#ifndef hash_set_h
#define hash_set_h
-template<typename KeyId, typename Traits = default_hash_traits<KeyId> >
+template<typename KeyId, bool Lazy = false,
+ typename Traits = default_hash_traits<KeyId> >
class hash_set
{
public:
/* Create a hash_set in gc memory with space for at least n elements. */
static hash_set *
- create_ggc (size_t n)
- {
- hash_set *set = ggc_alloc<hash_set> ();
- new (set) hash_set (n, true);
- return set;
- }
+ create_ggc (size_t n)
+ {
+ hash_set *set = ggc_alloc<hash_set> ();
+ new (set) hash_set (n, true);
+ return set;
+ }
/* If key k isn't already in the map add it to the map, and
return false. Otherwise return true. */
bool contains (const Key &k)
{
+ if (Lazy)
+ return (m_table.find_slot_with_hash (k, Traits::hash (k), NO_INSERT)
+ != NULL);
Key &e = m_table.find_with_hash (k, Traits::hash (k));
return !Traits::is_empty (e);
}
template<typename Arg, bool (*f)(const typename Traits::value_type &, Arg)>
void traverse (Arg a) const
{
- for (typename hash_table<Traits>::iterator iter = m_table.begin ();
+ for (typename hash_table<Traits, Lazy>::iterator iter = m_table.begin ();
iter != m_table.end (); ++iter)
f (*iter, a);
}
class iterator
{
public:
- explicit iterator (const typename hash_table<Traits>::iterator &iter) :
+ explicit iterator (const typename hash_table<Traits,
+ Lazy>::iterator &iter) :
m_iter (iter) {}
iterator &operator++ ()
}
private:
- typename hash_table<Traits>::iterator m_iter;
+ typename hash_table<Traits, Lazy>::iterator m_iter;
};
/* Standard iterator retrieval methods. */
private:
- template<typename T, typename U> friend void gt_ggc_mx (hash_set<T, U> *);
- template<typename T, typename U> friend void gt_pch_nx (hash_set<T, U> *);
- template<typename T, typename U> friend void gt_pch_nx (hash_set<T, U> *, gt_pointer_operator, void *);
+ template<typename T, typename U>
+ friend void gt_ggc_mx (hash_set<T, false, U> *);
+ template<typename T, typename U>
+ friend void gt_pch_nx (hash_set<T, false, U> *);
+ template<typename T, typename U>
+ friend void gt_pch_nx (hash_set<T, false, U> *, gt_pointer_operator, void *);
- hash_table<Traits> m_table;
+ hash_table<Traits, Lazy> m_table;
};
/* Generic hash_set<TYPE> debug helper.
template<typename K, typename H>
static inline void
-gt_ggc_mx (hash_set<K, H> *h)
+gt_ggc_mx (hash_set<K, false, H> *h)
{
gt_ggc_mx (&h->m_table);
}
template<typename K, typename H>
static inline void
-gt_pch_nx (hash_set<K, H> *h)
+gt_pch_nx (hash_set<K, false, H> *h)
{
gt_pch_nx (&h->m_table);
}
template<typename K, typename H>
static inline void
-gt_pch_nx (hash_set<K, H> *h, gt_pointer_operator op, void *cookie)
+gt_pch_nx (hash_set<K, false, H> *h, gt_pointer_operator op, void *cookie)
{
op (&h->m_table.m_entries, cookie);
}
See hash_table for details. The interface is very similar to libiberty's
htab_t.
+ If a hash table is used only in some rare cases, it is possible
+ to construct the hash_table lazily before first use. This is done
+ through:
+
+ hash_table <some_type_hasher, true> some_type_hash_table;
+
+ which will cause whatever methods actually need the allocated entries
+ array to allocate it later.
