copy, 0, 0);
+ }
+
+ use_operand_p use_p;
+ ssa_op_iter op_iter;
+ FOR_EACH_SSA_USE_OPERAND (use_p, copy, op_iter, SSA_OP_USE)
+ {
+ tree old_name = USE_FROM_PTR (use_p);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] renaming old_name = ");
+ print_generic_expr (dump_file, old_name, 0);
+ }
+
+ if (TREE_CODE (old_name) != SSA_NAME
+ || SSA_NAME_IS_DEFAULT_DEF (old_name))
+ continue;
+
+ changed = true;
+ tree new_expr = get_rename (gsi_tgt->bb, old_name,
+ old_bb, false);
+
+ if (new_expr)
+ {
+ tree type_old_name = TREE_TYPE (old_name);
+ tree type_new_expr = TREE_TYPE (new_expr);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] from rename_map: new_name = ");
+ print_generic_expr (dump_file, new_expr, 0);
+ }
+
+ if (type_old_name != type_new_expr
+ || TREE_CODE (new_expr) != SSA_NAME)
+ {
+ tree var = create_tmp_var (type_old_name, "var");
+
+ if (!useless_type_conversion_p (type_old_name, type_new_expr))
+ new_expr = fold_convert (type_old_name, new_expr);
+
+ gimple_seq stmts;
+ new_expr = force_gimple_operand (new_expr, &stmts, true, var);
+ gsi_insert_earliest (stmts);
+ }
+
+ replace_exp (use_p, new_expr);
+ continue;
+ }
+
+ gimple_seq stmts;
+ new_expr = get_rename_from_scev (old_name, &stmts, loop, gimple_bb (copy),
+ old_bb, iv_map);
+ if (!new_expr || codegen_error_p ())
+ return false;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] not in rename map, scev: ");
+ print_generic_expr (dump_file, new_expr, 0);
+ }
+
+ gsi_insert_earliest (stmts);
+ replace_exp (use_p, new_expr);
+
+ if (TREE_CODE (new_expr) == INTEGER_CST
+ && is_gimple_assign (copy))
+ {
+ tree rhs = gimple_assign_rhs1 (copy);
+
+ if (TREE_CODE (rhs) == ADDR_EXPR)
+ recompute_tree_invariant_for_addr_expr (rhs);
+ }
+
+ set_rename (old_name, new_expr);
+ }
+
+ return changed;
+}
+
+/* Returns a basic block that could correspond to where a constant was defined
+ in the original code. In the original code OLD_BB had the definition, we
+ need to find which basic block out of the copies of old_bb, in the new
+ region, should a definition correspond to if it has to reach BB. */
+
+basic_block
+translate_isl_ast_to_gimple::get_def_bb_for_const (basic_block bb,
+ basic_block old_bb) const
+{
+ vec <basic_block> *bbs = region->copied_bb_map->get (old_bb);
+
+ if (!bbs || bbs->is_empty ())
+ return NULL;
+
+ if (1 == bbs->length ())
+ return (*bbs)[0];
+
+ int i;
+ basic_block b1 = NULL, b2;
+ FOR_EACH_VEC_ELT (*bbs, i, b2)
+ {
+ if (b2 == bb)
+ return bb;
+
+ /* BB and B2 are in two unrelated if-clauses. */
+ if (!dominated_by_p (CDI_DOMINATORS, bb, b2))
+ continue;
+
+ /* Compute the nearest dominator. */
+ if (!b1 || dominated_by_p (CDI_DOMINATORS, b2, b1))
+ b1 = b2;
+ }
+
+ gcc_assert (b1);
+ return b1;
+}
+
+/* Get the new name of OP (from OLD_BB) to be used in NEW_BB. LOOP_PHI is true
+ when we want to rename an OP within a loop PHI instruction. */
+
+tree
+translate_isl_ast_to_gimple::
+get_new_name (basic_block new_bb, tree op,
+ basic_block old_bb, bool loop_phi) const
+{
+ /* For constants the names are the same. */
+ if (TREE_CODE (op) == INTEGER_CST
+ || TREE_CODE (op) == REAL_CST
+ || TREE_CODE (op) == COMPLEX_CST
+ || TREE_CODE (op) == VECTOR_CST)
+ return op;
+
+ return get_rename (new_bb, op, old_bb, loop_phi);
+}
+
+/* Return a debug location for OP. */
+
+static location_t
+get_loc (tree op)
+{
+ location_t loc = UNKNOWN_LOCATION;
+
+ if (TREE_CODE (op) == SSA_NAME)
+ loc = gimple_location (SSA_NAME_DEF_STMT (op));
+ return loc;
+}
+
+/* Returns the incoming edges of basic_block BB in the pair. The first edge is
+ the init edge (from outside the loop) and the second one is the back edge
+ from the same loop. */
+
+std::pair<edge, edge>
+get_edges (basic_block bb)
+{
+ std::pair<edge, edge> edges;
+ edge e;
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (bb->loop_father != e->src->loop_father)
+ edges.first = e;
+ else
+ edges.second = e;
+ return edges;
+}
+
+/* Copy the PHI arguments from OLD_PHI to the NEW_PHI. The arguments to NEW_PHI
+ must be found unless they can be POSTPONEd for later. */
+
+void
+translate_isl_ast_to_gimple::
+copy_loop_phi_args (gphi *old_phi, init_back_edge_pair_t &ibp_old_bb,
+ gphi *new_phi, init_back_edge_pair_t &ibp_new_bb,
+ bool postpone)
+{
+ gcc_assert (gimple_phi_num_args (old_phi) == gimple_phi_num_args (new_phi));
+
+ basic_block new_bb = gimple_bb (new_phi);
+ for (unsigned i = 0; i < gimple_phi_num_args (old_phi); i++)
+ {
+ edge e;
+ if (gimple_phi_arg_edge (old_phi, i) == ibp_old_bb.first)
+ e = ibp_new_bb.first;
+ else
+ e = ibp_new_bb.second;
+
+ tree old_name = gimple_phi_arg_def (old_phi, i);
+ tree new_name = get_new_name (new_bb, old_name,
+ gimple_bb (old_phi), true);
+ if (new_name)
+ {
+ add_phi_arg (new_phi, new_name, e, get_loc (old_name));
+ continue;
+ }
+
+ gimple *old_def_stmt = SSA_NAME_DEF_STMT (old_name);
+ if (!old_def_stmt || gimple_code (old_def_stmt) == GIMPLE_NOP)
+ /* If the phi arg was a function arg, or wasn't defined, just use the
+ old name. */
+ add_phi_arg (new_phi, old_name, e, get_loc (old_name));
+ else if (postpone)
+ {
+ /* Postpone code gen for later for those back-edges we don't have the
+ names yet. */
+ region->incomplete_phis.safe_push (std::make_pair (old_phi, new_phi));
+ if (dump_file)
+ fprintf (dump_file, "\n[codegen] postpone loop phi nodes: ");
+ }
+ else
+ /* Either we should add the arg to phi or, we should postpone. */
+ gcc_unreachable ();
+ }
+}
+
+/* Copy loop phi nodes from BB to NEW_BB. */
+
+bool
+translate_isl_ast_to_gimple::copy_loop_phi_nodes (basic_block bb,
+ basic_block new_bb)
+{
+ if (dump_file)
+ fprintf (dump_file, "\n[codegen] copying loop phi nodes in bb_%d.",
+ new_bb->index);
+
+ /* Loop phi nodes should have only two arguments. */
+ gcc_assert (2 == EDGE_COUNT (bb->preds));
+
+ /* First edge is the init edge and second is the back edge. */
+ init_back_edge_pair_t ibp_old_bb = get_edges (bb);
+
+ /* First edge is the init edge and second is the back edge. */
+ init_back_edge_pair_t ibp_new_bb = get_edges (new_bb);
+
+ for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
+ gsi_next (&psi))
+ {
+ gphi *phi = psi.phi ();
+ tree res = gimple_phi_result (phi);
+ if (virtual_operand_p (res))
+ continue;
+ if (is_gimple_reg (res) && scev_analyzable_p (res, region->region))
+ continue;
+
+ gphi *new_phi = create_phi_node (SSA_NAME_VAR (res), new_bb);
+ tree new_res = create_new_def_for (res, new_phi,
+ gimple_phi_result_ptr (new_phi));
+ set_rename (res, new_res);
+ copy_loop_phi_args (phi, ibp_old_bb, new_phi, ibp_new_bb, true);
+ update_stmt (new_phi);
+ }
+
+ return true;
+}
+
+/* Return the init value of PHI, the value coming from outside the loop. */
+
+static tree
+get_loop_init_value (gphi *phi)
+{
+
+ loop_p loop = gimple_bb (phi)->loop_father;
+
+ edge e;
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, gimple_bb (phi)->preds)
+ if (e->src->loop_father != loop)
+ return gimple_phi_arg_def (phi, e->dest_idx);
+
+ return NULL_TREE;
+}
+
+/* Find the init value (the value which comes from outside the loop), of one of
+ the operands of DEF which is defined by a loop phi. */
+
+static tree
+find_init_value (gimple *def)
+{
+ if (gimple_code (def) == GIMPLE_PHI)
+ return get_loop_init_value (as_a <gphi*> (def));
+
+ if (gimple_vuse (def))
+ return NULL_TREE;
+
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ FOR_EACH_SSA_USE_OPERAND (use_p, def, iter, SSA_OP_USE)
+ {
+ tree use = USE_FROM_PTR (use_p);
+ if (TREE_CODE (use) == SSA_NAME)
+ {
+ if (tree res = find_init_value (SSA_NAME_DEF_STMT (use)))
+ return res;
+ }
+ }
+
+ return NULL_TREE;
+}
+
+/* Return the init value, the value coming from outside the loop. */
+
+static tree
+find_init_value_close_phi (gphi *phi)
+{
+ gcc_assert (gimple_phi_num_args (phi) == 1);
+ tree use_arg = gimple_phi_arg_def (phi, 0);
+ gimple *def = SSA_NAME_DEF_STMT (use_arg);
+ return find_init_value (def);
+}
+
+/* Copy all the loop-close phi args from BB to NEW_BB. */
+
+bool
+translate_isl_ast_to_gimple::copy_loop_close_phi_args (basic_block old_bb,
+ basic_block new_bb,
+ bool postpone)
+{
+ /* The successor of bb having close phi should be a merge of the diamond
+ inserted to guard the loop during codegen. */
+ basic_block close_phi_merge_bb = single_succ (new_bb);
+
+ for (gphi_iterator psi = gsi_start_phis (old_bb); !gsi_end_p (psi);
+ gsi_next (&psi))
+ {
+ gphi *phi = psi.phi ();
+ tree res = gimple_phi_result (phi);
+ if (virtual_operand_p (res))
+ continue;
+
+ if (is_gimple_reg (res) && scev_analyzable_p (res, region->region))
+ /* Loop close phi nodes should not be scev_analyzable_p. */
+ gcc_unreachable ();
+
+ gphi *new_phi = create_phi_node (SSA_NAME_VAR (res), new_bb);
+ tree new_res = create_new_def_for (res, new_phi,
+ gimple_phi_result_ptr (new_phi));
+ set_rename (res, new_res);
+
+ tree old_name = gimple_phi_arg_def (phi, 0);
+ tree new_name = get_new_name (new_bb, old_name, old_bb, false);
+
+ /* Predecessor basic blocks of a loop close phi should have been code
+ generated before. FIXME: This is fixable by merging PHIs from inner
+ loops as well. See: gfortran.dg/graphite/interchange-3.f90. */
+ if (!new_name)
+ return false;
+
+ add_phi_arg (new_phi, new_name, single_pred_edge (new_bb),
+ get_loc (old_name));
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] Adding loop-closed phi: ");
+ print_gimple_stmt (dump_file, new_phi, 0, 0);
+ }
+
+ update_stmt (new_phi);
+
+ /* When there is no loop guard around this codegenerated loop, there is no
+ need to collect the close-phi arg. */
+ if (2 != EDGE_COUNT (close_phi_merge_bb->preds))
+ continue;
+
+ /* Add a PHI in the close_phi_merge_bb for each close phi of the loop. */
+ tree init = find_init_value_close_phi (new_phi);
+
+ /* A close phi must come from a loop-phi having an init value. */
+ if (!init)
+ {
+ gcc_assert (postpone);
+ region->incomplete_phis.safe_push (std::make_pair (phi, new_phi));
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] postpone close phi nodes: ");
+ print_gimple_stmt (dump_file, new_phi, 0, 0);
+ }
+ continue;
+ }
+
+ gphi *merge_phi = create_phi_node (SSA_NAME_VAR (res),
+ close_phi_merge_bb);
+ tree merge_res = create_new_def_for (res, merge_phi,
+ gimple_phi_result_ptr (merge_phi));
+ set_rename (res, merge_res);
+
+ edge from_loop = single_succ_edge (new_bb);
+ add_phi_arg (merge_phi, new_res, from_loop, get_loc (old_name));
+
+ /* The edge coming from loop guard. */
+ edge other = from_loop == (*close_phi_merge_bb->preds)[0]
+ ? (*close_phi_merge_bb->preds)[1] : (*close_phi_merge_bb->preds)[0];
+
+ add_phi_arg (merge_phi, init, other, get_loc (old_name));
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] Adding guard-phi: ");
+ print_gimple_stmt (dump_file, merge_phi, 0, 0);
+ }
+
+ update_stmt (new_phi);
+ }
+
+ return true;
+}
+
+/* Copy loop close phi nodes from BB to NEW_BB. */
+
+bool
+translate_isl_ast_to_gimple::copy_loop_close_phi_nodes (basic_block old_bb,
+ basic_block new_bb)
+{
+ if (dump_file)
+ fprintf (dump_file, "\n[codegen] copying loop closed phi nodes in bb_%d.",
+ new_bb->index);
+ /* Loop close phi nodes should have only one argument. */
+ gcc_assert (1 == EDGE_COUNT (old_bb->preds));
+
+ return copy_loop_close_phi_args (old_bb, new_bb, true);
+}
+
+
+/* Add NEW_NAME as the ARGNUM-th arg of NEW_PHI which is in NEW_BB.
