+2016-12-03 Thomas Koenig <tkoenig@gcc.gnu.org>
+
+ PR fortran/78379
+ * config/i386/cpuinfo.c: Move denums for processor vendors,
+ processor type, processor subtypes and declaration of
+ struct __processor_model into
+ * config/i386/cpuinfo.h: New header file.
+
2016-12-02 Andre Vieira <andre.simoesdiasvieira@arm.com>
Thomas Preud'homme <thomas.preudhomme@arm.com>
#include "cpuid.h"
#include "tsystem.h"
#include "auto-target.h"
+#include "cpuinfo.h"
#ifdef HAVE_INIT_PRIORITY
#define CONSTRUCTOR_PRIORITY (101)
int __cpu_indicator_init (void)
__attribute__ ((constructor CONSTRUCTOR_PRIORITY));
-/* Processor Vendor and Models. */
-enum processor_vendor
-{
- VENDOR_INTEL = 1,
- VENDOR_AMD,
- VENDOR_OTHER,
- VENDOR_MAX
-};
-
-/* Any new types or subtypes have to be inserted at the end. */
-
-enum processor_types
-{
- INTEL_BONNELL = 1,
- INTEL_CORE2,
- INTEL_COREI7,
- AMDFAM10H,
- AMDFAM15H,
- INTEL_SILVERMONT,
- INTEL_KNL,
- AMD_BTVER1,
- AMD_BTVER2,
- AMDFAM17H,
- CPU_TYPE_MAX
-};
-
-enum processor_subtypes
-{
- INTEL_COREI7_NEHALEM = 1,
- INTEL_COREI7_WESTMERE,
- INTEL_COREI7_SANDYBRIDGE,
- AMDFAM10H_BARCELONA,
- AMDFAM10H_SHANGHAI,
- AMDFAM10H_ISTANBUL,
- AMDFAM15H_BDVER1,
- AMDFAM15H_BDVER2,
- AMDFAM15H_BDVER3,
- AMDFAM15H_BDVER4,
- AMDFAM17H_ZNVER1,
- INTEL_COREI7_IVYBRIDGE,
- INTEL_COREI7_HASWELL,
- INTEL_COREI7_BROADWELL,
- INTEL_COREI7_SKYLAKE,
- INTEL_COREI7_SKYLAKE_AVX512,
- CPU_SUBTYPE_MAX
-};
-
-/* ISA Features supported. New features have to be inserted at the end. */
-
-enum processor_features
-{
- FEATURE_CMOV = 0,
- FEATURE_MMX,
- FEATURE_POPCNT,
- FEATURE_SSE,
- FEATURE_SSE2,
- FEATURE_SSE3,
- FEATURE_SSSE3,
- FEATURE_SSE4_1,
- FEATURE_SSE4_2,
- FEATURE_AVX,
- FEATURE_AVX2,
- FEATURE_SSE4_A,
- FEATURE_FMA4,
- FEATURE_XOP,
- FEATURE_FMA,
- FEATURE_AVX512F,
- FEATURE_BMI,
- FEATURE_BMI2,
- FEATURE_AES,
- FEATURE_PCLMUL,
- FEATURE_AVX512VL,
- FEATURE_AVX512BW,
- FEATURE_AVX512DQ,
- FEATURE_AVX512CD,
- FEATURE_AVX512ER,
- FEATURE_AVX512PF,
- FEATURE_AVX512VBMI,
- FEATURE_AVX512IFMA,
- FEATURE_AVX5124VNNIW,
- FEATURE_AVX5124FMAPS
-};
-
-struct __processor_model
-{
- unsigned int __cpu_vendor;
- unsigned int __cpu_type;
- unsigned int __cpu_subtype;
- unsigned int __cpu_features[1];
-} __cpu_model = { };
+struct __processor_model __cpu_model = { };
/* Get the specific type of AMD CPU. */
--- /dev/null
+/* Get CPU type and Features for x86 processors.
+ Copyright (C) 2012-2016 Free Software Foundation, Inc.
+ Contributed by Sriraman Tallam (tmsriram@google.com)
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+/* Processor Vendor and Models. */
+
+enum processor_vendor
+{
+ VENDOR_INTEL = 1,
+ VENDOR_AMD,
+ VENDOR_OTHER,
+ VENDOR_MAX
+};
+
+/* Any new types or subtypes have to be inserted at the end. */
+
+enum processor_types
+{
+ INTEL_BONNELL = 1,
+ INTEL_CORE2,
+ INTEL_COREI7,
+ AMDFAM10H,
+ AMDFAM15H,
+ INTEL_SILVERMONT,
+ INTEL_KNL,
+ AMD_BTVER1,
+ AMD_BTVER2,
+ AMDFAM17H,
+ CPU_TYPE_MAX
+};
+
+enum processor_subtypes
+{
+ INTEL_COREI7_NEHALEM = 1,
+ INTEL_COREI7_WESTMERE,
+ INTEL_COREI7_SANDYBRIDGE,
+ AMDFAM10H_BARCELONA,
+ AMDFAM10H_SHANGHAI,
+ AMDFAM10H_ISTANBUL,
+ AMDFAM15H_BDVER1,
+ AMDFAM15H_BDVER2,
+ AMDFAM15H_BDVER3,
+ AMDFAM15H_BDVER4,
+ AMDFAM17H_ZNVER1,
+ INTEL_COREI7_IVYBRIDGE,
+ INTEL_COREI7_HASWELL,
+ INTEL_COREI7_BROADWELL,
+ INTEL_COREI7_SKYLAKE,
+ INTEL_COREI7_SKYLAKE_AVX512,
+ CPU_SUBTYPE_MAX
+};
+
+/* ISA Features supported. New features have to be inserted at the end. */
+
+enum processor_features
+{
+ FEATURE_CMOV = 0,
+ FEATURE_MMX,
+ FEATURE_POPCNT,
+ FEATURE_SSE,
+ FEATURE_SSE2,
+ FEATURE_SSE3,
+ FEATURE_SSSE3,
+ FEATURE_SSE4_1,
+ FEATURE_SSE4_2,
+ FEATURE_AVX,
+ FEATURE_AVX2,
+ FEATURE_SSE4_A,
+ FEATURE_FMA4,
+ FEATURE_XOP,
+ FEATURE_FMA,
+ FEATURE_AVX512F,
+ FEATURE_BMI,
+ FEATURE_BMI2,
+ FEATURE_AES,
+ FEATURE_PCLMUL,
+ FEATURE_AVX512VL,
+ FEATURE_AVX512BW,
+ FEATURE_AVX512DQ,
+ FEATURE_AVX512CD,
+ FEATURE_AVX512ER,
+ FEATURE_AVX512PF,
+ FEATURE_AVX512VBMI,
+ FEATURE_AVX512IFMA,
+ FEATURE_AVX5124VNNIW,
+ FEATURE_AVX5124FMAPS
+};
+
+extern struct __processor_model
+{
+ unsigned int __cpu_vendor;
+ unsigned int __cpu_type;
+ unsigned int __cpu_subtype;
+ unsigned int __cpu_features[1];
+} __cpu_model;
+2016-12-03 Thomas Koenig <tkoenig@gcc.gnu.org>
+
+ PR fortran/78379
+ * Makefile.am: Add dependence of m4/matmul_internal_m4 to
+ mamtul files..
+ * Makefile.in: Regenerated.
+ * acinclude.m4: Check for AVX, AVX2 and AVX512F.
+ * config.h.in: Add HAVE_AVX, HAVE_AVX2 and HAVE_AVX512F.
+ * configure: Regenerated.
+ * configure.ac: Use checks for AVX, AVX2 and AVX_512F.
+ * m4/matmul_internal.m4: New file. working part of matmul.m4.
+ * m4/matmul.m4: Implement architecture-specific switching
+ for AVX, AVX2 and AVX512F by including matmul_internal.m4
+ multiple times.
+ * generated/matmul_c10.c: Regenerated.
+ * generated/matmul_c16.c: Regenerated.
+ * generated/matmul_c4.c: Regenerated.
+ * generated/matmul_c8.c: Regenerated.
+ * generated/matmul_i1.c: Regenerated.
+ * generated/matmul_i16.c: Regenerated.
