Do not require changes to cells_sim.v; try and work out comb model
authorEddie Hung <eddie@fpgeh.com>
Sun, 6 Oct 2019 05:55:18 +0000 (22:55 -0700)
committerEddie Hung <eddie@fpgeh.com>
Sun, 6 Oct 2019 05:55:18 +0000 (22:55 -0700)
backends/aiger/xaiger.cc
passes/techmap/abc9.cc
techlibs/xilinx/abc9_map.v
techlibs/xilinx/abc9_model.v
techlibs/xilinx/abc9_xc7.box
techlibs/xilinx/cells_sim.v

index 3e3a8fdc6c0433bb5f10b35782e1fd84d9728bf9..cedf611f286111c040d4b72b93675a29de6feadf 100644 (file)
@@ -481,16 +481,11 @@ struct XAigerWriter
                                        }
                                }
 
-                               // Connect $currQ as an input to the flop box
+                               // Connect <cell>.$currQ (inserted by abc9_map.v) as an input to the flop box
                                if (box_module->get_bool_attribute("\\abc9_flop")) {
-                                       IdString port_name = "\\$currQ";
-                                       Wire *w = box_module->wire(port_name);
-                                       if (!w)
-                                               log_error("'$currQ' is not a wire present in module '%s'.\n", log_id(box_module));
                                        SigSpec rhs = module->wire(stringf("%s.$currQ", cell->name.c_str()));
                                        if (rhs.empty())
                                                log_error("'%s.$currQ' is not a wire present in module '%s'.\n", log_id(cell), log_id(module));
-                                       log_assert(GetSize(w) == GetSize(rhs));
 
                                        int offset = 0;
                                        for (auto b : rhs) {
@@ -503,7 +498,7 @@ struct XAigerWriter
                                                        else
                                                                alias_map[b] = I;
                                                }
-                                               co_bits.emplace_back(b, cell, port_name, offset++, 0);
+                                               co_bits.emplace_back(b, cell, "\\$currQ", offset++, 0);
                                                unused_bits.erase(b);
                                        }
                                }
@@ -737,6 +732,8 @@ struct XAigerWriter
                                log_assert(box_module);
                                IdString derived_name = box_module->derive(module->design, cell->parameters);
                                box_module = module->design->module(derived_name);
+                               if (box_module->has_processes())
+                                       Pass::call_on_module(module->design, box_module, "proc");
 
                                int box_inputs = 0, box_outputs = 0;
                                auto r = cell_cache.insert(std::make_pair(derived_name, nullptr));
@@ -753,7 +750,7 @@ struct XAigerWriter
                                        RTLIL::Wire *w = box_module->wire(port_name);
                                        log_assert(w);
                                        RTLIL::Wire *holes_wire;
-                                       RTLIL::SigSpec port_wire;
+                                       RTLIL::SigSpec port_sig;
                                        if (w->port_input)
                                                for (int i = 0; i < GetSize(w); i++) {
                                                        box_inputs++;
@@ -765,7 +762,7 @@ struct XAigerWriter
                                                                holes_module->ports.push_back(holes_wire->name);
                                                        }
                                                        if (holes_cell)
-                                                               port_wire.append(holes_wire);
+                                                               port_sig.append(holes_wire);
                                                }
                                        if (w->port_output) {
                                                box_outputs += GetSize(w);
@@ -777,41 +774,36 @@ struct XAigerWriter
                                                        holes_wire->port_output = true;
                                                        holes_wire->port_id = port_id++;
                                                        holes_module->ports.push_back(holes_wire->name);
-                                                       if (holes_cell)
-                                                               port_wire.append(holes_wire);
+                                                       if (holes_cell) {
+                                                               port_sig.append(holes_wire);
+                                                       }
                                                        else
                                                                holes_module->connect(holes_wire, State::S0);
                                                }
                                        }
-                                       if (!port_wire.empty()) {
+                                       if (!port_sig.empty()) {
                                                if (r.second)
-                                                       holes_cell->setPort(w->name, port_wire);
+                                                       holes_cell->setPort(w->name, port_sig);
                                                else
-                                                       holes_module->connect(port_wire, holes_cell->getPort(w->name));
+                                                       holes_module->connect(holes_cell->getPort(w->name), port_sig);
                                        }
                                }
 
