#include "util/u_math.h"
-
+/** 2^x, for x in [-1.0, 1.0[ */
float pow2_table[POW2_TABLE_SIZE];
init_pow2_table(void)
{
int i;
- for (i = 0; i < POW2_TABLE_SIZE; i++) {
- pow2_table[i] = (float) pow(2.0, i / POW2_TABLE_SCALE);
- }
+ for (i = 0; i < POW2_TABLE_SIZE; i++)
+ pow2_table[i] = (float) pow(2.0, (i - POW2_TABLE_OFFSET) / POW2_TABLE_SCALE);
+}
+
+
+/** log2(x), for x in [1.0, 2.0[ */
+float log2_table[LOG2_TABLE_SIZE];
+
+
+static void
+init_log2_table(void)
+{
+ unsigned i;
+ for (i = 0; i < LOG2_TABLE_SIZE; i++)
+ log2_table[i] = (float) log2(1.0 + i * (1.0 / LOG2_TABLE_SIZE));
}
static boolean initialized = FALSE;
if (!initialized) {
init_pow2_table();
+ init_log2_table();
initialized = TRUE;
}
}
-#define POW2_TABLE_SIZE 256
-#define POW2_TABLE_SCALE ((float) (POW2_TABLE_SIZE-1))
+#define POW2_TABLE_SIZE_LOG2 9
+#define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
+#define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
+#define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
extern float pow2_table[POW2_TABLE_SIZE];
union fi {
float f;
- int i;
- unsigned ui;
+ int32_t i;
+ uint32_t ui;
};
/**
- * Fast approximation to exp(x).
- * Compute with base 2 exponents: exp(x) = exp2(log2(e) * x)
- * Note: log2(e) is a constant, k = 1.44269
- * So, exp(x) = exp2(k * x);
+ * Fast version of 2^x
* Identity: exp2(a + b) = exp2(a) * exp2(b)
- * Let ipart = int(k*x)
- * Let fpart = k*x - ipart;
- * So, exp2(k*x) = exp2(ipart) * exp2(fpart)
+ * Let ipart = int(x)
+ * Let fpart = x - ipart;
+ * So, exp2(x) = exp2(ipart) * exp2(fpart)
* Compute exp2(ipart) with i << ipart
* Compute exp2(fpart) with lookup table.
*/
static INLINE float
-util_fast_exp(float x)
+util_fast_exp2(float x)
{
- if (x >= 0.0f) {
- float k = 1.44269f; /* = log2(e) */
- float kx = k * x;
- int ipart = (int) kx;
- float fpart = kx - (float) ipart;
- float y = (float) (1 << ipart)
- * pow2_table[(int) (fpart * POW2_TABLE_SCALE)];
- return y;
- }
- else {
- /* exp(-x) = 1.0 / exp(x) */
- float k = -1.44269f;
- float kx = k * x;
- int ipart = (int) kx;
- float fpart = kx - (float) ipart;
- float y = (float) (1 << ipart)
- * pow2_table[(int) (fpart * POW2_TABLE_SCALE)];
- return 1.0f / y;
- }
+ int32_t ipart;
+ float fpart, mpart;
+ union fi epart;
+
+ if(x > 129.00000f)
+ return 3.402823466e+38f;
+
+ if(x < -126.99999f)
+ return 0.0f;
+
+ ipart = (int32_t) x;
+ fpart = x - (float) ipart;
+
+ /* same as
+ * epart.f = (float) (1 << ipart)
+ * but faster and without integer overflow for ipart > 31 */
+ epart.i = (ipart + 127 ) << 23;
+
+ mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
+
+ return epart.f * mpart;
}
/**
- * Fast version of 2^x
- * XXX the above function could be implemented in terms of this one.
+ * Fast approximation to exp(x).
*/
static INLINE float
-util_fast_exp2(float x)
+util_fast_exp(float x)
{
- if (x >= 0.0f) {
- int ipart = (int) x;
- float fpart = x - (float) ipart;
- float y = (float) (1 << ipart)
- * pow2_table[(int) (fpart * POW2_TABLE_SCALE)];
- return y;
- }
- else {
- /* exp(-x) = 1.0 / exp(x) */
- int ipart = (int) -x;
- float fpart = -x - (float) ipart;
- float y = (float) (1 << ipart)
- * pow2_table[(int) (fpart * POW2_TABLE_SCALE)];
- return 1.0f / y;
- }
+ const float k = 1.44269f; /* = log2(e) */
+ return util_fast_exp2(k * x);
}
-/**
- * Based on code from http://www.flipcode.com/totd/
- */
+#define LOG2_TABLE_SIZE_LOG2 8
+#define LOG2_TABLE_SIZE (1 << LOG2_TABLE_SIZE_LOG2)
+extern float log2_table[LOG2_TABLE_SIZE];
+
+
static INLINE float
-util_fast_log2(float val)
+util_fast_log2(float x)
{
union fi num;
- int log_2;
- num.f = val;
- log_2 = ((num.i >> 23) & 255) - 128;
- num.i &= ~(255 << 23);
- num.i += 127 << 23;
- num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
- return num.f + log_2;
+ float epart, mpart;
+ num.f = x;
+ epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
+ mpart = log2_table[(num.i & 0x007fffff) >> (23 - LOG2_TABLE_SIZE_LOG2)];
+ return epart + mpart;
}
static INLINE float
util_fast_pow(float x, float y)
{
- /* XXX these tests may need adjustment */
- if (y >= 3.0f && (-0.02f <= x && x <= 0.02f))
- return 0.0f;
- if (y >= 50.0f && (-0.9f <= x && x <= 0.9f))
- return 0.0f;
return util_fast_exp2(util_fast_log2(x) * y);
}