+ * generated/matmul_i2.c: Regenerated.
+ * generated/matmul_i4.c: Regenerated.
+ * generated/matmul_i8.c: Regenerated.
+ * generated/matmul_r10.c: Regenerated.
+ * generated/matmul_r16.c: Regenerated.
+ * generated/matmul_r4.c: Regenerated.
+ * generated/matmul_r8.c: Regenerated.
+
2016-11-30 Andre Vehreschild <vehre@gcc.gnu.org>
* caf/single.c (_gfortran_caf_get_by_ref): Prevent compile time
$(i_sum_c): m4/sum.m4 $(I_M4_DEPS1)
$(M4) -Dfile=$@ -I$(srcdir)/m4 sum.m4 > $@
-$(i_matmul_c): m4/matmul.m4 $(I_M4_DEPS)
+$(i_matmul_c): m4/matmul.m4 m4/matmul_internal.m4 $(I_M4_DEPS)
$(M4) -Dfile=$@ -I$(srcdir)/m4 matmul.m4 > $@
$(i_matmull_c): m4/matmull.m4 $(I_M4_DEPS)
@MAINTAINER_MODE_TRUE@$(i_sum_c): m4/sum.m4 $(I_M4_DEPS1)
@MAINTAINER_MODE_TRUE@ $(M4) -Dfile=$@ -I$(srcdir)/m4 sum.m4 > $@
-@MAINTAINER_MODE_TRUE@$(i_matmul_c): m4/matmul.m4 $(I_M4_DEPS)
+@MAINTAINER_MODE_TRUE@$(i_matmul_c): m4/matmul.m4 m4/matmul_internal.m4 $(I_M4_DEPS)
@MAINTAINER_MODE_TRUE@ $(M4) -Dfile=$@ -I$(srcdir)/m4 matmul.m4 > $@
@MAINTAINER_MODE_TRUE@$(i_matmull_c): m4/matmull.m4 $(I_M4_DEPS)
[Define if strerror_r takes two arguments and is available in <string.h>.]),)
CFLAGS="$ac_save_CFLAGS"
])
+
+dnl Check for AVX
+
+AC_DEFUN([LIBGFOR_CHECK_AVX], [
+ ac_save_CFLAGS="$CFLAGS"
+ CFLAGS="-O2 -mavx"
+ AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
+ void _mm256_zeroall (void)
+ {
+ __builtin_ia32_vzeroall ();
+ }]], [[]])],
+ AC_DEFINE(HAVE_AVX, 1,
+ [Define if AVX instructions can be compiled.]),
+ [])
+ CFLAGS="$ac_save_CFLAGS"
+])
+
+dnl Check for AVX2
+
+AC_DEFUN([LIBGFOR_CHECK_AVX2], [
+ ac_save_CFLAGS="$CFLAGS"
+ CFLAGS="-O2 -mavx2"
+ AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
+ typedef long long __v4di __attribute__ ((__vector_size__ (32)));
+ __v4di
+ mm256_is32_andnotsi256 (__v4di __X, __v4di __Y)
+ {
+ return __builtin_ia32_andnotsi256 (__X, __Y);
+ }]], [[]])],
+ AC_DEFINE(HAVE_AVX2, 1,
+ [Define if AVX2 instructions can be compiled.]),
+ [])
+ CFLAGS="$ac_save_CFLAGS"
+])
+
+dnl Check for AVX512f
+
+AC_DEFUN([LIBGFOR_CHECK_AVX512F], [
+ ac_save_CFLAGS="$CFLAGS"
+ CFLAGS="-O2 -mavx512f"
+ AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
+ typedef double __m512d __attribute__ ((__vector_size__ (64)));
+ __m512d _mm512_add (__m512d a)
+ {
+ return __builtin_ia32_addpd512_mask (a, a, a, 1, 4);
+ }]], [[]])],
+ AC_DEFINE(HAVE_AVX512F, 1,
+ [Define if AVX512f instructions can be compiled.]),
+ [])
+ CFLAGS="$ac_save_CFLAGS"
+])
/* Define to 1 if the target supports __attribute__((visibility(...))). */
#undef HAVE_ATTRIBUTE_VISIBILITY
+/* Define if AVX instructions can be compiled. */
+#undef HAVE_AVX
+
+/* Define if AVX2 instructions can be compiled. */
+#undef HAVE_AVX2
+
+/* Define if AVX512f instructions can be compiled. */
+#undef HAVE_AVX512F
+
/* Define to 1 if you have the `cabs' function. */
#undef HAVE_CABS
fi
+# Check whether we support AVX extensions
+
+ ac_save_CFLAGS="$CFLAGS"
+ CFLAGS="-O2 -mavx"
+ cat confdefs.h - <<_ACEOF >conftest.$ac_ext
+/* end confdefs.h. */
+
+ void _mm256_zeroall (void)
+ {
+ __builtin_ia32_vzeroall ();
+ }
+int
+main ()
+{
+
+ ;
+ return 0;
+}
+_ACEOF
+if ac_fn_c_try_compile "$LINENO"; then :
+
+$as_echo "#define HAVE_AVX 1" >>confdefs.h
+
+fi
+rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
+ CFLAGS="$ac_save_CFLAGS"
+
+
+# Check wether we support AVX2 extensions
+
+ ac_save_CFLAGS="$CFLAGS"
+ CFLAGS="-O2 -mavx2"
+ cat confdefs.h - <<_ACEOF >conftest.$ac_ext
+/* end confdefs.h. */
+
+ typedef long long __v4di __attribute__ ((__vector_size__ (32)));
+ __v4di
+ mm256_is32_andnotsi256 (__v4di __X, __v4di __Y)
+ {
+ return __builtin_ia32_andnotsi256 (__X, __Y);
+ }
+int
+main ()
+{
+
+ ;
+ return 0;
+}
+_ACEOF
+if ac_fn_c_try_compile "$LINENO"; then :
+
+$as_echo "#define HAVE_AVX2 1" >>confdefs.h
+
+fi
+rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
+ CFLAGS="$ac_save_CFLAGS"
+
+
+# Check wether we support AVX512f extensions
+
+ ac_save_CFLAGS="$CFLAGS"
+ CFLAGS="-O2 -mavx512f"
+ cat confdefs.h - <<_ACEOF >conftest.$ac_ext
+/* end confdefs.h. */
+
+ typedef double __m512d __attribute__ ((__vector_size__ (64)));
+ __m512d _mm512_add (__m512d a)
+ {
+ return __builtin_ia32_addpd512_mask (a, a, a, 1, 4);
+ }
+int
+main ()
+{
+
+ ;
+ return 0;
+}
+_ACEOF
+if ac_fn_c_try_compile "$LINENO"; then :
+
+$as_echo "#define HAVE_AVX512F 1" >>confdefs.h
+
+fi
+rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
+ CFLAGS="$ac_save_CFLAGS"
+
+
cat >confcache <<\_ACEOF
# This file is a shell script that caches the results of configure
# tests run on this system so they can be shared between configure
# Check whether line terminator is LF or CRLF
LIBGFOR_CHECK_CRLF
+# Check whether we support AVX extensions
+LIBGFOR_CHECK_AVX
+
+# Check wether we support AVX2 extensions
+LIBGFOR_CHECK_AVX2
+
+# Check wether we support AVX512f extensions
+LIBGFOR_CHECK_AVX512F
+
AC_CACHE_SAVE
if test ${multilib} = yes; then
int blas_limit, blas_call gemm);
export_proto(matmul_c10);
+
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_c10_avx (gfc_array_c10 * const restrict retarray,
+ gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_c10_avx (gfc_array_c10 * const restrict retarray,
+ gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_10 * restrict abase;
+ const GFC_COMPLEX_10 * restrict bbase;
+ GFC_COMPLEX_10 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_10));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_10 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_10 *a, *b;
+ GFC_COMPLEX_10 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_10 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_10)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_10 *restrict abase_x;
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 *restrict dest_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_10)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_10 *restrict abase_x;
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 *restrict dest_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_c10_avx2 (gfc_array_c10 * const restrict retarray,
+ gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_c10_avx2 (gfc_array_c10 * const restrict retarray,
+ gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_10 * restrict abase;
+ const GFC_COMPLEX_10 * restrict bbase;
+ GFC_COMPLEX_10 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_10));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_10 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_10 *a, *b;
+ GFC_COMPLEX_10 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_10 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_10)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_10 *restrict abase_x;
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 *restrict dest_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_10)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_10 *restrict abase_x;
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 *restrict dest_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_c10_avx512f (gfc_array_c10 * const restrict retarray,
+ gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_c10_avx512f (gfc_array_c10 * const restrict retarray,
+ gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_10 * restrict abase;
+ const GFC_COMPLEX_10 * restrict bbase;
+ GFC_COMPLEX_10 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_10));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_10 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_10 *a, *b;
+ GFC_COMPLEX_10 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_10 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_10)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_10 *restrict abase_x;
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 *restrict dest_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_10)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_10 *restrict abase_x;
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 *restrict dest_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_c10_vanilla (gfc_array_c10 * const restrict retarray,
+ gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_10 * restrict abase;
+ const GFC_COMPLEX_10 * restrict bbase;
+ GFC_COMPLEX_10 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_10));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_10 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_10 *a, *b;
+ GFC_COMPLEX_10 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_10 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_10)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_10 *restrict abase_x;
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 *restrict dest_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_10)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_10 *restrict abase_x;
+ const GFC_COMPLEX_10 *restrict bbase_y;
+ GFC_COMPLEX_10 *restrict dest_y;
+ GFC_COMPLEX_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_c10 (gfc_array_c10 * const restrict retarray,
+ gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_c10 * const restrict retarray,
+ gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_c10_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_c10_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_c10_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_c10_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_c10 (gfc_array_c10 * const restrict retarray,
gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_c16);
+
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_c16_avx (gfc_array_c16 * const restrict retarray,
+ gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_c16_avx (gfc_array_c16 * const restrict retarray,
+ gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_16 * restrict abase;
+ const GFC_COMPLEX_16 * restrict bbase;
+ GFC_COMPLEX_16 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_16));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_16 *a, *b;
+ GFC_COMPLEX_16 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_16 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_16)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_16 *restrict abase_x;
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 *restrict dest_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_16)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_16 *restrict abase_x;
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 *restrict dest_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_c16_avx2 (gfc_array_c16 * const restrict retarray,
+ gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_c16_avx2 (gfc_array_c16 * const restrict retarray,
+ gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_16 * restrict abase;
+ const GFC_COMPLEX_16 * restrict bbase;
+ GFC_COMPLEX_16 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_16));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_16 *a, *b;
+ GFC_COMPLEX_16 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_16 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_16)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_16 *restrict abase_x;
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 *restrict dest_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_16)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_16 *restrict abase_x;
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 *restrict dest_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_c16_avx512f (gfc_array_c16 * const restrict retarray,
+ gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_c16_avx512f (gfc_array_c16 * const restrict retarray,
+ gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_16 * restrict abase;
+ const GFC_COMPLEX_16 * restrict bbase;
+ GFC_COMPLEX_16 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_16));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_16 *a, *b;
+ GFC_COMPLEX_16 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_16 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_16)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_16 *restrict abase_x;
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 *restrict dest_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_16)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_16 *restrict abase_x;
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 *restrict dest_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_c16_vanilla (gfc_array_c16 * const restrict retarray,
+ gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_16 * restrict abase;
+ const GFC_COMPLEX_16 * restrict bbase;
+ GFC_COMPLEX_16 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_16));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_16 *a, *b;
+ GFC_COMPLEX_16 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_16 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_16)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_16 *restrict abase_x;