-                               // For flops only, create an extra input for $currQ
+                               // For flops only, create an extra 1-bit input that drives a new wire
+                               //   called "<cell>.$currQ" that is used below
                                if (box_module->get_bool_attribute("\\abc9_flop")) {
                                        log_assert(holes_cell);
 
-                                       Wire *w = box_module->wire("\\$currQ");
-                                       Wire *holes_wire;
-                                       RTLIL::SigSpec port_wire;
-                                       for (int i = 0; i < GetSize(w); i++) {
-                                               box_inputs++;
-                                               holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
-                                               if (!holes_wire) {
-                                                       holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
-                                                       holes_wire->port_input = true;
-                                                       holes_wire->port_id = port_id++;
-                                                       holes_module->ports.push_back(holes_wire->name);
-                                               }
-                                               port_wire.append(holes_wire);
+                                       box_inputs++;
+                                       Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
+                                       if (!holes_wire) {
+                                               holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
+                                               holes_wire->port_input = true;
+                                               holes_wire->port_id = port_id++;
+                                               holes_module->ports.push_back(holes_wire->name);
                                        }
-                                       w = holes_module->addWire(stringf("%s.$currQ", cell->name.c_str()), GetSize(w));
-                                       w->set_bool_attribute("\\hierconn");
-                                       holes_module->connect(w, port_wire);
+                                       Wire *w = holes_module->addWire(stringf("%s.$currQ", cell->name.c_str()));
+                                       holes_module->connect(w, holes_wire);
                                }
 
                                write_h_buffer(box_inputs);
@@ -866,37 +858,67 @@ struct XAigerWriter
                                //holes_module->fixup_ports();
                                holes_module->check();
 
-                               Design *design = holes_module->design;
-                               design->selection_stack.emplace_back(false);
-                               RTLIL::Selection& sel = design->selection_stack.back();
-                               log_assert(design->selected_active_module == module->name.c_str());
-                               design->selected_active_module = holes_module->name.str();
-                               sel.select(holes_module);
-
-                               Pass::call(design, "flatten -wb");
-
                                // TODO: Should techmap/aigmap/check all lib_whitebox-es just once,
                                //       instead of per write_xaiger call
-                               Pass::call(design, "techmap");
-                               Pass::call(design, "aigmap");
-                               for (auto cell : holes_module->cells())
-                                       if (!cell->type.in("$_NOT_", "$_AND_"))
+                               Pass::call_on_module(holes_module->design, holes_module, "flatten -wb; techmap; aigmap");
+
+                               dict<SigBit, Wire*> output_port;
+                               SigMap holes_sigmap(holes_module);
+                               for (auto port_name : holes_module->ports) {
+                                       Wire *port = holes_module->wire(port_name);
+                                       if (port->port_input)
+                                               continue;
+                                       output_port.insert(std::make_pair(holes_sigmap(port), port));
+                               }
+
+                               dict<SigSig, SigSig> replace;
+                               for (auto it = holes_module->cells_.begin(); it != holes_module->cells_.end(); ) {
+                                       auto cell = it->second;
+                                       if (cell->type.in("$_DFF_N_", "$_DFF_P_")) {
+                                               SigBit D = cell->getPort("\\D");
+                                               SigBit Q = cell->getPort("\\Q");
+                                               // Remove the DFF cell from what needs to be a combinatorial box
+                                               it = holes_module->cells_.erase(it);
+                                               Wire *port = output_port.at(Q);
+                                               log_assert(port);
+                                               // Prepare to replace "assign <port> = DFF.Q;" with "assign <port> = DFF.D;"
+                                               //   in order to extract the combinatorial control logic that feeds the box
+                                               //   (i.e. clock enable, synchronous reset, etc.)
+                                               replace.insert(std::make_pair(SigSig(port,Q), SigSig(port,D)));
+                                               // Since `flatten` above would have created wires named "<cell>.Q",
+                                               //   extract the pre-techmap cell name
+                                               auto pos = Q.wire->name.str().rfind(".");
+                                               log_assert(pos != std::string::npos);
+                                               IdString driver = Q.wire->name.substr(0, pos);
+                                               // And drive the signal that was previously driven by "DFF.Q" (typically
+                                               //   used to implement clock-enable functionality) with the "<cell>.$currQ"
+                                               //   wire (which itself is driven an input port) we inserted above
+                                               Wire *currQ = holes_module->wire(stringf("%s.$currQ", driver.c_str()));
+                                               log_assert(currQ);
+                                               holes_module->connect(Q, currQ);
+                                               continue;
+                                       }
+                                       else if (!cell->type.in("$_NOT_", "$_AND_"))
                                                log_error("Whitebox contents cannot be represented as AIG. Please verify whiteboxes are synthesisable.\n");
+                                       ++it;
+                               }
 
