adder_out <= old_result + mult_reg;
end
- // Output accumulation result
- assign accum_out = adder_out;
+// Output accumulation result
+assign accum_out = adder_out;
+
+endmodule
+
+// Adapted variant of above
+module macc2 # (parameter SIZEIN = 16, SIZEOUT = 40) (
+ input clk, ce, rst,
+ input signed [SIZEIN-1:0] a, b,
+ output signed [SIZEOUT-1:0] accum_out
+);
+// Declare registers for intermediate values
+reg signed [SIZEIN-1:0] a_reg, b_reg;
+reg rst_reg;
+reg signed [2*SIZEIN-1:0] mult_reg;
+reg signed [SIZEOUT-1:0] adder_out, old_result;
+always @(posedge clk) begin
+ if (ce)
+ begin
+ a_reg <= a;
+ b_reg <= b;
+ mult_reg <= a_reg * b_reg;
+ rst_reg <= rst;
+ // Store accumulation result into a register
+ adder_out <= adder_out + mult_reg;
+ end
+ if (rst) begin
+ mult_reg <= 0;
+ adder_out <= 0;
+ end
+end
+
+// Output accumulation result
+assign accum_out = adder_out;
endmodule
read_verilog macc.v
+design -save read
+
proc
-hierarchy -auto-top
+hierarchy -top macc
#equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx ### TODO
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
miter -equiv -flatten -make_assert -make_outputs gold gate miter
select -assert-count 1 t:FDRE
select -assert-count 1 t:DSP48E1
select -assert-none t:BUFG t:FDRE t:DSP48E1 %% t:* %D
+
+design -load read
+proc
+hierarchy -top macc2
+#equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx ### TODO
+equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
+miter -equiv -flatten -make_assert -make_outputs gold gate miter
+sat -verify -prove-asserts -seq 10 -show-inputs -show-outputs miter
+design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
+cd macc2 # Constrain all select calls below inside the top module
+select -assert-count 1 t:BUFG
+select -assert-count 1 t:DSP48E1
+select -assert-none t:BUFG t:DSP48E1 %% t:* %D