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 *restrict dest_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_16)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_16 *restrict abase_x;
+ const GFC_COMPLEX_16 *restrict bbase_y;
+ GFC_COMPLEX_16 *restrict dest_y;
+ GFC_COMPLEX_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_c16 (gfc_array_c16 * const restrict retarray,
+ gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_c16 * const restrict retarray,
+ gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_c16_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_c16_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_c16_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_c16_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_c16 (gfc_array_c16 * const restrict retarray,
gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_c4);
+
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_c4_avx (gfc_array_c4 * const restrict retarray,
+ gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_c4_avx (gfc_array_c4 * const restrict retarray,
+ gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_4 * restrict abase;
+ const GFC_COMPLEX_4 * restrict bbase;
+ GFC_COMPLEX_4 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_4));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_4 *a, *b;
+ GFC_COMPLEX_4 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_4 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_4)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_4 *restrict abase_x;
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 *restrict dest_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_4 *restrict abase_x;
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 *restrict dest_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_c4_avx2 (gfc_array_c4 * const restrict retarray,
+ gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_c4_avx2 (gfc_array_c4 * const restrict retarray,
+ gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_4 * restrict abase;
+ const GFC_COMPLEX_4 * restrict bbase;
+ GFC_COMPLEX_4 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_4));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_4 *a, *b;
+ GFC_COMPLEX_4 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_4 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_4)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_4 *restrict abase_x;
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 *restrict dest_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_4 *restrict abase_x;
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 *restrict dest_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_c4_avx512f (gfc_array_c4 * const restrict retarray,
+ gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_c4_avx512f (gfc_array_c4 * const restrict retarray,
+ gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_4 * restrict abase;
+ const GFC_COMPLEX_4 * restrict bbase;
+ GFC_COMPLEX_4 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_4));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_4 *a, *b;
+ GFC_COMPLEX_4 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_4 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_4)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_4 *restrict abase_x;
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 *restrict dest_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_4 *restrict abase_x;
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 *restrict dest_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_c4_vanilla (gfc_array_c4 * const restrict retarray,
+ gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_4 * restrict abase;
+ const GFC_COMPLEX_4 * restrict bbase;
+ GFC_COMPLEX_4 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_4));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_4 *a, *b;
+ GFC_COMPLEX_4 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_4 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_4)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_4 *restrict abase_x;
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 *restrict dest_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_4 *restrict abase_x;
+ const GFC_COMPLEX_4 *restrict bbase_y;
+ GFC_COMPLEX_4 *restrict dest_y;
+ GFC_COMPLEX_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_c4 (gfc_array_c4 * const restrict retarray,
+ gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_c4 * const restrict retarray,
+ gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_c4_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_c4_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_c4_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_c4_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_c4 (gfc_array_c4 * const restrict retarray,
gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_c8);
+
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_c8_avx (gfc_array_c8 * const restrict retarray,
+ gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_c8_avx (gfc_array_c8 * const restrict retarray,
+ gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_8 * restrict abase;
+ const GFC_COMPLEX_8 * restrict bbase;
+ GFC_COMPLEX_8 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_8));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_8 *a, *b;
+ GFC_COMPLEX_8 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_8 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_8)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_8 *restrict abase_x;
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 *restrict dest_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_8)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_8 *restrict abase_x;
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 *restrict dest_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_c8_avx2 (gfc_array_c8 * const restrict retarray,
+ gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_c8_avx2 (gfc_array_c8 * const restrict retarray,
+ gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_8 * restrict abase;
+ const GFC_COMPLEX_8 * restrict bbase;
+ GFC_COMPLEX_8 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_8));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_8 *a, *b;
+ GFC_COMPLEX_8 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_8 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_8)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_8 *restrict abase_x;
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 *restrict dest_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_8)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_8 *restrict abase_x;
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 *restrict dest_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_c8_avx512f (gfc_array_c8 * const restrict retarray,
+ gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_c8_avx512f (gfc_array_c8 * const restrict retarray,
+ gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_8 * restrict abase;
+ const GFC_COMPLEX_8 * restrict bbase;
+ GFC_COMPLEX_8 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_8));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_8 *a, *b;
+ GFC_COMPLEX_8 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_8 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_8)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_8 *restrict abase_x;
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 *restrict dest_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_8)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_8 *restrict abase_x;
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 *restrict dest_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_c8_vanilla (gfc_array_c8 * const restrict retarray,
+ gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_COMPLEX_8 * restrict abase;
+ const GFC_COMPLEX_8 * restrict bbase;
+ GFC_COMPLEX_8 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_8));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_COMPLEX_8 *a, *b;
+ GFC_COMPLEX_8 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_COMPLEX_8 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_COMPLEX_8)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_COMPLEX_8 *restrict abase_x;
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 *restrict dest_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_8)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_COMPLEX_8 *restrict abase_x;
+ const GFC_COMPLEX_8 *restrict bbase_y;
+ GFC_COMPLEX_8 *restrict dest_y;
+ GFC_COMPLEX_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_COMPLEX_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_c8 (gfc_array_c8 * const restrict retarray,
+ gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_c8 * const restrict retarray,
+ gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_c8_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_c8_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_c8_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_c8_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_c8 (gfc_array_c8 * const restrict retarray,
gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_i1);
+
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_i1_avx (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_i1_avx (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_1 * restrict abase;
+ const GFC_INTEGER_1 * restrict bbase;
+ GFC_INTEGER_1 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_1 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_1 *a, *b;
+ GFC_INTEGER_1 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_1 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_1)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_i1_avx2 (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_i1_avx2 (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_1 * restrict abase;
+ const GFC_INTEGER_1 * restrict bbase;
+ GFC_INTEGER_1 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_1 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_1 *a, *b;
+ GFC_INTEGER_1 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_1 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_1)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_i1_avx512f (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_i1_avx512f (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_1 * restrict abase;
+ const GFC_INTEGER_1 * restrict bbase;
+ GFC_INTEGER_1 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_1 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_1 *a, *b;
+ GFC_INTEGER_1 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_1 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_1)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_i1_vanilla (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_1 * restrict abase;
+ const GFC_INTEGER_1 * restrict bbase;
+ GFC_INTEGER_1 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_1 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_1 *a, *b;
+ GFC_INTEGER_1 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_1 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_1)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_i1 (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_i1_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_i1_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_i1_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_i1_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_i1 (gfc_array_i1 * const restrict retarray,
gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_i16);
+
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_i16_avx (gfc_array_i16 * const restrict retarray,
+ gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_i16_avx (gfc_array_i16 * const restrict retarray,
+ gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_16 * restrict abase;
+ const GFC_INTEGER_16 * restrict bbase;
+ GFC_INTEGER_16 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_16 *a, *b;
+ GFC_INTEGER_16 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_16 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_16)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_16 *restrict abase_x;
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 *restrict dest_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_16 *restrict abase_x;
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 *restrict dest_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_i16_avx2 (gfc_array_i16 * const restrict retarray,
+ gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_i16_avx2 (gfc_array_i16 * const restrict retarray,
+ gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_16 * restrict abase;
+ const GFC_INTEGER_16 * restrict bbase;
+ GFC_INTEGER_16 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_16 *a, *b;