+ DOMINATING_PRED is the predecessor basic block of OLD_BB which dominates the
+ other pred of OLD_BB as well. If no such basic block exists then it is NULL.
+ NON_DOMINATING_PRED is a pred which does not dominate OLD_BB, it cannot be
+ NULL.
+
+ Case1: OLD_BB->preds {BB1, BB2} and BB1 does not dominate BB2 and vice versa.
+ In this case DOMINATING_PRED = NULL.
+
+ Case2: OLD_BB->preds {BB1, BB2} and BB1 dominates BB2.
+
+ Returns true on successful copy of the args, false otherwise. */
+
+bool
+translate_isl_ast_to_gimple::
+add_phi_arg_for_new_expr (tree old_phi_args[2], tree new_phi_args[2],
+ edge old_bb_dominating_edge,
+ edge old_bb_non_dominating_edge,
+ gphi *phi, gphi *new_phi,
+ basic_block new_bb)
+{
+ basic_block def_pred[2];
+ int not_found_bb_index = -1;
+ for (int i = 0; i < 2; i++)
+ {
+ /* If the corresponding def_bb could not be found the entry will be
+ NULL. */
+ if (TREE_CODE (old_phi_args[i]) == INTEGER_CST)
+ def_pred[i] = get_def_bb_for_const (new_bb,
+ gimple_phi_arg_edge (phi, i)->src);
+ else
+ def_pred[i] = gimple_bb (SSA_NAME_DEF_STMT (new_phi_args[i]));
+ if (!def_pred[i])
+ {
+ gcc_assert (not_found_bb_index == -1);
+ not_found_bb_index = i;
+ }
+ }
+
+ /* Here we are pattern matching on the structure of CFG w.r.t. old one. */
+ if (old_bb_dominating_edge)
+ {
+ return false;
+ basic_block new_pred1 = (*new_bb->preds)[0]->src;
+ basic_block new_pred2 = (*new_bb->preds)[1]->src;
+ vec <basic_block> *bbs
+ = region->copied_bb_map->get (old_bb_non_dominating_edge->src);
+ gcc_assert (bbs);
+ basic_block new_pred = NULL;
+ basic_block b;
+ int i;
+ FOR_EACH_VEC_ELT (*bbs, i, b)
+ if (new_pred1 == b || new_pred2 == b)
+ {
+ gcc_assert (!new_pred);
+ new_pred = b;
+ }
+
+ gcc_assert (new_pred);
+
+ edge new_non_dominating_edge = find_edge (new_pred, new_bb);
+ /* By the process of elimination we first insert insert phi-edge for
+ non-dominating pred which is computed above and then we insert the
+ remaining one. */
+ int inserted_edge = 0;
+ for (; inserted_edge < 2; inserted_edge++)
+ {
+ edge new_bb_pred_edge = gimple_phi_arg_edge (phi, inserted_edge);
+ if (new_non_dominating_edge == new_bb_pred_edge)
+ {
+ add_phi_arg (new_phi, new_phi_args[inserted_edge],
+ new_non_dominating_edge,
+ get_loc (old_phi_args[inserted_edge]));
+ break;
+ }
+ }
+
+ int edge_dominating = 0;
+ if (inserted_edge == 0)
+ edge_dominating = 1;
+
+ edge new_dominating_edge = NULL;
+ for (int i; i < 2; i++)
+ {
+ edge e = gimple_phi_arg_edge (new_phi, i);
+ if (e != new_non_dominating_edge)
+ new_dominating_edge = e;
+ }
+
+ add_phi_arg (new_phi, new_phi_args[edge_dominating], new_dominating_edge,
+ get_loc (old_phi_args[inserted_edge]));
+ }
+ else
+ {
+ /* Classic diamond structure: both edges are non-dominating. We need to
+ find one unique edge then the other can be found be elimination. If
+ any definition (def_pred) dominates both the preds of new_bb then we
+ bail out. Entries of def_pred maybe NULL, in that case we must
+ uniquely find pred with help of only one entry. */
+ edge new_e[2] = { NULL, NULL };
+ for (int i = 0; i < 2; i++)
+ {
+ edge e;
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, new_bb->preds)
+ if (def_pred[i]
+ && dominated_by_p (CDI_DOMINATORS, e->src, def_pred[i]))
+ {
+ if (new_e[i])
+ /* We do not know how to handle the case when def_pred
+ dominates more than a predecessor. */
+ return false;
+ new_e[i] = e;
+ }
+ }
+
+ gcc_assert (new_e[0] || new_e[1]);
+
+ /* Find the other edge by process of elimination. */
+ if (not_found_bb_index != -1)
+ {
+ gcc_assert (!new_e[not_found_bb_index]);
+ int found_bb_index = not_found_bb_index == 1 ? 0 : 1;
+ edge e;
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, new_bb->preds)
+ {
+ if (new_e[found_bb_index] == e)
+ continue;
+ new_e[not_found_bb_index] = e;
+ }
+ }
+
+ /* Add edges to phi args. */
+ for (int i = 0; i < 2; i++)
+ add_phi_arg (new_phi, new_phi_args[i], new_e[i],
+ get_loc (old_phi_args[i]));
+ }
+
+ return true;
+}
+
+/* Copy the arguments of cond-phi node PHI, to NEW_PHI in the codegenerated
+ region. If postpone is true and it isn't possible to copy any arg of PHI,
+ the PHI is added to the REGION->INCOMPLETE_PHIS to be codegenerated later.
+ Returns false if the copying was unsuccessful. */
+
+bool
+translate_isl_ast_to_gimple::copy_cond_phi_args (gphi *phi, gphi *new_phi,
+ vec<tree> iv_map,
+ bool postpone)
+{
+ if (dump_file)
+ fprintf (dump_file, "\n[codegen] copying cond phi args: ");
+ gcc_assert (2 == gimple_phi_num_args (phi));
+
+ basic_block new_bb = gimple_bb (new_phi);
+ loop_p loop = gimple_bb (phi)->loop_father;
+
+ basic_block old_bb = gimple_bb (phi);
+ edge old_bb_non_dominating_edge = NULL, old_bb_dominating_edge = NULL;
+
+ edge e;
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, old_bb->preds)
+ if (!dominated_by_p (CDI_DOMINATORS, old_bb, e->src))
+ old_bb_non_dominating_edge = e;
+ else
+ old_bb_dominating_edge = e;
+
+ gcc_assert (!dominated_by_p (CDI_DOMINATORS, old_bb,
+ old_bb_non_dominating_edge->src));
+
+ tree new_phi_args[2];
+ tree old_phi_args[2];
+
+ for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ tree old_name = gimple_phi_arg_def (phi, i);
+ tree new_name = get_new_name (new_bb, old_name, old_bb, false);
+ old_phi_args[i] = old_name;
+ if (new_name)
+ {
+ new_phi_args [i] = new_name;
+ continue;
+ }
+
+ /* If the phi-arg was a parameter. */
+ if (vec_find (region->params, old_name))
+ {
+ new_phi_args [i] = old_name;
+ if (dump_file)
+ {
+ fprintf (dump_file,
+ "\n[codegen] parameter argument to phi, new_expr: ");
+ print_gimple_stmt (dump_file, new_phi, 0, 0);
+ }
+ continue;
+ }
+
+ /* If the phi-arg is scev-analyzeable but only in the first stage. */
+ if (postpone && is_gimple_reg (old_name)
+ && scev_analyzable_p (old_name, region->region))
+ {
+ gimple_seq stmts;
+ tree new_expr = get_rename_from_scev (old_name, &stmts, loop, new_bb,
+ old_bb, iv_map);
+ if (codegen_error_p ())
+ return false;
+
+ gcc_assert (new_expr);
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] scev analyzeable, new_expr: ");
+ print_generic_expr (dump_file, new_expr, 0);
+ }
+ gsi_insert_earliest (stmts);
+ new_phi_args [i] = new_name;
+ continue;
+ }
+
+ gimple *old_def_stmt = SSA_NAME_DEF_STMT (old_name);
+ if (!old_def_stmt || gimple_code (old_def_stmt) == GIMPLE_NOP)
+ /* If the phi arg was a function arg, or wasn't defined, just use the
+ old name. */
+ gcc_unreachable ();
+ //add_phi_arg (new_phi, old_name, new_e, get_loc (old_name));
+ else if (postpone)
+ {
+ /* Postpone code gen for later for back-edges. */
+ region->incomplete_phis.safe_push (std::make_pair (phi, new_phi));
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] postpone cond phi nodes: ");
+ print_gimple_stmt (dump_file, new_phi, 0, 0);
+ }
+
+ new_phi_args [i] = NULL_TREE;
+ continue;
+ }
+ else
+ gcc_unreachable ();
+ }
+
+ return add_phi_arg_for_new_expr (old_phi_args, new_phi_args,
+ old_bb_dominating_edge,
+ old_bb_non_dominating_edge,
+ phi, new_phi, new_bb);
+}
+
+/* Copy cond phi nodes from BB to NEW_BB. A cond-phi node is a basic block
+ containing phi nodes coming from two predecessors, and none of them are back
+ edges. */
+
+bool
+translate_isl_ast_to_gimple::copy_cond_phi_nodes (basic_block bb,
+ basic_block new_bb,
+ vec<tree> iv_map)
+{
+
+ gcc_assert (!bb_contains_loop_close_phi_nodes (bb));
+
+ if (dump_file)
+ fprintf (dump_file, "\n[codegen] copying cond phi nodes in bb_%d:",
+ new_bb->index);
+
+ /* Cond phi nodes should have exactly two arguments. */
+ gcc_assert (2 == EDGE_COUNT (bb->preds));
+
+ for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
+ gsi_next (&psi))
+ {
+ gphi *phi = psi.phi ();
+ tree res = gimple_phi_result (phi);
+ if (virtual_operand_p (res))
+ continue;
+ if (is_gimple_reg (res) && scev_analyzable_p (res, region->region))
+ /* Cond phi nodes should not be scev_analyzable_p. */
+ gcc_unreachable ();
+
+ gphi *new_phi = create_phi_node (SSA_NAME_VAR (res), new_bb);
+ tree new_res = create_new_def_for (res, new_phi,
+ gimple_phi_result_ptr (new_phi));
+ set_rename (res, new_res);
+
+ if (!copy_cond_phi_args (phi, new_phi, iv_map, true))
+ return false;
+
+ update_stmt (new_phi);
+ }
+
+ return true;
+}
+
+/* Return true if STMT should be copied from region to the new code-generated
+ region. LABELs, CONDITIONS, induction-variables and region parameters need
+ not be copied. */
+
+static bool
+should_copy_to_new_region (gimple *stmt, sese_info_p region)
+{
+ /* Do not copy labels or conditions. */
+ if (gimple_code (stmt) == GIMPLE_LABEL
+ || gimple_code (stmt) == GIMPLE_COND)
+ return false;
+
+ tree lhs;
+ /* Do not copy induction variables. */
+ if (is_gimple_assign (stmt)
+ && (lhs = gimple_assign_lhs (stmt))
+ && TREE_CODE (lhs) == SSA_NAME
+ && is_gimple_reg (lhs)
+ && scev_analyzable_p (lhs, region->region))
+ return false;
+
+ return true;
+}
+
+/* Create new names for all the definitions created by COPY and add replacement
+ mappings for each new name. */
+
+void
+translate_isl_ast_to_gimple::set_rename_for_each_def (gimple *stmt)
+{
+ def_operand_p def_p;
+ ssa_op_iter op_iter;
+ FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_ALL_DEFS)
+ {
+ tree old_name = DEF_FROM_PTR (def_p);
+ tree new_name = create_new_def_for (old_name, stmt, def_p);
+ set_rename (old_name, new_name);
+ }
+}
+
+/* Duplicates the statements of basic block BB into basic block NEW_BB
+ and compute the new induction variables according to the IV_MAP.
