execute_cr_bypass : in cr_bypass_data_t;
execute2_bypass : in bypass_data_t;
execute2_cr_bypass : in cr_bypass_data_t;
+ writeback_bypass : in bypass_data_t;
log_out : out std_ulogic_vector(9 downto 0)
);
architecture behaviour of decode2 is
type reg_type is record
e : Decode2ToExecute1Type;
- repeat : std_ulogic;
+ repeat : repeat_t;
+ busy : std_ulogic;
+ sgl_pipe : std_ulogic;
+ reg_a_valid : std_ulogic;
+ reg_b_valid : std_ulogic;
+ reg_c_valid : std_ulogic;
+ reg_o_valid : std_ulogic;
end record;
+ constant reg_type_init : reg_type :=
+ (e => Decode2ToExecute1Init, repeat => NONE, others => '0');
signal dc2, dc2in : reg_type;
reg : gspr_index_t;
data : std_ulogic_vector(63 downto 0);
end record;
+ constant decode_input_reg_init : decode_input_reg_t := ('0', (others => '0'), (others => '0'));
type decode_output_reg_t is record
reg_valid : std_ulogic;
reg : gspr_index_t;
end record;
+ constant decode_output_reg_init : decode_output_reg_t := ('0', (others => '0'));
function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
- reg_data : std_ulogic_vector(63 downto 0);
ispr : gspr_index_t;
instr_addr : std_ulogic_vector(63 downto 0))
return decode_input_reg_t is
begin
if t = RA or (t = RA_OR_ZERO and insn_ra(insn_in) /= "00000") then
- return ('1', gpr_to_gspr(insn_ra(insn_in)), reg_data);
+ return ('1', gpr_to_gspr(insn_ra(insn_in)), (others => '0'));
elsif t = SPR then
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs
assert is_fast_spr(ispr) = '1' or ispr = "0000000"
report "Decode A says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure;
- return (is_fast_spr(ispr), ispr, reg_data);
+ return (is_fast_spr(ispr), ispr, (others => '0'));
elsif t = CIA then
return ('0', (others => '0'), instr_addr);
elsif HAS_FPU and t = FRA then
- return ('1', fpr_to_gspr(insn_fra(insn_in)), reg_data);
+ return ('1', fpr_to_gspr(insn_fra(insn_in)), (others => '0'));
else
return ('0', (others => '0'), (others => '0'));
end if;
end;
function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0);
- reg_data : std_ulogic_vector(63 downto 0);
ispr : gspr_index_t) return decode_input_reg_t is
variable ret : decode_input_reg_t;
begin
case t is
when RB =>
- ret := ('1', gpr_to_gspr(insn_rb(insn_in)), reg_data);
+ ret := ('1', gpr_to_gspr(insn_rb(insn_in)), (others => '0'));
when FRB =>
if HAS_FPU then
- ret := ('1', fpr_to_gspr(insn_frb(insn_in)), reg_data);
+ ret := ('1', fpr_to_gspr(insn_frb(insn_in)), (others => '0'));
else
ret := ('0', (others => '0'), (others => '0'));
end if;
assert is_fast_spr(ispr) = '1' or ispr = "0000000"
report "Decode B says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure;
- ret := (is_fast_spr(ispr), ispr, reg_data);
+ ret := (is_fast_spr(ispr), ispr, (others => '0'));
when NONE =>
ret := ('0', (others => '0'), (others => '0'));
end case;
return ret;
end;
- function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0);
- reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
+ function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0))
+ return decode_input_reg_t is
begin
case t is
when RS =>
- return ('1', gpr_to_gspr(insn_rs(insn_in)), reg_data);
+ return ('1', gpr_to_gspr(insn_rs(insn_in)), (others => '0'));