+ GFC_INTEGER_16 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_16 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_16)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_16 *restrict abase_x;
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 *restrict dest_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_16 *restrict abase_x;
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 *restrict dest_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_i16_avx512f (gfc_array_i16 * const restrict retarray,
+ gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_i16_avx512f (gfc_array_i16 * const restrict retarray,
+ gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_16 * restrict abase;
+ const GFC_INTEGER_16 * restrict bbase;
+ GFC_INTEGER_16 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_16 *a, *b;
+ GFC_INTEGER_16 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_16 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_16)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_16 *restrict abase_x;
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 *restrict dest_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_16 *restrict abase_x;
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 *restrict dest_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_i16_vanilla (gfc_array_i16 * const restrict retarray,
+ gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_16 * restrict abase;
+ const GFC_INTEGER_16 * restrict bbase;
+ GFC_INTEGER_16 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_16 *a, *b;
+ GFC_INTEGER_16 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_16 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_16)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_16 *restrict abase_x;
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 *restrict dest_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_16)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_16 *restrict abase_x;
+ const GFC_INTEGER_16 *restrict bbase_y;
+ GFC_INTEGER_16 *restrict dest_y;
+ GFC_INTEGER_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_i16 (gfc_array_i16 * const restrict retarray,
+ gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_i16 * const restrict retarray,
+ gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_i16_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_i16_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_i16_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_i16_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_i16 (gfc_array_i16 * const restrict retarray,
gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_i2);
+
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_i2_avx (gfc_array_i2 * const restrict retarray,
+ gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_i2_avx (gfc_array_i2 * const restrict retarray,
+ gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_2 * restrict abase;
+ const GFC_INTEGER_2 * restrict bbase;
+ GFC_INTEGER_2 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_2 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_2 *a, *b;
+ GFC_INTEGER_2 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_2 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_2)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_2 *restrict abase_x;
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 *restrict dest_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_2)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_2 *restrict abase_x;
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 *restrict dest_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_i2_avx2 (gfc_array_i2 * const restrict retarray,
+ gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_i2_avx2 (gfc_array_i2 * const restrict retarray,
+ gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_2 * restrict abase;
+ const GFC_INTEGER_2 * restrict bbase;
+ GFC_INTEGER_2 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_2 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_2 *a, *b;
+ GFC_INTEGER_2 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_2 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_2)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_2 *restrict abase_x;
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 *restrict dest_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_2)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_2 *restrict abase_x;
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 *restrict dest_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_i2_avx512f (gfc_array_i2 * const restrict retarray,
+ gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_i2_avx512f (gfc_array_i2 * const restrict retarray,
+ gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_2 * restrict abase;
+ const GFC_INTEGER_2 * restrict bbase;
+ GFC_INTEGER_2 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_2 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_2 *a, *b;
+ GFC_INTEGER_2 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_2 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_2)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_2 *restrict abase_x;
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 *restrict dest_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_2)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_2 *restrict abase_x;
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 *restrict dest_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_i2_vanilla (gfc_array_i2 * const restrict retarray,
+ gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_2 * restrict abase;
+ const GFC_INTEGER_2 * restrict bbase;
+ GFC_INTEGER_2 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_2 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_2 *a, *b;
+ GFC_INTEGER_2 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_2 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_2)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_2 *restrict abase_x;
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 *restrict dest_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_2)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_2 *restrict abase_x;
+ const GFC_INTEGER_2 *restrict bbase_y;
+ GFC_INTEGER_2 *restrict dest_y;
+ GFC_INTEGER_2 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_2) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_i2 (gfc_array_i2 * const restrict retarray,
+ gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_i2 * const restrict retarray,
+ gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_i2_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_i2_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_i2_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_i2_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_i2 (gfc_array_i2 * const restrict retarray,
gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_i4);
+
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_i4_avx (gfc_array_i4 * const restrict retarray,
+ gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_i4_avx (gfc_array_i4 * const restrict retarray,
+ gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_4 * restrict abase;
+ const GFC_INTEGER_4 * restrict bbase;
+ GFC_INTEGER_4 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_4));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_4 *a, *b;
+ GFC_INTEGER_4 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_4 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_4)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_4 *restrict abase_x;
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 *restrict dest_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_4 *restrict abase_x;
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 *restrict dest_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_i4_avx2 (gfc_array_i4 * const restrict retarray,
+ gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_i4_avx2 (gfc_array_i4 * const restrict retarray,
+ gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_4 * restrict abase;
+ const GFC_INTEGER_4 * restrict bbase;
+ GFC_INTEGER_4 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_4));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_4 *a, *b;
+ GFC_INTEGER_4 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_4 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_4)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_4 *restrict abase_x;
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 *restrict dest_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_4 *restrict abase_x;
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 *restrict dest_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_i4_avx512f (gfc_array_i4 * const restrict retarray,
+ gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_i4_avx512f (gfc_array_i4 * const restrict retarray,
+ gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_4 * restrict abase;
+ const GFC_INTEGER_4 * restrict bbase;
+ GFC_INTEGER_4 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_4));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_4 *a, *b;
+ GFC_INTEGER_4 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_4 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_4)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_4 *restrict abase_x;
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 *restrict dest_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_4 *restrict abase_x;
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 *restrict dest_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_i4_vanilla (gfc_array_i4 * const restrict retarray,
+ gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_4 * restrict abase;
+ const GFC_INTEGER_4 * restrict bbase;
+ GFC_INTEGER_4 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_4));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_4 *a, *b;
+ GFC_INTEGER_4 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_4 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_4)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_4 *restrict abase_x;
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 *restrict dest_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_4 *restrict abase_x;
+ const GFC_INTEGER_4 *restrict bbase_y;
+ GFC_INTEGER_4 *restrict dest_y;
+ GFC_INTEGER_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_i4 (gfc_array_i4 * const restrict retarray,
+ gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_i4 * const restrict retarray,
+ gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_i4_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_i4_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_i4_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_i4_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_i4 (gfc_array_i4 * const restrict retarray,
gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_i8);
+
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_i8_avx (gfc_array_i8 * const restrict retarray,
+ gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_i8_avx (gfc_array_i8 * const restrict retarray,
+ gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_8 * restrict abase;
+ const GFC_INTEGER_8 * restrict bbase;
+ GFC_INTEGER_8 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_8));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_8 *a, *b;
+ GFC_INTEGER_8 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_8 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_8)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_8 *restrict abase_x;
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 *restrict dest_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_8)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_8 *restrict abase_x;
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 *restrict dest_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_i8_avx2 (gfc_array_i8 * const restrict retarray,
+ gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_i8_avx2 (gfc_array_i8 * const restrict retarray,
+ gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_8 * restrict abase;
+ const GFC_INTEGER_8 * restrict bbase;
+ GFC_INTEGER_8 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_8));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_8 *a, *b;
+ GFC_INTEGER_8 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_8 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_8)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_8 *restrict abase_x;
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 *restrict dest_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_8)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_8 *restrict abase_x;
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 *restrict dest_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_i8_avx512f (gfc_array_i8 * const restrict retarray,
+ gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_i8_avx512f (gfc_array_i8 * const restrict retarray,
+ gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_8 * restrict abase;
+ const GFC_INTEGER_8 * restrict bbase;
+ GFC_INTEGER_8 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_8));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_8 *a, *b;
+ GFC_INTEGER_8 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_8 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_8)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_8 *restrict abase_x;
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 *restrict dest_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_8)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_8 *restrict abase_x;
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 *restrict dest_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_i8_vanilla (gfc_array_i8 * const restrict retarray,
+ gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_8 * restrict abase;
+ const GFC_INTEGER_8 * restrict bbase;
+ GFC_INTEGER_8 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_8));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_8 *a, *b;
+ GFC_INTEGER_8 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_8 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_8)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_8 *restrict abase_x;
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 *restrict dest_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_8)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_8 *restrict abase_x;
+ const GFC_INTEGER_8 *restrict bbase_y;
+ GFC_INTEGER_8 *restrict dest_y;
+ GFC_INTEGER_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_i8 (gfc_array_i8 * const restrict retarray,
+ gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_i8 * const restrict retarray,
+ gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_i8_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_i8_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_i8_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_i8_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_i8 (gfc_array_i8 * const restrict retarray,
gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_r10);
+#if defined(HAVE_AVX) && defined(HAVE_AVX2)
+/* REAL types generate identical code for AVX and AVX2. Only generate
+ an AVX2 function if we are dealing with integer. */
+#undef HAVE_AVX2
+#endif
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_r10_avx (gfc_array_r10 * const restrict retarray,
+ gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_r10_avx (gfc_array_r10 * const restrict retarray,
+ gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_10 * restrict abase;
+ const GFC_REAL_10 * restrict bbase;
+ GFC_REAL_10 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_10));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_10 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_10 *a, *b;
+ GFC_REAL_10 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_10 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_10)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_10 *restrict abase_x;
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 *restrict dest_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_10)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_10 *restrict abase_x;
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 *restrict dest_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_r10_avx2 (gfc_array_r10 * const restrict retarray,
+ gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_r10_avx2 (gfc_array_r10 * const restrict retarray,
+ gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_10 * restrict abase;
+ const GFC_REAL_10 * restrict bbase;
+ GFC_REAL_10 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_10));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_10 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_10 *a, *b;
+ GFC_REAL_10 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_10 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_10)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_10 *restrict abase_x;
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 *restrict dest_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_10)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_10 *restrict abase_x;
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 *restrict dest_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_r10_avx512f (gfc_array_r10 * const restrict retarray,
+ gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_r10_avx512f (gfc_array_r10 * const restrict retarray,
+ gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_10 * restrict abase;
+ const GFC_REAL_10 * restrict bbase;
+ GFC_REAL_10 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_10));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_10 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_10 *a, *b;
+ GFC_REAL_10 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_10 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_10)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_10 *restrict abase_x;
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 *restrict dest_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_10)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_10 *restrict abase_x;
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 *restrict dest_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_r10_vanilla (gfc_array_r10 * const restrict retarray,
+ gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_10 * restrict abase;
+ const GFC_REAL_10 * restrict bbase;
+ GFC_REAL_10 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_10));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_10 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_10 *a, *b;
+ GFC_REAL_10 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_10 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_10)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_10 *restrict abase_x;
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 *restrict dest_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_10)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_10 *restrict abase_x;
+ const GFC_REAL_10 *restrict bbase_y;
+ GFC_REAL_10 *restrict dest_y;
+ GFC_REAL_10 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_10) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_r10 (gfc_array_r10 * const restrict retarray,
+ gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_r10 * const restrict retarray,
+ gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_r10_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_r10_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_r10_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_r10_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_r10 (gfc_array_r10 * const restrict retarray,
gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_r16);
+#if defined(HAVE_AVX) && defined(HAVE_AVX2)
+/* REAL types generate identical code for AVX and AVX2. Only generate
+ an AVX2 function if we are dealing with integer. */
+#undef HAVE_AVX2
+#endif
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_r16_avx (gfc_array_r16 * const restrict retarray,
+ gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_r16_avx (gfc_array_r16 * const restrict retarray,
+ gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_16 * restrict abase;
+ const GFC_REAL_16 * restrict bbase;
+ GFC_REAL_16 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_16));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_16 *a, *b;
+ GFC_REAL_16 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_16 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_16)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_16 *restrict abase_x;
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 *restrict dest_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_16)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_16 *restrict abase_x;
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 *restrict dest_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_r16_avx2 (gfc_array_r16 * const restrict retarray,
+ gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_r16_avx2 (gfc_array_r16 * const restrict retarray,
+ gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_16 * restrict abase;
+ const GFC_REAL_16 * restrict bbase;
+ GFC_REAL_16 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_16));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_16 *a, *b;
+ GFC_REAL_16 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_16 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_16)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_16 *restrict abase_x;
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 *restrict dest_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_16)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_16 *restrict abase_x;
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 *restrict dest_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_r16_avx512f (gfc_array_r16 * const restrict retarray,
+ gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_r16_avx512f (gfc_array_r16 * const restrict retarray,
+ gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_16 * restrict abase;
+ const GFC_REAL_16 * restrict bbase;
+ GFC_REAL_16 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_16));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_16 *a, *b;
+ GFC_REAL_16 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_16 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_16)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_16 *restrict abase_x;
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 *restrict dest_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_16)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_16 *restrict abase_x;
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 *restrict dest_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_r16_vanilla (gfc_array_r16 * const restrict retarray,
+ gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_16 * restrict abase;
+ const GFC_REAL_16 * restrict bbase;
+ GFC_REAL_16 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_16));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_16 *a, *b;
+ GFC_REAL_16 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_16 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_16)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_16 *restrict abase_x;
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 *restrict dest_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_16)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_16 *restrict abase_x;
+ const GFC_REAL_16 *restrict bbase_y;
+ GFC_REAL_16 *restrict dest_y;
+ GFC_REAL_16 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_16) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_r16 (gfc_array_r16 * const restrict retarray,
+ gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_r16 * const restrict retarray,
+ gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_r16_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_r16_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_r16_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_r16_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_r16 (gfc_array_r16 * const restrict retarray,
gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_r4);
+#if defined(HAVE_AVX) && defined(HAVE_AVX2)
+/* REAL types generate identical code for AVX and AVX2. Only generate
+ an AVX2 function if we are dealing with integer. */
+#undef HAVE_AVX2
+#endif
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_r4_avx (gfc_array_r4 * const restrict retarray,
+ gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_r4_avx (gfc_array_r4 * const restrict retarray,
+ gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_4 * restrict abase;
+ const GFC_REAL_4 * restrict bbase;
+ GFC_REAL_4 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_4));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_4 *a, *b;
+ GFC_REAL_4 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_4 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_4)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_4 *restrict abase_x;
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 *restrict dest_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_4 *restrict abase_x;
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 *restrict dest_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_r4_avx2 (gfc_array_r4 * const restrict retarray,
+ gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_r4_avx2 (gfc_array_r4 * const restrict retarray,
+ gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_4 * restrict abase;
+ const GFC_REAL_4 * restrict bbase;