-                               design->selection_stack.pop_back();
-                               design->selected_active_module = module->name.str();
+                               for (auto &conn : holes_module->connections_) {
+                                       auto it = replace.find(conn);
+                                       if (it != replace.end())
+                                               conn = it->second;
+                               }
 
                                // Move into a new (temporary) design so that "clean" will only
                                // operate (and run checks on) this one module
                                RTLIL::Design *holes_design = new RTLIL::Design;
-                               design->modules_.erase(holes_module->name);
+                               module->design->modules_.erase(holes_module->name);
                                holes_design->add(holes_module);
                                Pass::call(holes_design, "clean -purge");
 
                                std::stringstream a_buffer;
                                XAigerWriter writer(holes_module, false /*zinit_mode*/, true /* holes_mode */);
                                writer.write_aiger(a_buffer, false /*ascii_mode*/);
-
                                delete holes_design;
 
                                f << "a";
index e9cdaf524f5fddd1983da274736c1b082bc4b6cf..2ceaacf8758bc03a59081be9398ec8ef9b459745 100644 (file)
@@ -1122,39 +1122,15 @@ struct Abc9Pass : public Pass {
                                if (!inst_module || !inst_module->attributes.count("\\abc9_flop"))
                                        continue;
 
-                               auto derived_name = inst_module->derive(design, cell->parameters);
-                               auto derived_module = design->module(derived_name);
-                               log_assert(derived_module);
-                               if (derived_module->has_processes())
-                                       Pass::call_on_module(design, derived_module, "proc");
-                               SigMap derived_sigmap(derived_module);
-
-                               SigSpec pattern;
-                               SigSpec with;
-                               for (auto &conn : cell->connections()) {
-                                       Wire *first = derived_module->wire(conn.first);
-                                       log_assert(first);
-                                       SigSpec second = assign_map(conn.second);
-                                       log_assert(GetSize(first) == GetSize(second));
-                                       pattern.append(first);
-                                       with.append(second);
-                               }
-
-                               Wire *abc9_clock_wire = derived_module->wire("\\$abc9_clock");
+                               Wire *abc9_clock_wire = module->wire(stringf("%s.$abc9_clock", cell->name.c_str()));
                                if (abc9_clock_wire == NULL)
-                                       log_error("'\\$abc9_clock' is not a wire present in module '%s'.\n", log_id(cell->type));
-                               SigSpec abc9_clock = derived_sigmap(abc9_clock_wire);
-                               abc9_clock.replace(pattern, with);
-                               for (const auto &c : abc9_clock.chunks())
-                                       log_assert(!c.wire || c.wire->module == module);
+                                       log_error("'%s$abc9_clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
+                               SigSpec abc9_clock = assign_map(abc9_clock_wire);
 
-                               Wire *abc9_control_wire = derived_module->wire("\\$abc9_control");
+                               Wire *abc9_control_wire = module->wire(stringf("%s.$abc9_control", cell->name.c_str()));
                                if (abc9_control_wire == NULL)
-                                       log_error("'\\$abc9_control' is not a wire present in module '%s'.\n", log_id(cell->type));
-                               SigSpec abc9_control = derived_sigmap(abc9_control_wire);
-                               abc9_control.replace(pattern, with);
-                               for (const auto &c : abc9_control.chunks())
-                                       log_assert(!c.wire || c.wire->module == module);
+                                       log_error("'%s$abc9_control' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
+                               SigSpec abc9_control = assign_map(abc9_control_wire);
 