when RCR =>
- return ('1', gpr_to_gspr(insn_rcreg(insn_in)), reg_data);
+ return ('1', gpr_to_gspr(insn_rcreg(insn_in)), (others => '0'));
when FRS =>
if HAS_FPU then
- return ('1', fpr_to_gspr(insn_frt(insn_in)), reg_data);
+ return ('1', fpr_to_gspr(insn_frt(insn_in)), (others => '0'));
else
return ('0', (others => '0'), (others => '0'));
end if;
when FRC =>
if HAS_FPU then
- return ('1', fpr_to_gspr(insn_frc(insn_in)), reg_data);
+ return ('1', fpr_to_gspr(insn_frc(insn_in)), (others => '0'));
else
return ('0', (others => '0'), (others => '0'));
end if;
others => "000"
);
+ signal decoded_reg_a : decode_input_reg_t;
+ signal decoded_reg_b : decode_input_reg_t;
+ signal decoded_reg_c : decode_input_reg_t;
+ signal decoded_reg_o : decode_output_reg_t;
+
-- issue control signals
signal control_valid_in : std_ulogic;
signal control_valid_out : std_ulogic;
- signal control_stall_out : std_ulogic;
signal control_sgl_pipe : std_logic;
signal gpr_write_valid : std_ulogic;
complete_in => complete_in,
valid_in => control_valid_in,
- repeated => dc2.repeat,
- busy_in => busy_in,
deferred => deferred,
flush_in => flush_in,
sgl_pipe_in => control_sgl_pipe,
cr_bypass => cr_bypass,
valid_out => control_valid_out,
- stall_out => control_stall_out,
stopped_out => stopped_out,
gpr_bypass_a => gpr_a_bypass,
decode2_0: process(clk)
begin
if rising_edge(clk) then
- if rst = '1' or flush_in = '1' or deferred = '0' then
+ if rst = '1' or flush_in = '1' then
+ dc2 <= reg_type_init;
+ elsif deferred = '0' then
if dc2in.e.valid = '1' then
- report "execute " & to_hstring(dc2in.e.nia);
+ report "execute " & to_hstring(dc2in.e.nia) &
+ " tag=" & integer'image(dc2in.e.instr_tag.tag) & std_ulogic'image(dc2in.e.instr_tag.valid);
end if;
dc2 <= dc2in;
end if;
c_out.read <= d_in.decode.input_cr;
+ decode2_addrs: process(all)
+ begin
+ decoded_reg_a <= decode_input_reg_init;
+ decoded_reg_b <= decode_input_reg_init;
+ decoded_reg_c <= decode_input_reg_init;
+ decoded_reg_o <= decode_output_reg_init;
+ if d_in.valid = '1' then
+ decoded_reg_a <= decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, d_in.ispr1, d_in.nia);
+ decoded_reg_b <= decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, d_in.ispr2);
+ decoded_reg_c <= decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn);
+ decoded_reg_o <= decode_output_reg (d_in.decode.output_reg_a, d_in.insn, d_in.ispro);
+ end if;
+
+ r_out.read1_enable <= decoded_reg_a.reg_valid;
+ r_out.read1_reg <= decoded_reg_a.reg;
+ r_out.read2_enable <= decoded_reg_b.reg_valid;
+ r_out.read2_reg <= decoded_reg_b.reg;
+ r_out.read3_enable <= decoded_reg_c.reg_valid;
+ r_out.read3_reg <= decoded_reg_c.reg;
+
+ end process;
+
decode2_1: process(all)
variable v : reg_type;
- variable decoded_reg_a : decode_input_reg_t;
- variable decoded_reg_b : decode_input_reg_t;
- variable decoded_reg_c : decode_input_reg_t;
- variable decoded_reg_o : decode_output_reg_t;
variable length : std_ulogic_vector(3 downto 0);
variable op : insn_type_t;
+ variable valid_in : std_ulogic;
begin
v := dc2;
- v.e := Decode2ToExecute1Init;
-
- --v.e.input_cr := d_in.decode.input_cr;
- v.e.output_cr := d_in.decode.output_cr;
+ valid_in := d_in.valid or dc2.busy;