+ CODEGEN_ERROR is set when the code generation cannot continue. */
+
+bool
+translate_isl_ast_to_gimple::graphite_copy_stmts_from_block (basic_block bb,
+ basic_block new_bb,
+ vec<tree> iv_map)
+{
+ /* Iterator poining to the place where new statement (s) will be inserted. */
+ gimple_stmt_iterator gsi_tgt = gsi_last_bb (new_bb);
+
+ for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
+ gsi_next (&gsi))
+ {
+ gimple *stmt = gsi_stmt (gsi);
+ if (!should_copy_to_new_region (stmt, region))
+ continue;
+
+ /* Create a new copy of STMT and duplicate STMT's virtual
+ operands. */
+ gimple *copy = gimple_copy (stmt);
+ gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] inserting statement: ");
+ print_gimple_stmt (dump_file, copy, 0, 0);
+ }
+
+ maybe_duplicate_eh_stmt (copy, stmt);
+ gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
+
+ /* Crete new names for each def in the copied stmt. */
+ set_rename_for_each_def (copy);
+
+ loop_p loop = bb->loop_father;
+ if (rename_uses (copy, &gsi_tgt, bb, loop, iv_map))
+ {
+ fold_stmt_inplace (&gsi_tgt);
+ gcc_assert (gsi_stmt (gsi_tgt) == copy);
+ }
+
+ if (codegen_error_p ())
+ return false;
+
+ update_stmt (copy);
+ }
+
+ return true;
+}
+
+/* Copies BB and includes in the copied BB all the statements that can
+ be reached following the use-def chains from the memory accesses,
+ and returns the next edge following this new block. codegen_error is
+ set when the code generation cannot continue. */
+
+edge
+translate_isl_ast_to_gimple::copy_bb_and_scalar_dependences (basic_block bb,
+ edge next_e,
+ vec<tree> iv_map)
+{
+ int num_phis = number_of_phi_nodes (bb);
+
+ if (region->copied_bb_map->get (bb))
+ {
+ /* FIXME: we should be able to handle phi nodes with args coming from
+ outside the region. */
+ if (num_phis)
+ {
+ codegen_error = true;
+ return NULL;
+ }
+ }
+
+ basic_block new_bb = split_edge (next_e);
+ if (num_phis > 0 && bb_contains_loop_phi_nodes (bb))
+ {
+ basic_block phi_bb = next_e->dest->loop_father->header;
+
+ /* At this point we are unable to codegenerate by still preserving the SSA
+ structure because maybe the loop is completely unrolled and the PHIs
+ and cross-bb scalar dependencies are untrackable w.r.t. the original
+ code. See gfortran.dg/graphite/pr29832.f90. */
+ if (EDGE_COUNT (bb->preds) != EDGE_COUNT (phi_bb->preds))
+ {
+ codegen_error = true;
+ return NULL;
+ }
+
+ if (dump_file)
+ fprintf (dump_file, "\n[codegen] bb_%d contains loop phi nodes",
+ bb->index);
+ if (!copy_loop_phi_nodes (bb, phi_bb))
+ {
+ codegen_error = true;
+ return NULL;
+ }
+ }
+ else if (bb_contains_loop_close_phi_nodes (bb))
+ {
+ if (dump_file)
+ fprintf (dump_file, "\n[codegen] bb_%d contains close phi nodes",
+ bb->index);
+
+ /* Make sure that NEW_BB is the loop->exit->dest. */
+ edge e = single_pred_edge (new_bb);
+ basic_block phi_bb = new_bb;
+ if (e->src->loop_father == e->dest->loop_father)
+ {
+ /* This is one of the places which shows preserving original structure
+ is not always possible, as we may need to insert close PHI for a
+ loop where the latch does not have any mapping, or the mapping is
+ ambiguous. */
+ basic_block old_loop_bb = single_pred_edge (bb)->src;
+ vec <basic_block> *bbs = region->copied_bb_map->get (old_loop_bb);
+ if (!bbs || bbs->length () != 1)
+ {
+ codegen_error = true;
+ return NULL;
+ }
+
+ basic_block new_loop_bb = (*bbs)[0];
+ loop_p new_loop = new_loop_bb->loop_father;
+ phi_bb = single_exit (new_loop)->dest;
+ e = single_pred_edge (phi_bb);
+ }
+
+ gcc_assert (e->src->loop_father != e->dest->loop_father);
+
+ if (!copy_loop_close_phi_nodes (bb, phi_bb))
+ {
+ codegen_error = true;
+ return NULL;
+ }
+ }
+ else if (num_phis > 0)
+ {
+ if (dump_file)
+ fprintf (dump_file, "\n[codegen] bb_%d contains cond phi nodes",
+ bb->index);
+
+ basic_block phi_bb = single_pred (new_bb);
+ loop_p loop_father = new_bb->loop_father;
+
+ /* Move back until we find the block with two predecessors. */
+ while (single_pred_p (phi_bb))
+ phi_bb = single_pred_edge (phi_bb)->src;
+
+ /* If a corresponding merge-point was not found, then abort codegen. */
+ if (phi_bb->loop_father != loop_father
+ || !copy_cond_phi_nodes (bb, phi_bb, iv_map))
+ {
+ codegen_error = true;
+ return NULL;
+ }
+ }
+
+ if (dump_file)
+ fprintf (dump_file, "\n[codegen] copying from bb_%d to bb_%d",
+ bb->index, new_bb->index);
+
+ vec <basic_block> *copied_bbs = region->copied_bb_map->get (bb);
+ if (copied_bbs)
+ copied_bbs->safe_push (new_bb);
+ else
+ {
+ vec<basic_block> bbs;
+ bbs.create (2);
+ bbs.safe_push (new_bb);
+ region->copied_bb_map->put (bb, bbs);
+ }
+
+ if (!graphite_copy_stmts_from_block (bb, new_bb, iv_map))
+ {
+ codegen_error = true;
+ return NULL;
+ }
+
+ return single_succ_edge (new_bb);
+}
+
+/* Patch the missing arguments of the phi nodes. */
+
+void
+translate_isl_ast_to_gimple::translate_pending_phi_nodes ()
+{
+ int i;
+ phi_rename *rename;
+ FOR_EACH_VEC_ELT (region->incomplete_phis, i, rename)
+ {
+ gphi *old_phi = rename->first;
+ gphi *new_phi = rename->second;
+ basic_block old_bb = gimple_bb (old_phi);
+ basic_block new_bb = gimple_bb (new_phi);
+
+ /* First edge is the init edge and second is the back edge. */
+ init_back_edge_pair_t ibp_old_bb = get_edges (old_bb);
+ init_back_edge_pair_t ibp_new_bb = get_edges (new_bb);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n[codegen] translating pending old-phi: ");
+ print_gimple_stmt (dump_file, old_phi, 0, 0);
+ }
+
+ auto_vec <tree, 1> iv_map;
+ if (bb_contains_loop_phi_nodes (new_bb))
+ copy_loop_phi_args (old_phi, ibp_old_bb, new_phi,
+ ibp_new_bb, false);
+ else if (bb_contains_loop_close_phi_nodes (new_bb))
+ copy_loop_close_phi_args (old_bb, new_bb, false);
+ else if (!copy_cond_phi_args (old_phi, new_phi, iv_map, false))
+ gcc_unreachable ();
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "[codegen] to new-phi: ");
+ print_gimple_stmt (dump_file, new_phi, 0, 0);
+ }
+ }
+}
+
+/* Prints NODE to FILE. */
+
+void
+translate_isl_ast_to_gimple::print_isl_ast_node (FILE *file,
+ __isl_keep isl_ast_node *node,
+ __isl_keep isl_ctx *ctx) const
+{
+ isl_printer *prn = isl_printer_to_file (ctx, file);
+ prn = isl_printer_set_output_format (prn, ISL_FORMAT_C);
+ prn = isl_printer_print_ast_node (prn, node);
+ prn = isl_printer_print_str (prn, "\n");
+ isl_printer_free (prn);
+}
+
+/* Add ISL's parameter identifiers and corresponding trees to ivs_params. */
+
+void
+translate_isl_ast_to_gimple::add_parameters_to_ivs_params (scop_p scop,
+ ivs_params &ip)
+{
+ sese_info_p region = scop->scop_info;
+ unsigned nb_parameters = isl_set_dim (scop->param_context, isl_dim_param);
+ gcc_assert (nb_parameters == region->params.length ());
+ unsigned i;
+ for (i = 0; i < nb_parameters; i++)
+ {
+ isl_id *tmp_id = isl_set_get_dim_id (scop->param_context,
+ isl_dim_param, i);
+ ip[tmp_id] = region->params[i];
+ }
+}
+
+
+/* Generates a build, which specifies the constraints on the parameters. */
+
+__isl_give isl_ast_build *
+translate_isl_ast_to_gimple::generate_isl_context (scop_p scop)
+{
+ isl_set *context_isl = isl_set_params (isl_set_copy (scop->param_context));
+ return isl_ast_build_from_context (context_isl);
+}
+
+/* Get the maximal number of schedule dimensions in the scop SCOP. */
+
+int
+translate_isl_ast_to_gimple::get_max_schedule_dimensions (scop_p scop)
+{
+ int i;
+ poly_bb_p pbb;
+ int schedule_dims = 0;
+
+ FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
+ {
+ int pbb_schedule_dims = isl_map_dim (pbb->transformed, isl_dim_out);
+ if (pbb_schedule_dims > schedule_dims)
+ schedule_dims = pbb_schedule_dims;
+ }
+
+ return schedule_dims;
+}
+
+/* Extend the schedule to NB_SCHEDULE_DIMS schedule dimensions.