+
EASY DESCRIPTORS FOR POINTERS
#include "hash-map-traits.h"
template<typename, typename, typename> class hash_map;
-template<typename, typename> class hash_set;
+template<typename, bool, typename> class hash_set;
/* The ordinary memory allocator. */
/* FIXME (crowl): This allocator may be extracted for wider sharing later. */
hash table code.
*/
-template <typename Descriptor,
- template<typename Type> class Allocator = xcallocator>
+template <typename Descriptor, bool Lazy = false,
+ template<typename Type> class Allocator = xcallocator>
class hash_table
{
typedef typename Descriptor::value_type value_type;
write the value you want into the returned slot. When inserting an
entry, NULL may be returned if memory allocation fails. */
value_type *find_slot_with_hash (const compare_type &comparable,
- hashval_t hash, enum insert_option insert);
+ hashval_t hash, enum insert_option insert);
/* This function deletes an element with the given COMPARABLE value
from hash table starting with the given HASH. If there is no
iterator begin () const
{
+ if (Lazy && m_entries == NULL)
+ return iterator ();
iterator iter (m_entries, m_entries + m_size);
iter.slide ();
return iter;
hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
template<typename T, typename U, typename V> friend void
gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
- template<typename T, typename U> friend void gt_pch_nx (hash_set<T, U> *,
- gt_pointer_operator,
- void *);
+ template<typename T, typename U>
+ friend void gt_pch_nx (hash_set<T, false, U> *, gt_pointer_operator, void *);
template<typename T> friend void gt_pch_nx (hash_table<T> *,
gt_pointer_operator, void *);
/* Support function for statistics. */
extern void dump_hash_table_loc_statistics (void);
-template<typename Descriptor, template<typename Type> class Allocator>
-hash_table<Descriptor, Allocator>::hash_table (size_t size, bool ggc, bool
- gather_mem_stats,
- mem_alloc_origin origin
- MEM_STAT_DECL) :
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
+hash_table<Descriptor, Lazy, Allocator>::hash_table (size_t size, bool ggc,
+ bool gather_mem_stats,
+ mem_alloc_origin origin
+ MEM_STAT_DECL) :
m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
m_ggc (ggc), m_gather_mem_stats (gather_mem_stats)
{
if (m_gather_mem_stats)
hash_table_usage ().register_descriptor (this, origin, ggc
- FINAL_PASS_MEM_STAT);
+ FINAL_PASS_MEM_STAT);
- m_entries = alloc_entries (size PASS_MEM_STAT);
+ if (Lazy)
+ m_entries = NULL;
+ else
+ m_entries = alloc_entries (size PASS_MEM_STAT);
m_size = size;
m_size_prime_index = size_prime_index;
}
-template<typename Descriptor, template<typename Type> class Allocator>
-hash_table<Descriptor, Allocator>::hash_table (const hash_table &h, bool ggc,
- bool gather_mem_stats,
- mem_alloc_origin origin
- MEM_STAT_DECL) :
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
+hash_table<Descriptor, Lazy, Allocator>::hash_table (const hash_table &h,
+ bool ggc,
+ bool gather_mem_stats,
+ mem_alloc_origin origin
+ MEM_STAT_DECL) :
m_n_elements (h.m_n_elements), m_n_deleted (h.m_n_deleted),
m_searches (0), m_collisions (0), m_ggc (ggc),
m_gather_mem_stats (gather_mem_stats)
hash_table_usage ().register_descriptor (this, origin, ggc
FINAL_PASS_MEM_STAT);
- value_type *nentries = alloc_entries (size PASS_MEM_STAT);
- for (size_t i = 0; i < size; ++i)
+ if (Lazy && h.m_entries == NULL)
+ m_entries = NULL;
+ else
{
- value_type &entry = h.m_entries[i];
- if (is_deleted (entry))
- mark_deleted (nentries[i]);
- else if (!is_empty (entry))
- nentries[i] = entry;
+ value_type *nentries = alloc_entries (size PASS_MEM_STAT);
+ for (size_t i = 0; i < size; ++i)
+ {
+ value_type &entry = h.m_entries[i];
+ if (is_deleted (entry))
+ mark_deleted (nentries[i]);
+ else if (!is_empty (entry))
+ nentries[i] = entry;
+ }
+ m_entries = nentries;
}
- m_entries = nentries;
m_size = size;
m_size_prime_index = h.m_size_prime_index;