- -- Work out whether XER common bits are set
- v.e.output_xer := d_in.decode.output_carry;
- case d_in.decode.insn_type is
- when OP_ADD | OP_MUL_L64 | OP_DIV | OP_DIVE =>
- -- OE field is valid in OP_ADD/OP_MUL_L64 with major opcode 31 only
- if d_in.insn(31 downto 26) = "011111" and insn_oe(d_in.insn) = '1' then
- v.e.oe := '1';
- v.e.output_xer := '1';
- end if;
- when OP_MTSPR =>
- if decode_spr_num(d_in.insn) = SPR_XER then
- v.e.output_xer := '1';
- end if;
- when others =>
- end case;
+ if dc2.busy = '0' then
+ v.e := Decode2ToExecute1Init;
- decoded_reg_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, r_in.read1_data, d_in.ispr1,
- d_in.nia);
- decoded_reg_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, r_in.read2_data, d_in.ispr2);
- decoded_reg_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn, r_in.read3_data);
- decoded_reg_o := decode_output_reg (d_in.decode.output_reg_a, d_in.insn, d_in.ispro);
+ v.sgl_pipe := d_in.decode.sgl_pipe;
- if d_in.decode.lr = '1' then
- v.e.lr := insn_lk(d_in.insn);
- -- b and bc have even major opcodes; bcreg is considered absolute
- v.e.br_abs := insn_aa(d_in.insn) or d_in.insn(26);
- end if;
- op := d_in.decode.insn_type;
+ v.e.input_cr := d_in.decode.input_cr;
+ v.e.output_cr := d_in.decode.output_cr;
- if d_in.decode.repeat /= NONE then
- v.e.repeat := '1';
- v.e.second := dc2.repeat;
- case d_in.decode.repeat is
- when DUPD =>
- -- update-form loads, 2nd instruction writes RA
- if dc2.repeat = '1' then
- decoded_reg_o.reg := decoded_reg_a.reg;
+ -- Work out whether XER common bits are set
+ v.e.output_xer := d_in.decode.output_carry;
+ case d_in.decode.insn_type is
+ when OP_ADD | OP_MUL_L64 | OP_DIV | OP_DIVE =>
+ -- OE field is valid in OP_ADD/OP_MUL_L64 with major opcode 31 only
+ if d_in.insn(31 downto 26) = "011111" and insn_oe(d_in.insn) = '1' then
+ v.e.oe := '1';
+ v.e.output_xer := '1';
+ end if;
+ when OP_MTSPR =>
+ if decode_spr_num(d_in.insn) = SPR_XER then
+ v.e.output_xer := '1';
end if;
when others =>
end case;
- elsif v.e.lr = '1' and decoded_reg_a.reg_valid = '1' then
- -- bcl/bclrl/bctarl that needs to write both CTR and LR has to be doubled
- v.e.repeat := '1';
- v.e.second := dc2.repeat;
- -- first one does CTR, second does LR
- decoded_reg_o.reg(0) := not dc2.repeat;
- end if;
- v.e.spr_select := d_in.spr_info;
+ v.reg_a_valid := decoded_reg_a.reg_valid;
+ v.reg_b_valid := decoded_reg_b.reg_valid;
+ v.reg_c_valid := decoded_reg_c.reg_valid;
+ v.reg_o_valid := decoded_reg_o.reg_valid;
- r_out.read1_enable <= decoded_reg_a.reg_valid and d_in.valid;
- r_out.read1_reg <= decoded_reg_a.reg;
- r_out.read2_enable <= decoded_reg_b.reg_valid and d_in.valid;
- r_out.read2_reg <= decoded_reg_b.reg;
- r_out.read3_enable <= decoded_reg_c.reg_valid and d_in.valid;
- r_out.read3_reg <= decoded_reg_c.reg;
+ if d_in.decode.lr = '1' then
+ v.e.lr := insn_lk(d_in.insn);
+ -- b and bc have even major opcodes; bcreg is considered absolute
+ v.e.br_abs := insn_aa(d_in.insn) or d_in.insn(26);
+ end if;
+ op := d_in.decode.insn_type;
+
+ v.repeat := d_in.decode.repeat;
+ if d_in.decode.repeat /= NONE then
+ v.e.repeat := '1';
+ elsif v.e.lr = '1' and decoded_reg_a.reg_valid = '1' then