+
+ For schedules with different dimensionality, the isl AST generator can not
+ define an order and will just randomly choose an order. The solution to this
+ problem is to extend all schedules to the maximal number of schedule
+ dimensions (using '0's for the remaining values). */
+
+__isl_give isl_map *
+translate_isl_ast_to_gimple::extend_schedule (__isl_take isl_map *schedule,
+ int nb_schedule_dims)
+{
+ int tmp_dims = isl_map_dim (schedule, isl_dim_out);
+ schedule =
+ isl_map_add_dims (schedule, isl_dim_out, nb_schedule_dims - tmp_dims);
+ isl_val *zero =
+ isl_val_int_from_si (isl_map_get_ctx (schedule), 0);
+ int i;
+ for (i = tmp_dims; i < nb_schedule_dims; i++)
+ {
+ schedule
+ = isl_map_fix_val (schedule, isl_dim_out, i, isl_val_copy (zero));
+ }
+ isl_val_free (zero);
+ return schedule;
+}
+
+/* Generates a schedule, which specifies an order used to
+ visit elements in a domain. */
+
+__isl_give isl_union_map *
+translate_isl_ast_to_gimple::generate_isl_schedule (scop_p scop)
+{
+ int nb_schedule_dims = get_max_schedule_dimensions (scop);
+ int i;
+ poly_bb_p pbb;
+ isl_union_map *schedule_isl =
+ isl_union_map_empty (isl_set_get_space (scop->param_context));
+
+ FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
+ {
+ /* Dead code elimination: when the domain of a PBB is empty,
+ don't generate code for the PBB. */
+ if (isl_set_is_empty (pbb->domain))
+ continue;
+
+ isl_map *bb_schedule = isl_map_copy (pbb->transformed);
+ bb_schedule = isl_map_intersect_domain (bb_schedule,
+ isl_set_copy (pbb->domain));
+ bb_schedule = extend_schedule (bb_schedule, nb_schedule_dims);
+ schedule_isl
+ = isl_union_map_union (schedule_isl,
+ isl_union_map_from_map (bb_schedule));
+ }
+ return schedule_isl;
+}
+
+/* This method is executed before the construction of a for node. */
+__isl_give isl_id *
+ast_build_before_for (__isl_keep isl_ast_build *build, void *user)
+{
+ isl_union_map *dependences = (isl_union_map *) user;
+ ast_build_info *for_info = XNEW (struct ast_build_info);
+ isl_union_map *schedule = isl_ast_build_get_schedule (build);
+ isl_space *schedule_space = isl_ast_build_get_schedule_space (build);
+ int dimension = isl_space_dim (schedule_space, isl_dim_out);
+ for_info->is_parallelizable =
+ !carries_deps (schedule, dependences, dimension);
+ isl_union_map_free (schedule);
+ isl_space_free (schedule_space);
+ isl_id *id = isl_id_alloc (isl_ast_build_get_ctx (build), "", for_info);
+ return id;
+}
+
+/* Set the separate option for all dimensions.
+ This helps to reduce control overhead. */
+
+__isl_give isl_ast_build *
+translate_isl_ast_to_gimple::set_options (__isl_take isl_ast_build *control,
+ __isl_keep isl_union_map *schedule)
+{
+ isl_ctx *ctx = isl_union_map_get_ctx (schedule);
+ isl_space *range_space = isl_space_set_alloc (ctx, 0, 1);
+ range_space =
+ isl_space_set_tuple_name (range_space, isl_dim_set, "separate");
+ isl_union_set *range =
+ isl_union_set_from_set (isl_set_universe (range_space));
+ isl_union_set *domain = isl_union_map_range (isl_union_map_copy (schedule));
+ domain = isl_union_set_universe (domain);
+ isl_union_map *options = isl_union_map_from_domain_and_range (domain, range);
+ return isl_ast_build_set_options (control, options);
+}
+
+/* Generate isl AST from schedule of SCOP. Also, collects IVS_PARAMS in IP. */
+
+__isl_give isl_ast_node *
+translate_isl_ast_to_gimple::scop_to_isl_ast (scop_p scop, ivs_params &ip)
+{
+ /* Generate loop upper bounds that consist of the current loop iterator, an
+ operator (< or <=) and an expression not involving the iterator. If this
+ option is not set, then the current loop iterator may appear several times
+ in the upper bound. See the isl manual for more details. */
+ isl_options_set_ast_build_atomic_upper_bound (scop->isl_context, true);
+
+ add_parameters_to_ivs_params (scop, ip);
+ isl_union_map *schedule_isl = generate_isl_schedule (scop);
+ isl_ast_build *context_isl = generate_isl_context (scop);
+ context_isl = set_options (context_isl, schedule_isl);
+ isl_union_map *dependences = NULL;
+ if (flag_loop_parallelize_all)
+ {
+ dependences = scop_get_dependences (scop);
+ context_isl =
+ isl_ast_build_set_before_each_for (context_isl, ast_build_before_for,
+ dependences);
+ }
+ isl_ast_node *ast_isl = isl_ast_build_ast_from_schedule (context_isl,
+ schedule_isl);
+ if (dependences)
+ isl_union_map_free (dependences);
+ isl_ast_build_free (context_isl);
+ return ast_isl;
+}
+
+/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
+ the given SCOP. Return true if code generation succeeded.
+
+ FIXME: This is not yet a full implementation of the code generator
+ with ISL ASTs. Generation of GIMPLE code has to be completed. */
+
+bool
+graphite_regenerate_ast_isl (scop_p scop)
+{
+ sese_info_p region = scop->scop_info;
+ translate_isl_ast_to_gimple t (region);
+
+ ifsese if_region = NULL;
+ isl_ast_node *root_node;
+ ivs_params ip;
+
+ timevar_push (TV_GRAPHITE_CODE_GEN);
+ root_node = t.scop_to_isl_ast (scop, ip);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nISL AST generated by ISL: \n");
+ t.print_isl_ast_node (dump_file, root_node, scop->isl_context);
+ }
+
+ recompute_all_dominators ();
+ graphite_verify ();
+
+ if_region = move_sese_in_condition (region);
+ region->if_region = if_region;
+ recompute_all_dominators ();
+
+ loop_p context_loop = region->region.entry->src->loop_father;
+
+ edge e = single_succ_edge (if_region->true_region->region.entry->dest);
+ basic_block bb = split_edge (e);
- translate_isl_ast_to_gimple t(region);
- edge e = single_succ_edge (if_region->true_region->region.entry->dest);
- basic_block bb = split_edge (e);
/* Update the true_region exit edge. */
region->if_region->true_region->region.exit = single_succ_edge (bb);
if (t.codegen_error_p ())
{
if (dump_file)
- fprintf (dump_file, "\n[codegen] unsuccessful, "
- "reverting back to the original code.");
+ fprintf (dump_file, "\n[codegen] unsuccessful,"
+ " reverting back to the original code.");
set_ifsese_condition (if_region, integer_zero_node);
}
else
graphite_verify ();
}
else if (dump_file)
- fprintf (dump_file, "\n[codegen] unsuccessful in translating "
- "pending phis, reverting back to the original code.");
+ fprintf (dump_file, "\n[codegen] unsuccessful in translating"
+ " pending phis, reverting back to the original code.");
}
free (if_region->true_region);
return !t.codegen_error_p ();
}
+
#endif /* HAVE_isl */
#include "backend.h"
#include "tree.h"
#include "gimple.h"
-#include "cfganal.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "tree-pretty-print.h"
#include "fold-const.h"
-#include "gimple-fold.h"
-#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimple-pretty-print.h"
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
-#include "value-prof.h"
#include "sese.h"
#include "tree-ssa-propagate.h"
are not marked as liveouts. */
static void
-sese_reset_debug_liveouts_bb (sese_info_p region, bitmap liveouts, basic_block bb)
+sese_reset_debug_liveouts_bb (sese_info_p region, bitmap liveouts,
+ basic_block bb)
{
gimple_stmt_iterator bsi;
ssa_op_iter iter;
update_ssa (TODO_update_ssa);
}
-/* Returns the first successor edge of BB with EDGE_TRUE_VALUE flag set. */
-
-edge
-get_true_edge_from_guard_bb (basic_block bb)
-{
- edge e;
- edge_iterator ei;
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (e->flags & EDGE_TRUE_VALUE)
- return e;
-
- gcc_unreachable ();
- return NULL;
-}
-
-/* Returns the first successor edge of BB with EDGE_TRUE_VALUE flag cleared. */
-
-edge
-get_false_edge_from_guard_bb (basic_block bb)
-{
- edge e;
- edge_iterator ei;
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (!(e->flags & EDGE_TRUE_VALUE))
- return e;
-
- gcc_unreachable ();
- return NULL;
-}
-
-/* Check if USE is defined in a basic block from where the definition of USE can
- propagate from all the paths. */
-
-static bool
-is_loop_closed_ssa_use (basic_block bb, tree use)
-{
- if (TREE_CODE (use) != SSA_NAME)
- return true;
-
- /* We should not have a rename for virtual operands. */
- gcc_assert (!virtual_operand_p (use));
-
- /* For close-phi nodes def always comes from a loop which has a back-edge. */
- if (bb_contains_loop_close_phi_nodes (bb))
- return true;
-
- gimple *def = SSA_NAME_DEF_STMT (use);
- basic_block def_bb = gimple_bb (def);
- return (!def_bb
- || flow_bb_inside_loop_p (def_bb->loop_father, bb));
-}
-
-/* Return the number of phi nodes in BB. */
-
-static int
-number_of_phi_nodes (basic_block bb)
-{
- int num_phis = 0;
- for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
- gsi_next (&psi))
- num_phis++;
- return num_phis;
-}
-
-/* Return true when BB contains loop close phi nodes. */
-
-bool
-bb_contains_loop_close_phi_nodes (basic_block bb)
-{
- return single_pred_p (bb)
- && bb->loop_father != single_pred_edge (bb)->src->loop_father;
-}
-
-/* Return true when BB contains loop phi nodes. */
-
-bool
-bb_contains_loop_phi_nodes (basic_block bb)
-{
- gcc_assert (EDGE_COUNT (bb->preds) <= 2);
-
- if (bb->preds->length () == 1)
- return false;
-
- unsigned depth = loop_depth (bb->loop_father);
-
- edge preds[2] = { (*bb->preds)[0], (*bb->preds)[1] };
-
- if (depth > loop_depth (preds[0]->src->loop_father)
- || depth > loop_depth (preds[1]->src->loop_father))
- return true;
-
- /* When one of the edges correspond to the same loop father and other
- doesn't. */
- if (bb->loop_father != preds[0]->src->loop_father
- && bb->loop_father == preds[1]->src->loop_father)
- return true;
-
- if (bb->loop_father != preds[1]->src->loop_father
- && bb->loop_father == preds[0]->src->loop_father)
- return true;
-
- return false;
-}
-
-/* Returns true if BB uses name in one of its PHIs. */
-
-static bool
-phi_uses_name (basic_block bb, tree name)
-{
- for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
- gsi_next (&psi))
- {
- gphi *phi = psi.phi ();
- for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
- {
- tree use_arg = gimple_phi_arg_def (phi, i);
- if (use_arg == name)
- return true;
- }
- }
- return false;
-}
-
-/* Return true if RENAME (defined in BB) is a valid use in NEW_BB. The
-definition should flow into use, and the use should respect the loop-closed SSA
-form. */
-
-static bool
-is_valid_rename (tree rename, basic_block def_bb,
- basic_block use_bb, bool loop_phi,
- tree old_name, basic_block old_bb)
-{
- /* The def of the rename must either dominate the uses or come from a
- back-edge. Also the def must respect the loop closed ssa form. */
- if (!is_loop_closed_ssa_use (use_bb, rename))
- {
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] rename not in loop closed ssa:");
- print_generic_expr (dump_file, rename, 0);
- }
- return false;
- }
-
- if (dominated_by_p (CDI_DOMINATORS, use_bb, def_bb))
- return true;
-
- if (bb_contains_loop_phi_nodes (use_bb) && loop_phi)
- {
- /* The loop-header dominates the loop-body. */
- if (!dominated_by_p (CDI_DOMINATORS, def_bb, use_bb))
- return false;
-
- /* RENAME would be used in loop-phi. */
- gcc_assert (number_of_phi_nodes (use_bb));
-
- /* For definitions coming from back edges, we should check that
- old_name is used in a loop PHI node. */
- if (phi_uses_name (old_bb, old_name))
- return true;
- }
- return false;
-}
-
-/* Returns the expression associated to OLD_NAME (which is used in OLD_BB), in
- NEW_BB from RENAME_MAP. LOOP_PHI is true when we want to rename OLD_NAME
- within a loop PHI instruction. */
-
-static tree
-get_rename (rename_map_t *rename_map, basic_block new_bb, tree old_name,
- basic_block old_bb, bool loop_phi)
-{
- gcc_assert (TREE_CODE (old_name) == SSA_NAME);
- vec <tree> *renames = rename_map->get (old_name);
-
- if (!renames || renames->is_empty ())
- return NULL_TREE;
-
- if (1 == renames->length ())
- {
- tree rename = (*renames)[0];
- basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (rename));
- if (is_valid_rename (rename, bb, new_bb, loop_phi, old_name, old_bb))
- return rename;
- return NULL_TREE;
- }
-
- /* More than one renames corresponding to the old_name. Find the rename for
- which the definition flows into usage at new_bb. */
- int i;
- tree t1 = NULL_TREE, t2;
- basic_block t1_bb = NULL;
- FOR_EACH_VEC_ELT (*renames, i, t2)
- {
- basic_block t2_bb = gimple_bb (SSA_NAME_DEF_STMT (t2));
-
- /* Defined in the same basic block as used. */
- if (t2_bb == new_bb)
- return t2;
-
- /* NEW_BB and T2_BB are in two unrelated if-clauses. */
- if (!dominated_by_p (CDI_DOMINATORS, new_bb, t2_bb))
- continue;
-
- /* Compute the nearest dominator. */
- if (!t1 || dominated_by_p (CDI_DOMINATORS, t2_bb, t1_bb))
- {
- t1_bb = t2_bb;
- t1 = t2;
- }
- //if (is_valid_rename (rename, bb, new_bb, loop_phi, old_name, old_bb))
- //return rename;
- }
-
- return t1;
-}
-
-/* Register in RENAME_MAP the rename tuple (OLD_NAME, EXPR).