}
-template<typename Descriptor, template<typename Type> class Allocator>
-hash_table<Descriptor, Allocator>::~hash_table ()
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
+hash_table<Descriptor, Lazy, Allocator>::~hash_table ()
{
- for (size_t i = m_size - 1; i < m_size; i--)
- if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
- Descriptor::remove (m_entries[i]);
+ if (!Lazy || m_entries)
+ {
+ for (size_t i = m_size - 1; i < m_size; i--)
+ if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
+ Descriptor::remove (m_entries[i]);
- if (!m_ggc)
- Allocator <value_type> ::data_free (m_entries);
- else
- ggc_free (m_entries);
+ if (!m_ggc)
+ Allocator <value_type> ::data_free (m_entries);
+ else
+ ggc_free (m_entries);
+ }
if (m_gather_mem_stats)
hash_table_usage ().release_instance_overhead (this,
- sizeof (value_type) * m_size,
- true);
+ sizeof (value_type)
+ * m_size, true);
}
/* This function returns an array of empty hash table elements. */
-template<typename Descriptor, template<typename Type> class Allocator>
-inline typename hash_table<Descriptor, Allocator>::value_type *
-hash_table<Descriptor, Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
+inline typename hash_table<Descriptor, Lazy, Allocator>::value_type *
+hash_table<Descriptor, Lazy,
+ Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const
{
value_type *nentries;
This function also assumes there are no deleted entries in the table.
HASH is the hash value for the element to be inserted. */
-template<typename Descriptor, template<typename Type> class Allocator>
-typename hash_table<Descriptor, Allocator>::value_type *
-hash_table<Descriptor, Allocator>::find_empty_slot_for_expand (hashval_t hash)
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
+typename hash_table<Descriptor, Lazy, Allocator>::value_type *
+hash_table<Descriptor, Lazy,
+ Allocator>::find_empty_slot_for_expand (hashval_t hash)
{
hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
size_t size = m_size;
/* Return true if the current table is excessively big for ELTS elements. */
-template<typename Descriptor, template<typename Type> class Allocator>
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
inline bool
-hash_table<Descriptor, Allocator>::too_empty_p (unsigned int elts)
+hash_table<Descriptor, Lazy, Allocator>::too_empty_p (unsigned int elts)
{
return elts * 8 < m_size && m_size > 32;
}
table entries is changed. If memory allocation fails, this function
will abort. */
-template<typename Descriptor, template<typename Type> class Allocator>
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
void
-hash_table<Descriptor, Allocator>::expand ()
+hash_table<Descriptor, Lazy, Allocator>::expand ()
{
value_type *oentries = m_entries;
unsigned int oindex = m_size_prime_index;
/* Implements empty() in cases where it isn't a no-op. */
-template<typename Descriptor, template<typename Type> class Allocator>
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
void
-hash_table<Descriptor, Allocator>::empty_slow ()
+hash_table<Descriptor, Lazy, Allocator>::empty_slow ()
{
size_t size = m_size;
size_t nsize = size;
useful when you've already done the lookup and don't want to do it
again. */
-template<typename Descriptor, template<typename Type> class Allocator>
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
void
-hash_table<Descriptor, Allocator>::clear_slot (value_type *slot)
+hash_table<Descriptor, Lazy, Allocator>::clear_slot (value_type *slot)
{
gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
|| is_empty (*slot) || is_deleted (*slot)));
COMPARABLE element starting with the given HASH value. It cannot
be used to insert or delete an element. */
-template<typename Descriptor, template<typename Type> class Allocator>
-typename hash_table<Descriptor, Allocator>::value_type &
-hash_table<Descriptor, Allocator>
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