+ -- bcl/bclrl/bctarl that needs to write both CTR and LR has to be doubled
+ v.e.repeat := '1';
+ end if;
- case d_in.decode.length is
- when is1B =>
- length := "0001";
- when is2B =>
- length := "0010";
- when is4B =>
- length := "0100";
- when is8B =>
- length := "1000";
- when NONE =>
- length := "0000";
- end case;
+ v.e.spr_select := d_in.spr_info;
+
+ case d_in.decode.length is
+ when is1B =>
+ length := "0001";
+ when is2B =>
+ length := "0010";
+ when is4B =>
+ length := "0100";
+ when is8B =>
+ length := "1000";
+ when NONE =>
+ length := "0000";
+ end case;
- -- execute unit
- v.e.nia := d_in.nia;
- v.e.unit := d_in.decode.unit;
- v.e.fac := d_in.decode.facility;
- v.e.instr_tag := instr_tag;
- v.e.read_reg1 := decoded_reg_a.reg;
- v.e.read_reg2 := decoded_reg_b.reg;
- v.e.write_reg := decoded_reg_o.reg;
- v.e.write_reg_enable := decoded_reg_o.reg_valid;
- v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
- v.e.xerc := c_in.read_xerc_data;
- v.e.invert_a := d_in.decode.invert_a;
- v.e.addm1 := '0';
- v.e.insn_type := op;
- v.e.invert_out := d_in.decode.invert_out;
- v.e.input_carry := d_in.decode.input_carry;
- v.e.output_carry := d_in.decode.output_carry;
- v.e.is_32bit := d_in.decode.is_32bit;
- v.e.is_signed := d_in.decode.is_signed;
- v.e.insn := d_in.insn;
- v.e.data_len := length;
- v.e.byte_reverse := d_in.decode.byte_reverse;
- v.e.sign_extend := d_in.decode.sign_extend;
- v.e.update := d_in.decode.update;
- v.e.reserve := d_in.decode.reserve;
- v.e.br_pred := d_in.br_pred;
- v.e.result_sel := result_select(op);
- v.e.sub_select := subresult_select(op);
- if op = OP_BC or op = OP_BCREG then
- if d_in.insn(23) = '0' and dc2.repeat = '0' and
- not (d_in.decode.insn_type = OP_BCREG and d_in.insn(10) = '0') then
- -- decrement CTR if BO(2) = 0 and not bcctr
- v.e.addm1 := '1';
- v.e.result_sel := "000"; -- select adder output
+ -- execute unit
+ v.e.nia := d_in.nia;
+ v.e.unit := d_in.decode.unit;
+ v.e.fac := d_in.decode.facility;
+ v.e.read_reg1 := decoded_reg_a.reg;
+ v.e.read_reg2 := decoded_reg_b.reg;
+ v.e.read_reg3 := decoded_reg_c.reg;
+ v.e.write_reg := decoded_reg_o.reg;
+ v.e.write_reg_enable := decoded_reg_o.reg_valid;
+ v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
+ v.e.xerc := c_in.read_xerc_data;
+ v.e.invert_a := d_in.decode.invert_a;
+ v.e.addm1 := '0';
+ v.e.insn_type := op;
+ v.e.invert_out := d_in.decode.invert_out;
+ v.e.input_carry := d_in.decode.input_carry;
+ v.e.output_carry := d_in.decode.output_carry;
+ v.e.is_32bit := d_in.decode.is_32bit;
+ v.e.is_signed := d_in.decode.is_signed;
+ v.e.insn := d_in.insn;
+ v.e.data_len := length;
+ v.e.byte_reverse := d_in.decode.byte_reverse;
+ v.e.sign_extend := d_in.decode.sign_extend;
+ v.e.update := d_in.decode.update;
+ v.e.reserve := d_in.decode.reserve;
+ v.e.br_pred := d_in.br_pred;
+ v.e.result_sel := result_select(op);
+ v.e.sub_select := subresult_select(op);
+ if op = OP_BC or op = OP_BCREG then
+ if d_in.insn(23) = '0' and
+ not (d_in.decode.insn_type = OP_BCREG and d_in.insn(10) = '0') then
+ -- decrement CTR if BO(2) = 0 and not bcctr
+ v.e.addm1 := '1';
+ v.e.result_sel := "000"; -- select adder output
+ end if;
end if;
- end if;
- if op = OP_MFSPR then