- When OLD_NAME and EXPR are the same we assert. */
-
-static void
-set_rename (tree old_name, tree expr, sese_info_p region)
-{
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] setting rename: old_name = ");
- print_generic_expr (dump_file, old_name, 0);
- fprintf (dump_file, ", new_name = ");
- print_generic_expr (dump_file, expr, 0);
- }
-
- if (old_name == expr)
- return;
-
- vec <tree> *renames = region->rename_map->get (old_name);
-
- if (renames)
- renames->safe_push (expr);
- else
- {
- vec<tree> r;
- r.create (2);
- r.safe_push (expr);
- region->rename_map->put (old_name, r);
- }
-}
-
-/* Return an iterator to the instructions comes
- last in the execution order. Either GSI1 and GSI2 should belong
- to the same basic block or one of their respective basic blocks
- should dominate the other. */
-
-gimple_stmt_iterator
-later_of_the_two (gimple_stmt_iterator gsi1, gimple_stmt_iterator gsi2)
-{
- basic_block bb1 = gsi_bb (gsi1);
- basic_block bb2 = gsi_bb (gsi2);
-
- /* Find the iterator which is the latest. */
- if (bb1 == bb2)
- {
- /* For empty basic blocks gsis point to the end of the sequence. Since
- there is no operator== defined for gimple_stmt_iterator and for gsis
- not pointing to a valid statement gsi_next would assert. */
- gimple_stmt_iterator gsi = gsi1;
- do {
- if (gsi_stmt (gsi) == gsi_stmt (gsi2))
- return gsi2;
- gsi_next (&gsi);
- } while (!gsi_end_p (gsi));
-
- return gsi1;
- }
-
- /* Find the basic block closest to the basic block which defines stmt. */
- if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
- return gsi1;
-
- gcc_assert (dominated_by_p (CDI_DOMINATORS, bb2, bb1));
- return gsi2;
-}
-
-/* Insert each statement from SEQ at its earliest insertion p. */
-
-static void
-gsi_insert_earliest (gimple_seq seq, sese_info_p region)
-{
- update_modified_stmts (seq);
- sese_l &codegen_region = region->if_region->true_region->region;
- basic_block begin_bb = get_entry_bb (codegen_region);
-
- /* Inserting the gimple statements in a vector because gimple_seq behave
- in strage ways when inserting the stmts from it into different basic
- blocks one at a time. */
- auto_vec<gimple *, 3> stmts;
- for (gimple_stmt_iterator gsi = gsi_start (seq); !gsi_end_p (gsi);
- gsi_next (&gsi))
- stmts.safe_push (gsi_stmt (gsi));
-
- int i;
- gimple *use_stmt;
- FOR_EACH_VEC_ELT (stmts, i, use_stmt)
- {
- gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
- gimple_stmt_iterator gsi_def_stmt = gsi_start_bb_nondebug (begin_bb);
-
- use_operand_p use_p;
- ssa_op_iter op_iter;
- FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, op_iter, SSA_OP_USE)
- {
- /* Iterator to the current def of use_p. For function parameters or
- anything where def is not found, insert at the beginning of the
- generated region. */
- gimple_stmt_iterator gsi_stmt = gsi_def_stmt;
-
- tree op = USE_FROM_PTR (use_p);
- gimple *stmt = SSA_NAME_DEF_STMT (op);
- if (stmt && (gimple_code (stmt) != GIMPLE_NOP))
- gsi_stmt = gsi_for_stmt (stmt);
-
- /* For region parameters, insert at the beginning of the generated
- region. */
- if (!bb_in_sese_p (gsi_bb (gsi_stmt), codegen_region))
- {
- /* The parameter should have been inserted in the parameter
- map or it must have a scev. */
- gsi_stmt = gsi_def_stmt;
- }
-
- gsi_def_stmt = later_of_the_two (gsi_stmt, gsi_def_stmt);
- }
-
- if (!gsi_stmt (gsi_def_stmt))
- {
- gimple_stmt_iterator gsi = gsi_after_labels (gsi_bb (gsi_def_stmt));
- gsi_insert_before (&gsi, use_stmt, GSI_NEW_STMT);
- }
- else if (gimple_code (gsi_stmt (gsi_def_stmt)) == GIMPLE_PHI)
- {
- gimple_stmt_iterator bsi
- = gsi_start_bb_nondebug (gsi_bb (gsi_def_stmt));
- /* Insert right after the PHI statements. */
- gsi_insert_before (&bsi, use_stmt, GSI_NEW_STMT);
- }
- else
- gsi_insert_after (&gsi_def_stmt, use_stmt, GSI_NEW_STMT);
-
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] inserting statement: ");
- print_gimple_stmt (dump_file, use_stmt, 0, TDF_VOPS | TDF_MEMSYMS);
- print_loops_bb (dump_file, gimple_bb (use_stmt), 0, 3);
- }
- }
-}
-
-/* Collect all the operands of NEW_EXPR by recursively visiting each
- operand. */
-
-static void
-collect_all_ssa_names (tree new_expr, vec<tree> *vec_ssa, sese_info_p region)
-{
-
- /* Rename all uses in new_expr. */
- if (TREE_CODE (new_expr) == SSA_NAME)
- {
- vec_ssa->safe_push (new_expr);
- return;
- }
-
- /* Iterate over SSA_NAMES in NEW_EXPR. */
- for (int i = 0; i < (TREE_CODE_LENGTH (TREE_CODE (new_expr))); i++)
- {
- tree op = TREE_OPERAND (new_expr, i);
- collect_all_ssa_names (op, vec_ssa, region);
- }
-}
-
-static tree
-substitute_ssa_name (tree exp, tree f, tree r)
-{
- enum tree_code code = TREE_CODE (exp);
- tree op0, op1, op2, op3;
- tree new_tree;
-
- /* We handle TREE_LIST and COMPONENT_REF separately. */
- if (code == TREE_LIST)
- {
- op0 = substitute_ssa_name (TREE_CHAIN (exp), f, r);
- op1 = substitute_ssa_name (TREE_VALUE (exp), f, r);
- if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
- return exp;
-
- return tree_cons (TREE_PURPOSE (exp), op1, op0);
- }
- else if (code == COMPONENT_REF)
- {
- tree inner;
-
- /* If this expression is getting a value from a PLACEHOLDER_EXPR
- and it is the right field, replace it with R. */
- for (inner = TREE_OPERAND (exp, 0);
- REFERENCE_CLASS_P (inner);
- inner = TREE_OPERAND (inner, 0))
- ;
-
- /* The field. */
- op1 = TREE_OPERAND (exp, 1);
-
- if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
- return r;
-
- /* If this expression hasn't been completed let, leave it alone. */
- if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
- return exp;
-
- op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
- if (op0 == TREE_OPERAND (exp, 0))
- return exp;
-
- new_tree
- = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
- }
- else
- switch (TREE_CODE_CLASS (code))
- {
- case tcc_constant:
- return exp;
-
- case tcc_declaration:
- if (exp == f)
- return r;
- else
- return exp;
-
- case tcc_expression:
- if (exp == f)
- return r;
-
- /* Fall through... */
-
- case tcc_exceptional:
- case tcc_unary:
- case tcc_binary:
- case tcc_comparison:
- case tcc_reference:
- switch (TREE_CODE_LENGTH (code))
- {
- case 0:
- if (exp == f)
- return r;
- return exp;
-
- case 1:
- op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
- if (op0 == TREE_OPERAND (exp, 0))
- return exp;
-
- new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
- break;
-
- case 2:
- op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
- op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r);
-
- if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
- return exp;
-
- new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
- break;
-
- case 3:
- op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
- op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r);
- op2 = substitute_ssa_name (TREE_OPERAND (exp, 2), f, r);
-
- if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
- && op2 == TREE_OPERAND (exp, 2))
- return exp;
-
- new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
- break;
-
- case 4:
- op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
- op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r);
- op2 = substitute_ssa_name (TREE_OPERAND (exp, 2), f, r);
- op3 = substitute_ssa_name (TREE_OPERAND (exp, 3), f, r);
-
- if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
- && op2 == TREE_OPERAND (exp, 2)
- && op3 == TREE_OPERAND (exp, 3))
- return exp;
-
- new_tree
- = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
- break;
-
- default:
- gcc_unreachable ();
- }
- break;
-
- case tcc_vl_exp:
- default:
- gcc_unreachable ();
- }
-
- TREE_READONLY (new_tree) |= TREE_READONLY (exp);
-
- if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
- TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
-
- return new_tree;
-}
-
-/* Rename all the operands of NEW_EXPR by recursively visiting each operand. */
-
-static tree
-rename_all_uses (tree new_expr, basic_block new_bb, basic_block old_bb,
- sese_info_p region)
-{
- vec<tree> ssa_names;
- ssa_names.create (2);
- collect_all_ssa_names (new_expr, &ssa_names, region);
- tree t;
- int i;
- FOR_EACH_VEC_ELT (ssa_names, i, t)
- {
- if (tree r = get_rename (region->rename_map, new_bb, t, old_bb, false))
- new_expr = substitute_ssa_name (new_expr, t, r);
- /* else
- return NULL_TREE;*/
- }
-
- return new_expr;
-}
-
-static tree
-get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop,
- basic_block new_bb, basic_block old_bb,
- vec<tree> iv_map, sese_info_p region, bool *gloog_error)
-{
- tree scev = scalar_evolution_in_region (region->region, loop, old_name);
-
- /* At this point we should know the exact scev for each
- scalar SSA_NAME used in the scop: all the other scalar
- SSA_NAMEs should have been translated out of SSA using
- arrays with one element. */
- tree new_expr;
- if (chrec_contains_undetermined (scev))
- {
- *gloog_error = true;
- return build_zero_cst (TREE_TYPE (old_name));
- }
-
- new_expr = chrec_apply_map (scev, iv_map);
-
- /* The apply should produce an expression tree containing
- the uses of the new induction variables. We should be
- able to use new_expr instead of the old_name in the newly
- generated loop nest. */
- if (chrec_contains_undetermined (new_expr)
- || tree_contains_chrecs (new_expr, NULL))
- {
- *gloog_error = true;
- return build_zero_cst (TREE_TYPE (old_name));
- }
-
- new_expr = rename_all_uses (new_expr, new_bb, old_bb, region);
-
