return true;
}
+ if (inst->Type() == PRIM_DLATCHRS)
+ {
+ if (inst->GetSet()->IsGnd() && inst->GetReset()->IsGnd())
+ module->addDlatch(inst_name, net_map_at(inst->GetControl()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()));
+ else
+ module->addDlatchsr(inst_name, net_map_at(inst->GetControl()), net_map_at(inst->GetSet()), net_map_at(inst->GetReset()),
+ net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()));
+ return true;
+ }
+
if (inst->Type() == PRIM_DFF)
{
VerificClocking clocking(this, inst->GetClock());
log_assert(clocking.disable_sig == State::S0);
log_assert(clocking.body_net == nullptr);
- if (inst->GetAsyncVal()->IsGnd())
+ if (inst->GetAsyncCond()->IsGnd())
clocking.addDff(inst_name, net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()));
else
clocking.addAldff(inst_name, net_map_at(inst->GetAsyncCond()), net_map_at(inst->GetAsyncVal()),
return true;
}
+ // FIXME: PRIM_DLATCH
+
return false;
}
return true;
}
+ if (inst->Type() == PRIM_DFF)
+ {
+ VerificClocking clocking(this, inst->GetClock());
+ log_assert(clocking.disable_sig == State::S0);
+ log_assert(clocking.body_net == nullptr);
+
+ if (inst->GetAsyncCond()->IsGnd())
+ cell = clocking.addDff(inst_name, net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()));
+ else
+ cell = clocking.addAldff(inst_name, net_map_at(inst->GetAsyncCond()), net_map_at(inst->GetAsyncVal()),
+ net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()));
+ import_attributes(cell->attributes, inst);
+ return true;
+ }
+
+ // FIXME: PRIM_DLATCH
+
#define IN operatorInput(inst)
#define IN1 operatorInput1(inst)
#define IN2 operatorInput2(inst)
return true;
}
+ // FIXME: OPER_WIDE_DLATCHSR
+
if (inst->Type() == OPER_WIDE_DFF)
{
VerificClocking clocking(this, inst->GetClock());
return true;
}
+ // FIXME: OPER_WIDE_DLATCH
+
#undef IN
#undef IN1
#undef IN2