+typename hash_table<Descriptor, Lazy, Allocator>::value_type &
+hash_table<Descriptor, Lazy, Allocator>
::find_with_hash (const compare_type &comparable, hashval_t hash)
{
m_searches++;
size_t size = m_size;
hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
+ if (Lazy && m_entries == NULL)
+ m_entries = alloc_entries (size);
value_type *entry = &m_entries[index];
if (is_empty (*entry)
|| (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
write the value you want into the returned slot. When inserting an
entry, NULL may be returned if memory allocation fails. */
-template<typename Descriptor, template<typename Type> class Allocator>
-typename hash_table<Descriptor, Allocator>::value_type *
-hash_table<Descriptor, Allocator>
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
+typename hash_table<Descriptor, Lazy, Allocator>::value_type *
+hash_table<Descriptor, Lazy, Allocator>
::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
enum insert_option insert)
{
+ if (Lazy && m_entries == NULL)
+ {
+ if (insert == INSERT)
+ m_entries = alloc_entries (m_size);
+ else
+ return NULL;
+ }
if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
expand ();
from hash table starting with the given HASH. If there is no
matching element in the hash table, this function does nothing. */
-template<typename Descriptor, template<typename Type> class Allocator>
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
void
-hash_table<Descriptor, Allocator>
+hash_table<Descriptor, Lazy, Allocator>
::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
{
value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
each live entry. If CALLBACK returns false, the iteration stops.
ARGUMENT is passed as CALLBACK's second argument. */
-template<typename Descriptor,
+template<typename Descriptor, bool Lazy,
template<typename Type> class Allocator>
template<typename Argument,
- int (*Callback)
- (typename hash_table<Descriptor, Allocator>::value_type *slot,
- Argument argument)>
+ int (*Callback)
+ (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
+ Argument argument)>
void
-hash_table<Descriptor, Allocator>::traverse_noresize (Argument argument)
+hash_table<Descriptor, Lazy, Allocator>::traverse_noresize (Argument argument)
{
+ if (Lazy && m_entries == NULL)
+ return;
+
value_type *slot = m_entries;
value_type *limit = slot + size ();
/* Like traverse_noresize, but does resize the table when it is too empty
to improve effectivity of subsequent calls. */
-template <typename Descriptor,
+template <typename Descriptor, bool Lazy,
template <typename Type> class Allocator>
template <typename Argument,
int (*Callback)
- (typename hash_table<Descriptor, Allocator>::value_type *slot,
- Argument argument)>
+ (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
+ Argument argument)>
void
-hash_table<Descriptor, Allocator>::traverse (Argument argument)
+hash_table<Descriptor, Lazy, Allocator>::traverse (Argument argument)
{
- if (too_empty_p (elements ()))
+ if (too_empty_p (elements ()) && (!Lazy || m_entries))
expand ();
traverse_noresize <Argument, Callback> (argument);
/* Slide down the iterator slots until an active entry is found. */
-template<typename Descriptor, template<typename Type> class Allocator>
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
void
-hash_table<Descriptor, Allocator>::iterator::slide ()
+hash_table<Descriptor, Lazy, Allocator>::iterator::slide ()
{
for ( ; m_slot < m_limit; ++m_slot )
{
/* Bump the iterator. */
-template<typename Descriptor, template<typename Type> class Allocator>
-inline typename hash_table<Descriptor, Allocator>::iterator &
-hash_table<Descriptor, Allocator>::iterator::operator ++ ()
+template<typename Descriptor, bool Lazy,
+ template<typename Type> class Allocator>
+inline typename hash_table<Descriptor, Lazy, Allocator>::iterator &
+hash_table<Descriptor, Lazy, Allocator>::iterator::operator ++ ()
{
++m_slot;
slide ();