- /* Replace the old_name with the new_expr. */
- return force_gimple_operand (unshare_expr (new_expr), stmts,
- true, NULL_TREE);
-}
-
-/* Renames the scalar uses of the statement COPY, using the
- substitution map RENAME_MAP, inserting the gimplification code at
- GSI_TGT, for the translation REGION, with the original copied
- statement in LOOP, and using the induction variable renaming map
- IV_MAP. Returns true when something has been renamed. GLOOG_ERROR
- is set when the code generation cannot continue. */
-
-static bool
-rename_uses (gimple *copy, gimple_stmt_iterator *gsi_tgt,
- basic_block old_bb, sese_info_p region,
- loop_p loop, vec<tree> iv_map, bool *gloog_error)
-{
- bool changed = false;
-
- if (is_gimple_debug (copy))
- {
- if (gimple_debug_bind_p (copy))
- gimple_debug_bind_reset_value (copy);
- else if (gimple_debug_source_bind_p (copy))
- return false;
- else
- gcc_unreachable ();
-
- return false;
- }
-
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] renaming uses of stmt: ");
- print_gimple_stmt (dump_file, copy, 0, 0);
- }
-
- use_operand_p use_p;
- ssa_op_iter op_iter;
- FOR_EACH_SSA_USE_OPERAND (use_p, copy, op_iter, SSA_OP_USE)
- {
- tree old_name = USE_FROM_PTR (use_p);
-
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] renaming old_name = ");
- print_generic_expr (dump_file, old_name, 0);
- }
-
- if (TREE_CODE (old_name) != SSA_NAME
- || SSA_NAME_IS_DEFAULT_DEF (old_name))
- continue;
-
- changed = true;
- tree new_expr = get_rename (region->rename_map, gsi_tgt->bb, old_name,
- old_bb, false);
-
- if (new_expr)
- {
- tree type_old_name = TREE_TYPE (old_name);
- tree type_new_expr = TREE_TYPE (new_expr);
-
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] from rename_map: new_name = ");
- print_generic_expr (dump_file, new_expr, 0);
- }
-
- if (type_old_name != type_new_expr
- || TREE_CODE (new_expr) != SSA_NAME)
- {
- tree var = create_tmp_var (type_old_name, "var");
-
- if (!useless_type_conversion_p (type_old_name, type_new_expr))
- new_expr = fold_convert (type_old_name, new_expr);
-
- gimple_seq stmts;
- new_expr = force_gimple_operand (new_expr, &stmts, true, var);
- gsi_insert_earliest (stmts, region);
- }
-
- replace_exp (use_p, new_expr);
- continue;
- }
-
- gimple_seq stmts;
- new_expr = get_rename_from_scev (old_name, &stmts, loop, gimple_bb (copy),
- old_bb, iv_map, region, gloog_error);
- if (!new_expr || *gloog_error)
- return false;
-
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] not in rename map, scev: ");
- print_generic_expr (dump_file, new_expr, 0);
- }
-
- gsi_insert_earliest (stmts, region);
- replace_exp (use_p, new_expr);
-
- if (TREE_CODE (new_expr) == INTEGER_CST
- && is_gimple_assign (copy))
- {
- tree rhs = gimple_assign_rhs1 (copy);
-
- if (TREE_CODE (rhs) == ADDR_EXPR)
- recompute_tree_invariant_for_addr_expr (rhs);
- }
-
- set_rename (old_name, new_expr, region);
- }
-
- return changed;
-}
-
-/* Returns a basic block that could correspond to where a constant was defined
- in the original code. In the original code OLD_BB had the definition, we
- need to find which basic block out of the copies of old_bb, in the new
- region, should a definition correspond to if it has to reach BB. */
-
-static basic_block
-get_def_bb_for_const (sese_info_p region, basic_block bb, basic_block old_bb)
-{
- vec <basic_block> *bbs = region->copied_bb_map->get (old_bb);
-
- if (!bbs || bbs->is_empty ())
- return NULL;
-
- if (1 == bbs->length ())
- return (*bbs)[0];
-
- int i;
- basic_block b1 = NULL, b2;
- FOR_EACH_VEC_ELT (*bbs, i, b2)
- {
- if (b2 == bb)
- return bb;
-
- /* BB and B2 are in two unrelated if-clauses. */
- if (!dominated_by_p (CDI_DOMINATORS, bb, b2))
- continue;
-
- /* Compute the nearest dominator. */
- if (!b1 || dominated_by_p (CDI_DOMINATORS, b2, b1))
- b1 = b2;
- }
-
- gcc_assert (b1);
- return b1;
-}
-
-/* LOOP_PHI is true when we want to rename an OP within a loop PHI
- instruction. */
-
-static tree
-get_new_name (sese_info_p region, basic_block new_bb, tree op,
- basic_block old_bb, bool loop_phi)
-{
- if (TREE_CODE (op) == INTEGER_CST
- || TREE_CODE (op) == REAL_CST
- || TREE_CODE (op) == COMPLEX_CST
- || TREE_CODE (op) == VECTOR_CST)
- return op;
-
- return get_rename (region->rename_map, new_bb, op, old_bb, loop_phi);
-}
-
-/* Return a debug location for OP. */
-
-static location_t
-get_loc (tree op)
-{
- location_t loc = UNKNOWN_LOCATION;
-
- if (TREE_CODE (op) == SSA_NAME)
- loc = gimple_location (SSA_NAME_DEF_STMT (op));
- return loc;
-}
-
-/* Returns the incoming edges of basic_block BB in the pair. The first edge is
- the init edge (from outside the loop) and the second one is the back edge
- from the same loop. */
-
-std::pair<edge, edge>
-get_edges (basic_block bb)
-{
- std::pair<edge, edge> edges;
- edge e;
- edge_iterator ei;
- FOR_EACH_EDGE (e, ei, bb->preds)
- if (bb->loop_father != e->src->loop_father)
- edges.first = e;
- else
- edges.second = e;
- return edges;
-}
-
-/* Copy the PHI arguments from OLD_PHI to the NEW_PHI. The arguments to NEW_PHI
- must be found unless they can be POSTPONEd for later. */
-
-void
-copy_loop_phi_args (gphi *old_phi, init_back_edge_pair_t &ibp_old_bb,
- gphi *new_phi, init_back_edge_pair_t &ibp_new_bb,
- sese_info_p region, bool postpone)
-{
- gcc_assert (gimple_phi_num_args (old_phi) == gimple_phi_num_args (new_phi));
-
- basic_block new_bb = gimple_bb (new_phi);
- for (unsigned i = 0; i < gimple_phi_num_args (old_phi); i++)
- {
- edge e;
- if (gimple_phi_arg_edge (old_phi, i) == ibp_old_bb.first)
- e = ibp_new_bb.first;
- else
- e = ibp_new_bb.second;
-
- tree old_name = gimple_phi_arg_def (old_phi, i);
- tree new_name = get_new_name (region, new_bb, old_name,
- gimple_bb (old_phi), true);
- if (new_name)
- {
- add_phi_arg (new_phi, new_name, e, get_loc (old_name));
- continue;
- }
-
- gimple *old_def_stmt = SSA_NAME_DEF_STMT (old_name);
- if (!old_def_stmt || gimple_code (old_def_stmt) == GIMPLE_NOP)
- /* If the phi arg was a function arg, or wasn't defined, just use the old
- name. */
- add_phi_arg (new_phi, old_name, e, get_loc (old_name));
- else if (postpone)
- {
- /* Postpone code gen for later for those back-edges we don't have the
- names yet. */
- region->incomplete_phis.safe_push (std::make_pair (old_phi, new_phi));
- if (dump_file)
- fprintf (dump_file, "\n[codegen] postpone loop phi nodes: ");
- }
- else
- /* Either we should add the arg to phi or, we should postpone. */
- gcc_unreachable ();
- }
-}
-
-/* Copy loop phi nodes from BB to NEW_BB. */
-
-static bool
-copy_loop_phi_nodes (basic_block bb, basic_block new_bb, sese_info_p region)
-{
- if (dump_file)
- fprintf (dump_file, "\n[codegen] copying loop phi nodes in bb_%d.",
- new_bb->index);
-
- /* Loop phi nodes should have only two arguments. */
- gcc_assert (2 == EDGE_COUNT (bb->preds));
-
- /* First edge is the init edge and second is the back edge. */
- init_back_edge_pair_t ibp_old_bb = get_edges (bb);
-
- /* First edge is the init edge and second is the back edge. */
- init_back_edge_pair_t ibp_new_bb = get_edges (new_bb);
-
- for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
- gsi_next (&psi))
- {
- gphi *phi = psi.phi ();
- tree res = gimple_phi_result (phi);
- if (virtual_operand_p (res))
- continue;
- if (is_gimple_reg (res) && scev_analyzable_p (res, region->region))
- continue;
-
- gphi *new_phi = create_phi_node (SSA_NAME_VAR (res), new_bb);
- tree new_res = create_new_def_for (res, new_phi,
- gimple_phi_result_ptr (new_phi));
- set_rename (res, new_res, region);
- copy_loop_phi_args (phi, ibp_old_bb, new_phi, ibp_new_bb, region, true);
- update_stmt (new_phi);
- }
-
- return true;
-}
-
-/* Return the init value of PHI, the value coming from outside the loop. */
-
-static tree
-get_loop_init_value (gphi *phi)
-{
-
- loop_p loop = gimple_bb (phi)->loop_father;
-
- edge e;
- edge_iterator ei;
- FOR_EACH_EDGE (e, ei, gimple_bb (phi)->preds)
- if (e->src->loop_father != loop)
- return gimple_phi_arg_def (phi, e->dest_idx);
-
- return NULL_TREE;
-}
-
-/* Find the init value (the value which comes from outside the loop), of one of
- the operands of DEF which is defined by a loop phi. */
-
-static tree
-find_init_value (gimple *def)
-{
- if (gimple_code (def) == GIMPLE_PHI)
- return get_loop_init_value (as_a <gphi*> (def));
-
- if (gimple_vuse (def))
- return NULL_TREE;
-
- ssa_op_iter iter;
- use_operand_p use_p;
- FOR_EACH_SSA_USE_OPERAND (use_p, def, iter, SSA_OP_USE)
- {
- tree use = USE_FROM_PTR (use_p);
- if (TREE_CODE (use) == SSA_NAME)
- {
- if (tree res = find_init_value (SSA_NAME_DEF_STMT (use)))
- return res;
- }
- }
-
- return NULL_TREE;
-}
-
-/* Return the init value, the value coming from outside the loop. */
-
-static tree
-find_init_value_close_phi (gphi *phi)
-{
- gcc_assert (gimple_phi_num_args (phi) == 1);
- tree use_arg = gimple_phi_arg_def (phi, 0);
- gimple *def = SSA_NAME_DEF_STMT (use_arg);
- return find_init_value (def);
-}
-
-/* Copy all the loop-close phi args from BB to NEW_BB. */
-
-bool
-copy_loop_close_phi_args (basic_block old_bb, basic_block new_bb,
- sese_info_p region, bool postpone)
-{
- /* The successor of bb having close phi should be a merge of the diamond
- inserted to guard the loop during codegen. */
- basic_block close_phi_merge_bb = single_succ (new_bb);
-
- for (gphi_iterator psi = gsi_start_phis (old_bb); !gsi_end_p (psi);
- gsi_next (&psi))
- {
- gphi *phi = psi.phi ();
- tree res = gimple_phi_result (phi);