+ GFC_REAL_4 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_4));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_4 *a, *b;
+ GFC_REAL_4 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_4 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_4)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_4 *restrict abase_x;
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 *restrict dest_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_4 *restrict abase_x;
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 *restrict dest_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_r4_avx512f (gfc_array_r4 * const restrict retarray,
+ gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_r4_avx512f (gfc_array_r4 * const restrict retarray,
+ gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_4 * restrict abase;
+ const GFC_REAL_4 * restrict bbase;
+ GFC_REAL_4 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_4));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_4 *a, *b;
+ GFC_REAL_4 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_4 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_4)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_4 *restrict abase_x;
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 *restrict dest_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_4 *restrict abase_x;
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 *restrict dest_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_r4_vanilla (gfc_array_r4 * const restrict retarray,
+ gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_4 * restrict abase;
+ const GFC_REAL_4 * restrict bbase;
+ GFC_REAL_4 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_4));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_4 *a, *b;
+ GFC_REAL_4 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_4 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_4)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_4 *restrict abase_x;
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 *restrict dest_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_4 *restrict abase_x;
+ const GFC_REAL_4 *restrict bbase_y;
+ GFC_REAL_4 *restrict dest_y;
+ GFC_REAL_4 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_4) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_r4 (gfc_array_r4 * const restrict retarray,
+ gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_r4 * const restrict retarray,
+ gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_r4_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_r4_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_r4_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_r4_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_r4 (gfc_array_r4 * const restrict retarray,
gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_r8);
+#if defined(HAVE_AVX) && defined(HAVE_AVX2)
+/* REAL types generate identical code for AVX and AVX2. Only generate
+ an AVX2 function if we are dealing with integer. */
+#undef HAVE_AVX2
+#endif
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_r8_avx (gfc_array_r8 * const restrict retarray,
+ gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_r8_avx (gfc_array_r8 * const restrict retarray,
+ gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_8 * restrict abase;
+ const GFC_REAL_8 * restrict bbase;
+ GFC_REAL_8 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_8));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_8 *a, *b;
+ GFC_REAL_8 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_8 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_8)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_8 *restrict abase_x;
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 *restrict dest_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_8)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_8 *restrict abase_x;
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 *restrict dest_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_r8_avx2 (gfc_array_r8 * const restrict retarray,
+ gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_r8_avx2 (gfc_array_r8 * const restrict retarray,
+ gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_8 * restrict abase;
+ const GFC_REAL_8 * restrict bbase;
+ GFC_REAL_8 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_8));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_8 *a, *b;
+ GFC_REAL_8 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_8 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_8)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_8 *restrict abase_x;
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 *restrict dest_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_8)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_8 *restrict abase_x;
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 *restrict dest_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_r8_avx512f (gfc_array_r8 * const restrict retarray,
+ gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_r8_avx512f (gfc_array_r8 * const restrict retarray,
+ gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_8 * restrict abase;
+ const GFC_REAL_8 * restrict bbase;
+ GFC_REAL_8 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_8));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_8 *a, *b;
+ GFC_REAL_8 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_8 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_8)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_8 *restrict abase_x;
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 *restrict dest_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_8)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_8 *restrict abase_x;
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 *restrict dest_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_r8_vanilla (gfc_array_r8 * const restrict retarray,
+ gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_REAL_8 * restrict abase;
+ const GFC_REAL_8 * restrict bbase;
+ GFC_REAL_8 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_8));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_REAL_8 *a, *b;
+ GFC_REAL_8 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_REAL_8 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_REAL_8)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_REAL_8 *restrict abase_x;
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 *restrict dest_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_REAL_8)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_REAL_8 *restrict abase_x;
+ const GFC_REAL_8 *restrict bbase_y;
+ GFC_REAL_8 *restrict dest_y;
+ GFC_REAL_8 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_REAL_8) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_r8 (gfc_array_r8 * const restrict retarray,
+ gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_r8 * const restrict retarray,
+ gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_r8_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_r8_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_r8_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_r8_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_r8 (gfc_array_r8 * const restrict retarray,
gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+
int blas_limit, blas_call gemm);
export_proto(matmul_'rtype_code`);
-void
-matmul_'rtype_code` ('rtype` * const restrict retarray,
- 'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
- int blas_limit, blas_call gemm)
-{
- const 'rtype_name` * restrict abase;
- const 'rtype_name` * restrict bbase;
- 'rtype_name` * restrict dest;
-
- index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
- index_type x, y, n, count, xcount, ycount;
-
- assert (GFC_DESCRIPTOR_RANK (a) == 2
- || GFC_DESCRIPTOR_RANK (b) == 2);
-
-/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
-
- Either A or B (but not both) can be rank 1:
-
- o One-dimensional argument A is implicitly treated as a row matrix
- dimensioned [1,count], so xcount=1.
-
- o One-dimensional argument B is implicitly treated as a column matrix
- dimensioned [count, 1], so ycount=1.
-*/
+'ifelse(rtype_letter,`r',dnl
+`#if defined(HAVE_AVX) && defined(HAVE_AVX2)
+/* REAL types generate identical code for AVX and AVX2. Only generate
+ an AVX2 function if we are dealing with integer. */
+#undef HAVE_AVX2
+#endif')
+`
- if (retarray->base_addr == NULL)
- {
- if (GFC_DESCRIPTOR_RANK (a) == 1)
- {
- GFC_DIMENSION_SET(retarray->dim[0], 0,
- GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
- }
- else if (GFC_DESCRIPTOR_RANK (b) == 1)
- {
- GFC_DIMENSION_SET(retarray->dim[0], 0,
- GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
- }
- else
- {
- GFC_DIMENSION_SET(retarray->dim[0], 0,
- GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
-
- GFC_DIMENSION_SET(retarray->dim[1], 0,
- GFC_DESCRIPTOR_EXTENT(b,1) - 1,
- GFC_DESCRIPTOR_EXTENT(retarray,0));
- }
+/* Put exhaustive list of possible architectures here here, ORed together. */
- retarray->base_addr
- = xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`));
- retarray->offset = 0;
- }
- else if (unlikely (compile_options.bounds_check))
- {
- index_type ret_extent, arg_extent;
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
- if (GFC_DESCRIPTOR_RANK (a) == 1)
- {
- arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
- ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
- if (arg_extent != ret_extent)
- runtime_error ("Incorrect extent in return array in"
- " MATMUL intrinsic: is %ld, should be %ld",
- (long int) ret_extent, (long int) arg_extent);
- }
- else if (GFC_DESCRIPTOR_RANK (b) == 1)
- {
- arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
- ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
- if (arg_extent != ret_extent)
- runtime_error ("Incorrect extent in return array in"
- " MATMUL intrinsic: is %ld, should be %ld",
- (long int) ret_extent, (long int) arg_extent);
- }
- else
- {
- arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
- ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
- if (arg_extent != ret_extent)
- runtime_error ("Incorrect extent in return array in"
- " MATMUL intrinsic for dimension 1:"
- " is %ld, should be %ld",
- (long int) ret_extent, (long int) arg_extent);
-
- arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
- ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
- if (arg_extent != ret_extent)
- runtime_error ("Incorrect extent in return array in"
- " MATMUL intrinsic for dimension 2:"
- " is %ld, should be %ld",
- (long int) ret_extent, (long int) arg_extent);
- }
- }
-'
-sinclude(`matmul_asm_'rtype_code`.m4')dnl
-`
- if (GFC_DESCRIPTOR_RANK (retarray) == 1)
- {
- /* One-dimensional result may be addressed in the code below
- either as a row or a column matrix. We want both cases to
- work. */
- rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
- }
- else
- {
- rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
- rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
- }
+#ifdef HAVE_AVX
+'define(`matmul_name',`matmul_'rtype_code`_avx')dnl
+`static void
+'matmul_name` ('rtype` * const restrict retarray,
+ 'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static' include(matmul_internal.m4)dnl
+`#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+'define(`matmul_name',`matmul_'rtype_code`_avx2')dnl
+`static void
+'matmul_name` ('rtype` * const restrict retarray,
+ 'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static' include(matmul_internal.m4)dnl
+`#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+'define(`matmul_name',`matmul_'rtype_code`_avx512f')dnl
+`static void
+'matmul_name` ('rtype` * const restrict retarray,
+ 'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static' include(matmul_internal.m4)dnl
+`#endif /* HAVE_AVX512F */
+/* Function to fall back to if there is no special processor-specific version. */
+'define(`matmul_name',`matmul_'rtype_code`_vanilla')dnl
+`static' include(matmul_internal.m4)dnl
- if (GFC_DESCRIPTOR_RANK (a) == 1)
- {
- /* Treat it as a a row matrix A[1,count]. */
- axstride = GFC_DESCRIPTOR_STRIDE(a,0);
- aystride = 1;
-
- xcount = 1;
- count = GFC_DESCRIPTOR_EXTENT(a,0);
- }
- else
- {
- axstride = GFC_DESCRIPTOR_STRIDE(a,0);
- aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+`/* Compiling main function, with selection code for the processor. */
- count = GFC_DESCRIPTOR_EXTENT(a,1);
- xcount = GFC_DESCRIPTOR_EXTENT(a,0);
- }
+/* Currently, this is i386 only. Adjust for other architectures. */
- if (count != GFC_DESCRIPTOR_EXTENT(b,0))
- {
- if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
- runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
- }
-
- if (GFC_DESCRIPTOR_RANK (b) == 1)
- {
- /* Treat it as a column matrix B[count,1] */
- bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
-
- /* bystride should never be used for 1-dimensional b.