- if is_fast_spr(d_in.ispr1) = '1' then
- v.e.result_sel := "000"; -- adder_result, effectively a_in
- elsif d_in.spr_info.valid = '0' then
- -- Privileged mfspr to invalid/unimplemented SPR numbers
- -- writes the contents of RT back to RT (i.e. it's a no-op)
- v.e.result_sel := "001"; -- logical_result
- elsif d_in.spr_info.ispmu = '1' then
- v.e.result_sel := "100"; -- pmuspr_result
+ if op = OP_MFSPR then
+ if is_fast_spr(d_in.ispr1) = '1' then
+ v.e.result_sel := "000"; -- adder_result, effectively a_in
+ elsif d_in.spr_info.valid = '0' then
+ -- Privileged mfspr to invalid/unimplemented SPR numbers
+ -- writes the contents of RT back to RT (i.e. it's a no-op)
+ v.e.result_sel := "001"; -- logical_result
+ elsif d_in.spr_info.ispmu = '1' then
+ v.e.result_sel := "100"; -- pmuspr_result
+ end if;
end if;
- end if;
- -- See if any of the operands can get their value via the bypass path.
- case gpr_a_bypass is
- when "10" =>
- v.e.read_data1 := execute_bypass.data;
- when "11" =>
- v.e.read_data1 := execute2_bypass.data;
- when others =>
- v.e.read_data1 := decoded_reg_a.data;
- end case;
- case gpr_b_bypass is
- when "10" =>
- v.e.read_data2 := execute_bypass.data;
- when "11" =>
- v.e.read_data2 := execute2_bypass.data;
- when others =>
- v.e.read_data2 := decoded_reg_b.data;
- end case;
- case gpr_c_bypass is
- when "10" =>
- v.e.read_data3 := execute_bypass.data;
- when "11" =>
- v.e.read_data3 := execute2_bypass.data;
- when others =>
- v.e.read_data3 := decoded_reg_c.data;
- end case;
-
- v.e.cr := c_in.read_cr_data;
- if cr_bypass = "10" then
- v.e.cr := execute_cr_bypass.data;
- elsif cr_bypass = "11" then
- v.e.cr := execute2_cr_bypass.data;
+ elsif dc2.e.valid = '1' then
+ -- dc2.busy = 1 and dc2.e.valid = 1, thus this must be a repeated instruction.
+ -- Set up for the second iteration (if deferred = 1 this will all be ignored)
+ v.e.second := '1';
+ case dc2.repeat is
+ when DUPD =>
+ -- update-form loads, 2nd instruction writes RA
+ v.e.write_reg := dc2.e.read_reg1;
+ when NONE =>
+ -- bcl/bclrl/bctarl that needs to write both CTR and LR
+ v.e.write_reg(0) := '0'; -- point to LR
+ v.e.result_sel := "110"; -- select NIA (to go to LR)
+ when others =>
+ end case;
end if;
-- issue control
- control_valid_in <= d_in.valid;
- control_sgl_pipe <= d_in.decode.sgl_pipe;
+ control_valid_in <= valid_in;
+ control_sgl_pipe <= v.sgl_pipe;
- gpr_write_valid <= v.e.write_reg_enable;
- gpr_write <= decoded_reg_o.reg;
+ gpr_write_valid <= v.reg_o_valid;
+ gpr_write <= v.e.write_reg;
- gpr_a_read_valid <= decoded_reg_a.reg_valid;
- gpr_a_read <= decoded_reg_a.reg;
+ gpr_a_read_valid <= v.reg_a_valid;
+ gpr_a_read <= v.e.read_reg1;
- gpr_b_read_valid <= decoded_reg_b.reg_valid;
- gpr_b_read <= decoded_reg_b.reg;
+ gpr_b_read_valid <= v.reg_b_valid;
+ gpr_b_read <= v.e.read_reg2;
- gpr_c_read_valid <= decoded_reg_c.reg_valid;
- gpr_c_read <= decoded_reg_c.reg;
+ gpr_c_read_valid <= v.reg_c_valid;
+ gpr_c_read <= v.e.read_reg3;
- cr_write_valid <= d_in.decode.output_cr or decode_rc(d_in.decode.rc, d_in.insn);
+ cr_write_valid <= v.e.output_cr or v.e.rc;
-- Since ops that write CR only write some of the fields,
-- any op that writes CR effectively also reads it.