- if (virtual_operand_p (res))
- continue;
-
- if (is_gimple_reg (res) && scev_analyzable_p (res, region->region))
- /* Loop close phi nodes should not be scev_analyzable_p. */
- gcc_unreachable ();
-
- gphi *new_phi = create_phi_node (SSA_NAME_VAR (res), new_bb);
- tree new_res = create_new_def_for (res, new_phi,
- gimple_phi_result_ptr (new_phi));
- set_rename (res, new_res, region);
-
- tree old_name = gimple_phi_arg_def (phi, 0);
- tree new_name = get_new_name (region, new_bb, old_name, old_bb, false);
-
- /* Predecessor basic blocks of a loop close phi should have been code
- generated before. FIXME: This is fixable by merging PHIs from inner
- loops as well. When we are looking at close-phi of an outer loop, and
- arguments flowing out of inner loop as not been collected by the
- outer-loop close phi, we will hit this situation. For now we just bail
- out. See: gfortran.dg/graphite/interchange-3.f90. */
- if (!new_name)
- return false;
-
- add_phi_arg (new_phi, new_name, single_pred_edge (new_bb),
- get_loc (old_name));
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] Adding loop-closed phi: ");
- print_gimple_stmt (dump_file, new_phi, 0, 0);
- }
-
- update_stmt (new_phi);
-
- /* When there is no loop guard around this codegenerated loop, there is no
- need to collect the close-phi arg. */
- if (2 != EDGE_COUNT (close_phi_merge_bb->preds))
- continue;
-
- /* Add a PHI in the close_phi_merge_bb for each close phi of the loop. */
- tree init = find_init_value_close_phi (new_phi);
-
- /* A close phi must come from a loop-phi having an init value. */
- if (!init)
- {
- gcc_assert (postpone);
- region->incomplete_phis.safe_push (std::make_pair (phi, new_phi));
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] postpone close phi nodes: ");
- print_gimple_stmt (dump_file, new_phi, 0, 0);
- }
- continue;
- }
-
- gphi *merge_phi = create_phi_node (SSA_NAME_VAR (res),
- close_phi_merge_bb);
- tree merge_res = create_new_def_for (res, merge_phi,
- gimple_phi_result_ptr (merge_phi));
- set_rename (res, merge_res, region);
-
- edge from_loop = single_succ_edge (new_bb);
- add_phi_arg (merge_phi, new_res, from_loop, get_loc (old_name));
-
- /* The edge coming from loop guard. */
- edge other = from_loop == (*close_phi_merge_bb->preds)[0]
- ? (*close_phi_merge_bb->preds)[1] : (*close_phi_merge_bb->preds)[0];
-
- add_phi_arg (merge_phi, init, other, get_loc (old_name));
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] Adding guard-phi: ");
- print_gimple_stmt (dump_file, merge_phi, 0, 0);
- }
-
- update_stmt (new_phi);
- }
-
- return true;
-}
-
-/* Copy loop close phi nodes from BB to NEW_BB. */
-
-static bool
-copy_loop_close_phi_nodes (basic_block old_bb, basic_block new_bb,
- sese_info_p region)
-{
- if (dump_file)
- fprintf (dump_file, "\n[codegen] copying loop closed phi nodes in bb_%d.",
- new_bb->index);
- /* Loop close phi nodes should have only one argument. */
- gcc_assert (1 == EDGE_COUNT (old_bb->preds));
-
- return copy_loop_close_phi_args (old_bb, new_bb, region, true);
-}
-
-
-/* Add NEW_NAME as the ARGNUM-th arg of NEW_PHI which is in NEW_BB.
- DOMINATING_PRED is the predecessor basic block of OLD_BB which dominates the
- other pred of OLD_BB as well. If no such basic block exists then it is NULL.
- NON_DOMINATING_PRED is a pred which does not dominate OLD_BB, it cannot be
- NULL.
-
- Case1: OLD_BB->preds {BB1, BB2} and BB1 does not dominate BB2 and vice versa.
- In this case DOMINATING_PRED = NULL.
-
- Case2: OLD_BB->preds {BB1, BB2} and BB1 dominates BB2.
-
- Returns true on successful copy of the args, false otherwise. */
-
-static bool
-add_phi_arg_for_new_expr (tree old_phi_args[2], tree new_phi_args[2],
- edge old_bb_dominating_edge,
- edge old_bb_non_dominating_edge,
- gphi *phi, gphi *new_phi,
- basic_block new_bb, sese_info_p region)
-{
- basic_block def_pred[2];
- int not_found_bb_index = -1;
- for (int i = 0; i < 2; i++)
- {
- /* If the corresponding def_bb could not be found the entry will be
- NULL. */
- if (TREE_CODE (old_phi_args[i]) == INTEGER_CST)
- def_pred[i] = get_def_bb_for_const (region, new_bb,
- gimple_phi_arg_edge (phi, i)->src);
- else
- def_pred[i] = gimple_bb (SSA_NAME_DEF_STMT (new_phi_args[i]));
- if (!def_pred[i])
- {
- gcc_assert (not_found_bb_index == -1);
- not_found_bb_index = i;
- }
- }
-
- /* Here we are pattern matching on the structure of CFG w.r.t. old one. */
- if (old_bb_dominating_edge)
- {
- return false;
- basic_block new_pred1 = (*new_bb->preds)[0]->src;
- basic_block new_pred2 = (*new_bb->preds)[1]->src;
- vec <basic_block> *bbs
- = region->copied_bb_map->get (old_bb_non_dominating_edge->src);
- gcc_assert (bbs);
- basic_block new_pred = NULL;
- basic_block b;
- int i;
- FOR_EACH_VEC_ELT (*bbs, i, b)
- if (new_pred1 == b || new_pred2 == b)
- {
- gcc_assert (!new_pred);
- new_pred = b;
- }
-
- gcc_assert (new_pred);
-
- edge new_non_dominating_edge = find_edge (new_pred, new_bb);
- /* By the process of elimination we first insert insert phi-edge for
- non-dominating pred which is computed above and then we insert the
- remaining one. */
- int inserted_edge = 0;
- for (; inserted_edge < 2; inserted_edge++)
- {
- edge new_bb_pred_edge = gimple_phi_arg_edge (phi, inserted_edge);
- if (new_non_dominating_edge == new_bb_pred_edge)
- {
- add_phi_arg (new_phi, new_phi_args[inserted_edge],
- new_non_dominating_edge,
- get_loc (old_phi_args[inserted_edge]));
- break;
- }
- }
-
- int edge_dominating = 0;
- if (inserted_edge == 0)
- edge_dominating = 1;
-
- edge new_dominating_edge = NULL;
- for (int i; i < 2; i++)
- {
- edge e = gimple_phi_arg_edge (new_phi, i);
- if (e != new_non_dominating_edge)
- new_dominating_edge = e;
- }
-
- add_phi_arg (new_phi, new_phi_args[edge_dominating], new_dominating_edge,
- get_loc (old_phi_args[inserted_edge]));
- }
- else
- {
- /* Classic diamond structure: both edges are non-dominating. We need to
- find one unique edge then the other can be found be elimination. If
- any definition (def_pred) dominates both the preds of new_bb then we
- bail out. Entries of def_pred maybe NULL, in that case we must
- uniquely find pred with help of only one entry. */
- edge new_e[2] = { NULL, NULL };
- for (int i = 0; i < 2; i++)
- {
- edge e;
- edge_iterator ei;
- FOR_EACH_EDGE (e, ei, new_bb->preds)
- if (def_pred[i]
- && dominated_by_p (CDI_DOMINATORS, e->src, def_pred[i]))
- {
- if (new_e[i])
- /* We do not know how to handle the case when def_pred
- dominates more than a predecessor. */
- return false;
- new_e[i] = e;
- }
- }
-
- gcc_assert (new_e[0] || new_e[1]);
-
- /* Find the other edge by process of elimination. */
- if (not_found_bb_index != -1)
- {
- gcc_assert (!new_e[not_found_bb_index]);
- int found_bb_index = not_found_bb_index == 1 ? 0 : 1;
- edge e;
- edge_iterator ei;
- FOR_EACH_EDGE (e, ei, new_bb->preds)
- {
- if (new_e[found_bb_index] == e)
- continue;
- new_e[not_found_bb_index] = e;
- }
- }
-
- /* Add edges to phi args. */
- for (int i = 0; i < 2; i++)
- add_phi_arg (new_phi, new_phi_args[i], new_e[i],
- get_loc (old_phi_args[i]));
- }
-
- return true;
-}
-
-/* Copy the arguments of cond-phi node PHI, to NEW_PHI in the codegenerated
- region. If postpone is true and it isn't possible to copy any arg of PHI,
- the PHI is added to the REGION->INCOMPLETE_PHIS to be codegenerated
- later. Returns false if the copying was unsuccessful. */
-
-bool
-copy_cond_phi_args (gphi *phi, gphi *new_phi, vec<tree> iv_map,
- sese_info_p region, bool postpone)
-{
- if (dump_file)
- fprintf (dump_file, "\n[codegen] copying cond phi args: ");
- gcc_assert (2 == gimple_phi_num_args (phi));
-
- basic_block new_bb = gimple_bb (new_phi);
- loop_p loop = gimple_bb (phi)->loop_father;
-
- basic_block old_bb = gimple_bb (phi);
- edge old_bb_non_dominating_edge = NULL, old_bb_dominating_edge = NULL;
-
- edge e;
- edge_iterator ei;
- FOR_EACH_EDGE (e, ei, old_bb->preds)
- if (!dominated_by_p (CDI_DOMINATORS, old_bb, e->src))
- old_bb_non_dominating_edge = e;
- else
- old_bb_dominating_edge = e;
-
- gcc_assert (!dominated_by_p (CDI_DOMINATORS, old_bb,
- old_bb_non_dominating_edge->src));
-
- tree new_phi_args[2];
- tree old_phi_args[2];
-
- for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
- {
- tree old_name = gimple_phi_arg_def (phi, i);
- tree new_name = get_new_name (region, new_bb, old_name, old_bb, false);
- old_phi_args[i] = old_name;
- if (new_name)
- {
- new_phi_args [i] = new_name;
- continue;
- }
-
- if (vec_find (region->params, old_name))
- {
- new_phi_args [i] = old_name;
- if (dump_file)
- {
- fprintf (dump_file,
- "\n[codegen] parameter argument to phi, new_expr: ");
- print_gimple_stmt (dump_file, new_phi, 0, 0);
- }
- continue;
- }
-
- /* If the phi-arg is scev-analyzeable but only in the first stage. */
- if (postpone && is_gimple_reg (old_name)
- && scev_analyzable_p (old_name, region->region))
- {
- gimple_seq stmts;
- bool gloog_error = false;
- tree new_expr
- = get_rename_from_scev (old_name, &stmts, loop, new_bb,
- old_bb, iv_map, region, &gloog_error);
- if (gloog_error)
- return false;
-
- gcc_assert (new_expr);
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] scev analyzeable, new_expr: ");
- print_generic_expr (dump_file, new_expr, 0);
- }
- gsi_insert_earliest (stmts, region);
- new_phi_args [i] = new_name;
- continue;
- }
-
- gimple *old_def_stmt = SSA_NAME_DEF_STMT (old_name);
- if (!old_def_stmt || gimple_code (old_def_stmt) == GIMPLE_NOP)