- in case it is we want it to cause a segfault, rather than
- an incorrect result. */
- bystride = 0xDEADBEEF;
- ycount = 1;
- }
- else
- {
- bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
- bystride = GFC_DESCRIPTOR_STRIDE(b,1);
- ycount = GFC_DESCRIPTOR_EXTENT(b,1);
- }
-
- abase = a->base_addr;
- bbase = b->base_addr;
- dest = retarray->base_addr;
-
- /* Now that everything is set up, we perform the multiplication
- itself. */
-
-#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
-#define min(a,b) ((a) <= (b) ? (a) : (b))
-#define max(a,b) ((a) >= (b) ? (a) : (b))
-
- if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
- && (bxstride == 1 || bystride == 1)
- && (((float) xcount) * ((float) ycount) * ((float) count)
- > POW3(blas_limit)))
- {
- const int m = xcount, n = ycount, k = count, ldc = rystride;
- const 'rtype_name` one = 1, zero = 0;
- const int lda = (axstride == 1) ? aystride : axstride,
- ldb = (bxstride == 1) ? bystride : bxstride;
+#include <config/i386/cpuinfo.h>
+void matmul_'rtype_code` ('rtype` * const restrict retarray,
+ 'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) ('rtype` * const restrict retarray,
+ 'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
- if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
- {
- assert (gemm != NULL);
- gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
- &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
- &ldc, 1, 1);
- return;
- }
- }
-
- if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ if (matmul_p == NULL)
{
- /* This block of code implements a tuned matmul, derived from
- Superscalar GEMM-based level 3 BLAS, Beta version 0.1
-
- Bo Kagstrom and Per Ling
- Department of Computing Science
- Umea University
- S-901 87 Umea, Sweden
-
- from netlib.org, translated to C, and modified for matmul.m4. */
-
- const 'rtype_name` *a, *b;
- 'rtype_name` *c;
- const index_type m = xcount, n = ycount, k = count;
-
- /* System generated locals */
- index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
- i1, i2, i3, i4, i5, i6;
-
- /* Local variables */
- 'rtype_name` t1[65536], /* was [256][256] */
- f11, f12, f21, f22, f31, f32, f41, f42,
- f13, f14, f23, f24, f33, f34, f43, f44;
- index_type i, j, l, ii, jj, ll;
- index_type isec, jsec, lsec, uisec, ujsec, ulsec;
-
- a = abase;
- b = bbase;
- c = retarray->base_addr;
-
- /* Parameter adjustments */
- c_dim1 = rystride;
- c_offset = 1 + c_dim1;
- c -= c_offset;
- a_dim1 = aystride;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = bystride;
- b_offset = 1 + b_dim1;
- b -= b_offset;
-
- /* Early exit if possible */
- if (m == 0 || n == 0 || k == 0)
- return;
-
- /* Empty c first. */
- for (j=1; j<=n; j++)
- for (i=1; i<=m; i++)
- c[i + j * c_dim1] = ('rtype_name`)0;
-
- /* Start turning the crank. */
- i1 = n;
- for (jj = 1; jj <= i1; jj += 512)
+ matmul_p = matmul_'rtype_code`_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
{
- /* Computing MIN */
- i2 = 512;
- i3 = n - jj + 1;
- jsec = min(i2,i3);
- ujsec = jsec - jsec % 4;
- i2 = k;
- for (ll = 1; ll <= i2; ll += 256)
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
{
- /* Computing MIN */
- i3 = 256;
- i4 = k - ll + 1;
- lsec = min(i3,i4);
- ulsec = lsec - lsec % 2;
-
- i3 = m;
- for (ii = 1; ii <= i3; ii += 256)
- {
- /* Computing MIN */
- i4 = 256;
- i5 = m - ii + 1;
- isec = min(i4,i5);
- uisec = isec - isec % 2;
- i4 = ll + ulsec - 1;
- for (l = ll; l <= i4; l += 2)
- {
- i5 = ii + uisec - 1;
- for (i = ii; i <= i5; i += 2)
- {
- t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
- a[i + l * a_dim1];
- t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
- a[i + (l + 1) * a_dim1];
- t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
- a[i + 1 + l * a_dim1];
- t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
- a[i + 1 + (l + 1) * a_dim1];
- }
- if (uisec < isec)
- {
- t1[l - ll + 1 + (isec << 8) - 257] =
- a[ii + isec - 1 + l * a_dim1];
- t1[l - ll + 2 + (isec << 8) - 257] =
- a[ii + isec - 1 + (l + 1) * a_dim1];
- }
- }
- if (ulsec < lsec)
- {
- i4 = ii + isec - 1;
- for (i = ii; i<= i4; ++i)
- {
- t1[lsec + ((i - ii + 1) << 8) - 257] =
- a[i + (ll + lsec - 1) * a_dim1];
- }
- }
-
- uisec = isec - isec % 4;
- i4 = jj + ujsec - 1;
- for (j = jj; j <= i4; j += 4)
- {
- i5 = ii + uisec - 1;
- for (i = ii; i <= i5; i += 4)
- {
- f11 = c[i + j * c_dim1];
- f21 = c[i + 1 + j * c_dim1];
- f12 = c[i + (j + 1) * c_dim1];
- f22 = c[i + 1 + (j + 1) * c_dim1];
- f13 = c[i + (j + 2) * c_dim1];
- f23 = c[i + 1 + (j + 2) * c_dim1];
- f14 = c[i + (j + 3) * c_dim1];
- f24 = c[i + 1 + (j + 3) * c_dim1];
- f31 = c[i + 2 + j * c_dim1];
- f41 = c[i + 3 + j * c_dim1];
- f32 = c[i + 2 + (j + 1) * c_dim1];
- f42 = c[i + 3 + (j + 1) * c_dim1];
- f33 = c[i + 2 + (j + 2) * c_dim1];
- f43 = c[i + 3 + (j + 2) * c_dim1];
- f34 = c[i + 2 + (j + 3) * c_dim1];
- f44 = c[i + 3 + (j + 3) * c_dim1];
- i6 = ll + lsec - 1;
- for (l = ll; l <= i6; ++l)
- {
- f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
- * b[l + j * b_dim1];
- f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
- * b[l + j * b_dim1];
- f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
- * b[l + (j + 1) * b_dim1];
- f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
- * b[l + (j + 1) * b_dim1];
- f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
- * b[l + (j + 2) * b_dim1];
- f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
- * b[l + (j + 2) * b_dim1];
- f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
- * b[l + (j + 3) * b_dim1];
- f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
- * b[l + (j + 3) * b_dim1];
- f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
- * b[l + j * b_dim1];
- f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
- * b[l + j * b_dim1];
- f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
- * b[l + (j + 1) * b_dim1];
- f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
- * b[l + (j + 1) * b_dim1];
- f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
- * b[l + (j + 2) * b_dim1];
- f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
- * b[l + (j + 2) * b_dim1];
- f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
- * b[l + (j + 3) * b_dim1];
- f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
- * b[l + (j + 3) * b_dim1];
- }
- c[i + j * c_dim1] = f11;
- c[i + 1 + j * c_dim1] = f21;