- cr_read_valid <= cr_write_valid or d_in.decode.input_cr;
+ cr_read_valid <= cr_write_valid or v.e.input_cr;
- v.e.valid := control_valid_out;
- if control_valid_out = '1' then
- v.repeat := v.e.repeat and not dc2.repeat;
+ -- See if any of the operands can get their value via the bypass path.
+ if dc2.busy = '0' or gpr_a_bypass /= "00" then
+ case gpr_a_bypass is
+ when "01" =>
+ v.e.read_data1 := execute_bypass.data;
+ when "10" =>
+ v.e.read_data1 := execute2_bypass.data;
+ when "11" =>
+ v.e.read_data1 := writeback_bypass.data;
+ when others =>
+ if decoded_reg_a.reg_valid = '1' then
+ v.e.read_data1 := r_in.read1_data;
+ else
+ v.e.read_data1 := decoded_reg_a.data;
+ end if;
+ end case;
+ end if;
+ if dc2.busy = '0' or gpr_b_bypass /= "00" then
+ case gpr_b_bypass is
+ when "01" =>
+ v.e.read_data2 := execute_bypass.data;
+ when "10" =>
+ v.e.read_data2 := execute2_bypass.data;
+ when "11" =>
+ v.e.read_data2 := writeback_bypass.data;
+ when others =>
+ if decoded_reg_b.reg_valid = '1' then
+ v.e.read_data2 := r_in.read2_data;
+ else
+ v.e.read_data2 := decoded_reg_b.data;
+ end if;
+ end case;
+ end if;
+ if dc2.busy = '0' or gpr_c_bypass /= "00" then
+ case gpr_c_bypass is
+ when "01" =>
+ v.e.read_data3 := execute_bypass.data;
+ when "10" =>
+ v.e.read_data3 := execute2_bypass.data;
+ when "11" =>
+ v.e.read_data3 := writeback_bypass.data;
+ when others =>
+ if decoded_reg_c.reg_valid = '1' then
+ v.e.read_data3 := r_in.read3_data;
+ else
+ v.e.read_data3 := decoded_reg_c.data;
+ end if;
+ end case;
end if;
- stall_out <= control_stall_out or v.repeat;
+ case cr_bypass is
+ when "10" =>
+ v.e.cr := execute_cr_bypass.data;
+ when "11" =>
+ v.e.cr := execute2_cr_bypass.data;
+ when others =>
+ v.e.cr := c_in.read_cr_data;
+ end case;
- if rst = '1' or flush_in = '1' then
- v.e := Decode2ToExecute1Init;
- v.repeat := '0';
- end if;
+ v.e.valid := control_valid_out;
+ v.e.instr_tag := instr_tag;
+ v.busy := valid_in and (not control_valid_out or (v.e.repeat and not v.e.second));
+
+ stall_out <= dc2.busy or deferred;
-- Update registers
dc2in <= v;
dc2.e.valid &
stopped_out &
stall_out &
- (gpr_a_bypass(1) or gpr_a_bypass(0)) &
- (gpr_b_bypass(1) or gpr_b_bypass(0)) &
- (gpr_c_bypass(1) or gpr_c_bypass(0));
+ (gpr_a_bypass(1) xor gpr_a_bypass(0)) &
+ (gpr_b_bypass(1) xor gpr_b_bypass(0)) &
+ (gpr_c_bypass(1) xor gpr_c_bypass(0));
end if;
end process;
log_out <= log_data;