- /* If the phi arg was a function arg, or wasn't defined, just use the
- old name. */
- gcc_unreachable ();
- else if (postpone)
- {
- /* Postpone code gen for later for back-edges. */
- region->incomplete_phis.safe_push (std::make_pair (phi, new_phi));
-
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] postpone cond phi nodes: ");
- print_gimple_stmt (dump_file, new_phi, 0, 0);
- }
-
- new_phi_args [i] = NULL_TREE;
- continue;
- }
- else
- gcc_unreachable ();
- }
-
- return add_phi_arg_for_new_expr (old_phi_args, new_phi_args,
- old_bb_dominating_edge,
- old_bb_non_dominating_edge,
- phi, new_phi, new_bb, region);
-}
-
-/* Copy cond phi nodes from BB to NEW_BB. */
-
-static bool
-copy_cond_phi_nodes (basic_block bb, basic_block new_bb, vec<tree> iv_map,
- sese_info_p region)
-{
-
- gcc_assert (!bb_contains_loop_close_phi_nodes (bb));
-
- if (dump_file)
- fprintf (dump_file, "\n[codegen] copying cond phi nodes in bb_%d:",
- new_bb->index);
-
- /* Cond phi nodes should have exactly two arguments. */
- gcc_assert (2 == EDGE_COUNT (bb->preds));
-
- for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
- gsi_next (&psi))
- {
- gphi *phi = psi.phi ();
- tree res = gimple_phi_result (phi);
- if (virtual_operand_p (res))
- continue;
- if (is_gimple_reg (res) && scev_analyzable_p (res, region->region))
- /* Cond phi nodes should not be scev_analyzable_p. */
- gcc_unreachable ();
-
- gphi *new_phi = create_phi_node (SSA_NAME_VAR (res), new_bb);
- tree new_res = create_new_def_for (res, new_phi,
- gimple_phi_result_ptr (new_phi));
- set_rename (res, new_res, region);
-
- if (!copy_cond_phi_args (phi, new_phi, iv_map, region, true))
- return false;
-
- update_stmt (new_phi);
- }
-
- return true;
-}
-
-/* Return true if STMT should be copied from region to the
- new code-generated region. LABELs, CONDITIONS, induction-variables
- and region parameters need not be copied. */
-
-static bool
-should_copy_to_new_region (gimple *stmt, sese_info_p region)
-{
- /* Do not copy labels or conditions. */
- if (gimple_code (stmt) == GIMPLE_LABEL
- || gimple_code (stmt) == GIMPLE_COND)
- return false;
-
- tree lhs;
- /* Do not copy induction variables. */
- if (is_gimple_assign (stmt)
- && (lhs = gimple_assign_lhs (stmt))
- && TREE_CODE (lhs) == SSA_NAME
- && is_gimple_reg (lhs)
- && scev_analyzable_p (lhs, region->region))
- return false;
-
- return true;
-}
-
-/* Create new names for all the definitions created by COPY and
- add replacement mappings for each new name. */
-
-static void
-set_rename_for_each_def (gimple *stmt, sese_info_p region)
-{
- def_operand_p def_p;
- ssa_op_iter op_iter;
- FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_ALL_DEFS)
- {
- tree old_name = DEF_FROM_PTR (def_p);
- tree new_name = create_new_def_for (old_name, stmt, def_p);
- set_rename (old_name, new_name, region);
- }
-}
-
-/* Duplicates the statements of basic block BB into basic block NEW_BB
- and compute the new induction variables according to the IV_MAP.
- GLOOG_ERROR is set when the code generation cannot continue. */
-static bool
-graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb,
- vec<tree> iv_map, sese_info_p region,
- bool *gloog_error)
-{
- /* Iterator poining to the place where new statement (s) will be inserted. */
- gimple_stmt_iterator gsi_tgt = gsi_last_bb (new_bb);
-
- for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
- gsi_next (&gsi))
- {
- gimple *stmt = gsi_stmt (gsi);
- if (!should_copy_to_new_region (stmt, region))
- continue;
-
- /* Create a new copy of STMT and duplicate STMT's virtual
- operands. */
- gimple *copy = gimple_copy (stmt);
- gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
-
- if (dump_file)
- {
- fprintf (dump_file, "\n[codegen] inserting statement: ");
- print_gimple_stmt (dump_file, copy, 0, 0);
- }
-
- maybe_duplicate_eh_stmt (copy, stmt);
- gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
-
- /* Crete new names for each def in the copied stmt. */
- set_rename_for_each_def (copy, region);
-
- loop_p loop = bb->loop_father;
- if (rename_uses (copy, &gsi_tgt, bb, region, loop, iv_map, gloog_error))
- {
- fold_stmt_inplace (&gsi_tgt);
- gcc_assert (gsi_stmt (gsi_tgt) == copy);
- }
-
- if (*gloog_error)
- return false;
-
- update_stmt (copy);
- }
-
- return true;
-}
-
-/* Copies BB and includes in the copied BB all the statements that can
- be reached following the use-def chains from the memory accesses,
- and returns the next edge following this new block. GLOOG_ERROR is
- set when the code generation cannot continue. */
-
-edge
-copy_bb_and_scalar_dependences (basic_block bb, sese_info_p region,
- edge next_e, vec<tree> iv_map,
- bool *codegen_err)
-{
- int num_phis = number_of_phi_nodes (bb);
-
- if (region->copied_bb_map->get (bb))
- {
- /* FIXME: We do not handle inner loop unrolling when the inner loop has
- phi-nodes. In that case inner loop will be copied multiple times
- outside the region. */
- if (num_phis)
- {
- *codegen_err = true;
- return NULL;
- }
- }
-
- basic_block new_bb = split_edge (next_e);
- if (num_phis > 0 && bb_contains_loop_phi_nodes (bb))
- {
- basic_block phi_bb = next_e->dest->loop_father->header;
-
- /* At this point we are unable to codegenerate by still preserving the SSA
- structure because maybe the loop is completely unrolled and the PHIs
- and cross-bb scalar dependencies are untrackable w.r.t. the original
- code. See gfortran.dg/graphite/pr29832.f90. */
- if (EDGE_COUNT (bb->preds) != EDGE_COUNT (phi_bb->preds))
- {
- *codegen_err = true;
- return NULL;
- }
-
- if (dump_file)
- fprintf (dump_file, "\n[codegen] bb_%d contains loop phi nodes",
- bb->index);
- if (!copy_loop_phi_nodes (bb, phi_bb, region))
- {
- *codegen_err = true;
- return NULL;
- }
- }
- else if (bb_contains_loop_close_phi_nodes (bb))
- {
- if (dump_file)
- fprintf (dump_file, "\n[codegen] bb_%d contains close phi nodes",
- bb->index);
-
- /* Make sure that NEW_BB is the loop->exit->dest. */
- edge e = single_pred_edge (new_bb);
- basic_block phi_bb = new_bb;
- if (e->src->loop_father == e->dest->loop_father)
- {
- /* This is one of the places which shows preserving original structure
- is not always possible, as we may need to insert close PHI for a
- loop where the latch does not have any mapping, or the mapping is
- ambiguous. */
- basic_block old_loop_bb = single_pred_edge (bb)->src;
- vec <basic_block> *bbs = region->copied_bb_map->get (old_loop_bb);
- if (!bbs || bbs->length () != 1)
- {
- *codegen_err = true;
- return NULL;
- }
-
- basic_block new_loop_bb = (*bbs)[0];
- loop_p new_loop = new_loop_bb->loop_father;
- phi_bb = single_exit (new_loop)->dest;
- e = single_pred_edge (phi_bb);
- }
-
- gcc_assert (e->src->loop_father != e->dest->loop_father);
-
- if (!copy_loop_close_phi_nodes (bb, phi_bb, region))
- {
- *codegen_err = true;
- return NULL;
- }
- }
- else if (num_phis > 0)
- {
- if (dump_file)
- fprintf (dump_file, "\n[codegen] bb_%d contains cond phi nodes",
- bb->index);
-
- basic_block phi_bb = single_pred (new_bb);
- loop_p loop_father = new_bb->loop_father;
-
- /* Move back until we find the block with two predecessors. */
- while (single_pred_p (phi_bb))
- phi_bb = single_pred_edge (phi_bb)->src;
-
- /* If a corresponding merge-point was not found, then abort codegen. */
- if (phi_bb->loop_father != loop_father
- || !copy_cond_phi_nodes (bb, phi_bb, iv_map, region))
- {
- *codegen_err = true;
- return NULL;
- }
- }
-
- if (dump_file)
- fprintf (dump_file, "\n[codegen] copying from bb_%d to bb_%d",
- bb->index, new_bb->index);
-
- vec <basic_block> *copied_bbs = region->copied_bb_map->get (bb);
- if (copied_bbs)
- copied_bbs->safe_push (new_bb);
- else
- {
- vec<basic_block> bbs;
- bbs.create (2);
- bbs.safe_push (new_bb);
- region->copied_bb_map->put (bb, bbs);
- }
-
- if (!graphite_copy_stmts_from_block (bb, new_bb, iv_map, region, codegen_err))
- {
- *codegen_err = true;
- return NULL;
- }
-
- return single_succ_edge (new_bb);
-}
-
/* Returns the outermost loop in SCOP that contains BB. */
struct loop *
{
struct loop_exit *loop_exit = ggc_cleared_alloc<struct loop_exit> ();
- memcpy (loop_exit, *((struct loop_exit **) slot), sizeof (struct loop_exit));
+ memcpy (loop_exit, *((struct loop_exit **) slot),
+ sizeof (struct loop_exit));
current_loops->exits->clear_slot (slot);
hashval_t hash = htab_hash_pointer (false_edge);
return true;
}
+/* Return true when DEF can be analyzed in REGION by the scalar
+ evolution analyzer. */
+
+bool
+scev_analyzable_p (tree def, sese_l ®ion)
+{
+ loop_p loop;
+ tree scev;
+ tree type = TREE_TYPE (def);
+
+ /* When Graphite generates code for a scev, the code generator
+ expresses the scev in function of a single induction variable.
+ This is unsafe for floating point computations, as it may replace
+ a floating point sum reduction with a multiplication. The
+ following test returns false for non integer types to avoid such
+ problems. */
+ if (!INTEGRAL_TYPE_P (type)
+ && !POINTER_TYPE_P (type))
+ return false;
+
+ loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
+ scev = scalar_evolution_in_region (region, loop, def);
+
+ return !chrec_contains_undetermined (scev)
+ && (TREE_CODE (scev) != SSA_NAME
+ || !defined_in_sese_p (scev, region))
+ && (tree_does_not_contain_chrecs (scev)
+ || evolution_function_is_affine_p (scev));
+}
+
/* Returns the scalar evolution of T in REGION. Every variable that
is not defined in the REGION is considered a parameter. */