- c[i + (j + 1) * c_dim1] = f12;
- c[i + 1 + (j + 1) * c_dim1] = f22;
- c[i + (j + 2) * c_dim1] = f13;
- c[i + 1 + (j + 2) * c_dim1] = f23;
- c[i + (j + 3) * c_dim1] = f14;
- c[i + 1 + (j + 3) * c_dim1] = f24;
- c[i + 2 + j * c_dim1] = f31;
- c[i + 3 + j * c_dim1] = f41;
- c[i + 2 + (j + 1) * c_dim1] = f32;
- c[i + 3 + (j + 1) * c_dim1] = f42;
- c[i + 2 + (j + 2) * c_dim1] = f33;
- c[i + 3 + (j + 2) * c_dim1] = f43;
- c[i + 2 + (j + 3) * c_dim1] = f34;
- c[i + 3 + (j + 3) * c_dim1] = f44;
- }
- if (uisec < isec)
- {
- i5 = ii + isec - 1;
- for (i = ii + uisec; i <= i5; ++i)
- {
- f11 = c[i + j * c_dim1];
- f12 = c[i + (j + 1) * c_dim1];
- f13 = c[i + (j + 2) * c_dim1];
- f14 = c[i + (j + 3) * c_dim1];
- i6 = ll + lsec - 1;
- for (l = ll; l <= i6; ++l)
- {
- f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
- 257] * b[l + j * b_dim1];
- f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
- 257] * b[l + (j + 1) * b_dim1];
- f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
- 257] * b[l + (j + 2) * b_dim1];
- f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
- 257] * b[l + (j + 3) * b_dim1];
- }
- c[i + j * c_dim1] = f11;
- c[i + (j + 1) * c_dim1] = f12;
- c[i + (j + 2) * c_dim1] = f13;
- c[i + (j + 3) * c_dim1] = f14;
- }
- }
- }
- if (ujsec < jsec)
- {
- i4 = jj + jsec - 1;
- for (j = jj + ujsec; j <= i4; ++j)
- {
- i5 = ii + uisec - 1;
- for (i = ii; i <= i5; i += 4)
- {
- f11 = c[i + j * c_dim1];
- f21 = c[i + 1 + j * c_dim1];
- f31 = c[i + 2 + j * c_dim1];
- f41 = c[i + 3 + j * c_dim1];
- i6 = ll + lsec - 1;
- for (l = ll; l <= i6; ++l)
- {
- f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
- 257] * b[l + j * b_dim1];
- f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
- 257] * b[l + j * b_dim1];
- f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
- 257] * b[l + j * b_dim1];
- f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
- 257] * b[l + j * b_dim1];
- }
- c[i + j * c_dim1] = f11;
- c[i + 1 + j * c_dim1] = f21;
- c[i + 2 + j * c_dim1] = f31;
- c[i + 3 + j * c_dim1] = f41;
- }
- i5 = ii + isec - 1;
- for (i = ii + uisec; i <= i5; ++i)
- {
- f11 = c[i + j * c_dim1];
- i6 = ll + lsec - 1;
- for (l = ll; l <= i6; ++l)
- {
- f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
- 257] * b[l + j * b_dim1];
- }
- c[i + j * c_dim1] = f11;
- }
- }
- }
- }
+ matmul_p = matmul_'rtype_code`_avx512f;
+ goto tailcall;
}
- }
- return;
- }
- else if (rxstride == 1 && aystride == 1 && bxstride == 1)
- {
- if (GFC_DESCRIPTOR_RANK (a) != 1)
- {
- const 'rtype_name` *restrict abase_x;
- const 'rtype_name` *restrict bbase_y;
- 'rtype_name` *restrict dest_y;
- 'rtype_name` s;
- for (y = 0; y < ycount; y++)
- {
- bbase_y = &bbase[y*bystride];
- dest_y = &dest[y*rystride];
- for (x = 0; x < xcount; x++)
- {
- abase_x = &abase[x*axstride];
- s = ('rtype_name`) 0;
- for (n = 0; n < count; n++)
- s += abase_x[n] * bbase_y[n];
- dest_y[x] = s;
- }
- }
- }
- else
- {
- const 'rtype_name` *restrict bbase_y;
- 'rtype_name` s;
+#endif /* HAVE_AVX512F */
- for (y = 0; y < ycount; y++)
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
{
- bbase_y = &bbase[y*bystride];
- s = ('rtype_name`) 0;
- for (n = 0; n < count; n++)
- s += abase[n*axstride] * bbase_y[n];
- dest[y*rystride] = s;
+ matmul_p = matmul_'rtype_code`_avx2;
+ goto tailcall;
}
- }
- }
- else if (axstride < aystride)
- {
- for (y = 0; y < ycount; y++)
- for (x = 0; x < xcount; x++)
- dest[x*rxstride + y*rystride] = ('rtype_name`)0;
-
- for (y = 0; y < ycount; y++)
- for (n = 0; n < count; n++)
- for (x = 0; x < xcount; x++)
- /* dest[x,y] += a[x,n] * b[n,y] */
- dest[x*rxstride + y*rystride] +=
- abase[x*axstride + n*aystride] *
- bbase[n*bxstride + y*bystride];
- }
- else if (GFC_DESCRIPTOR_RANK (a) == 1)
- {
- const 'rtype_name` *restrict bbase_y;
- 'rtype_name` s;
- for (y = 0; y < ycount; y++)
- {
- bbase_y = &bbase[y*bystride];
- s = ('rtype_name`) 0;
- for (n = 0; n < count; n++)
- s += abase[n*axstride] * bbase_y[n*bxstride];
- dest[y*rxstride] = s;
- }
- }
- else
- {
- const 'rtype_name` *restrict abase_x;
- const 'rtype_name` *restrict bbase_y;
- 'rtype_name` *restrict dest_y;
- 'rtype_name` s;
+#endif
- for (y = 0; y < ycount; y++)
- {
- bbase_y = &bbase[y*bystride];
- dest_y = &dest[y*rystride];
- for (x = 0; x < xcount; x++)
- {
- abase_x = &abase[x*axstride];
- s = ('rtype_name`) 0;
- for (n = 0; n < count; n++)
- s += abase_x[n*aystride] * bbase_y[n*bxstride];
- dest_y[x*rxstride] = s;
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_'rtype_code`_avx;
+ goto tailcall;
}
- }
- }
-}'
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
+'define(`matmul_name',`matmul_'rtype_code)dnl
+define(`target_attribute',`')dnl
+include(matmul_internal.m4)dnl
+`#endif
#endif
+'
--- /dev/null
+`void
+'matmul_name` ('rtype` * const restrict retarray,
+ 'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const 'rtype_name` * restrict abase;
+ const 'rtype_name` * restrict bbase;
+ 'rtype_name` * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+'
+sinclude(`matmul_asm_'rtype_code`.m4')dnl
+`
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const 'rtype_name` one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const 'rtype_name` *a, *b;
+ 'rtype_name` *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ 'rtype_name` t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = ('rtype_name`)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const 'rtype_name` *restrict abase_x;
+ const 'rtype_name` *restrict bbase_y;
+ 'rtype_name` *restrict dest_y;
+ 'rtype_name` s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = ('rtype_name`) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const 'rtype_name` *restrict bbase_y;
+ 'rtype_name` s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = ('rtype_name`) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = ('rtype_name`)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const 'rtype_name` *restrict bbase_y;
+ 'rtype_name` s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = ('rtype_name`) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const 'rtype_name` *restrict abase_x;
+ const 'rtype_name` *restrict bbase_y;
+ 'rtype_name` *restrict dest_y;
+ 'rtype_name` s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = ('rtype_name`) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+'