                                unassigned_cells.erase(cell);
                                expand_queue.insert(cell);
index 05063f86d6bd592b12cb57b93eb22e92f0c0d3b4..ef7a1a09f8fb9b50b4e1eaf1f1a5654be81db27f 100644 (file)
@@ -49,8 +49,57 @@ module FDRE (output reg Q, input C, CE, D, R);
   ) _TECHMAP_REPLACE_ (
     .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
   );
-  wire _TECHMAP_REPLACE_.$currQ = Q;
+  // `abc9' requires that complex flops be split into a combinatorial box
+  //   feeding a simple flop ($_ABC9_FF_).
+  // Yosys will automatically analyse the simulation model (described in
+  //   cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in
+  //   order to extract the combinatorial control logic left behind.
+  //   Specifically, a simulation model similar to the one below:
+  //
+  //           ++===================================++
+  //           ||                        Sim model  ||
+  //           ||      /\/\/\/\                     ||
+  //       D -->>-----<        >     +------+       ||
+  //       R -->>-----<  Comb. >     |$_DFF_|       ||
+  //      CE -->>-----<  logic >-----| [NP]_|---+---->>-- Q
+  //           ||  +--<        >     +------+   |   ||
+  //           ||  |   \/\/\/\/                 |   ||
+  //           ||  |                            |   ||
+  //           ||  +----------------------------+   ||
+  //           ||                                   ||
+  //           ++===================================++
+  //
+  //   is transformed into:
+  //
+  //           ++==================++
+  //           ||         Comb box ||
+  //           ||                  ||
+  //           ||      /\/\/\/\    ||
+  //      D  -->>-----<        >   ||            +------+
+  //      R  -->>-----<  Comb. >   ||            |$_ABC_|
+  //     CE  -->>-----<  logic >--->>-- $nextQ --|  FF_ |--+-->> Q
+  // $currQ +-->>-----<        >   ||            +------+  |
+  //        |  ||      \/\/\/\/    ||                      |
+  //        |  ||                  ||                      |
+  //        |  ++==================++                      |
+  //        |                                              |
+  //        +----------------------------------------------+
   \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+  // Special signal indicating control domain
+  //   (which, combined with this cell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
+  // Special signal indicating the current value of the flip-flop
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `$currQ' wire.
+  wire _TECHMAP_REPLACE_.$currQ = Q;
 endmodule
 module FDRE_1 (output reg Q, input C, CE, D, R);
   parameter [0:0] INIT = 1'b0;
@@ -60,8 +109,22 @@ module FDRE_1 (output reg Q, input C, CE, D, R);
   ) _TECHMAP_REPLACE_ (
     .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
   );
-  wire _TECHMAP_REPLACE_.$currQ = Q;
   \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
+  // Special signal indicating the current value of the flip-flop
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `$currQ' wire.
+  wire _TECHMAP_REPLACE_.$currQ = Q;
 endmodule
 
 module FDCE (output reg Q, input C, CE, D, CLR);
@@ -69,18 +132,38 @@ module FDCE (output reg Q, input C, CE, D, CLR);
   parameter [0:0] IS_C_INVERTED = 1'b0;
   parameter [0:0] IS_D_INVERTED = 1'b0;
   parameter [0:0] IS_CLR_INVERTED = 1'b0;
-  wire $currQ, $nextQ;
+  wire $nextQ, $currQ;
   FDCE #(
     .INIT(INIT),
     .IS_C_INVERTED(IS_C_INVERTED),
     .IS_D_INVERTED(IS_D_INVERTED),
     .IS_CLR_INVERTED(IS_CLR_INVERTED)
   ) _TECHMAP_REPLACE_ (
-    .D(D), .Q($nextQ),  .C(C), .CE(CE), .CLR(CLR)
+    .D(D), .Q($nextQ),  .C(C), .CE(CE), .CLR(IS_CLR_INVERTED)
+                                         // ^^^ Note that async
+                                         //     control is disabled
+                                         //     and captured by
+                                         //     $__ABC9_ASYNC below
   );
-  wire _TECHMAP_REPLACE_.$currQ = Q;
   \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
-  \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
+  // Since this is an async flop, async behaviour is also dealt with
+  //   using the $_ABC9_ASYNC box by abc9_map.v
+  \$__ABC9_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
+  // Special signal indicating the current value of the flip-flop
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `$currQ' wire.
+  wire _TECHMAP_REPLACE_.$currQ = $currQ;
 endmodule
 module FDCE_1 (output reg Q, input C, CE, D, CLR);
   parameter [0:0] INIT = 1'b0;
@@ -88,11 +171,29 @@ module FDCE_1 (output reg Q, input C, CE, D, CLR);
   FDCE_1 #(
     .INIT(INIT)
   ) _TECHMAP_REPLACE_ (
-    .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
+    .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(1'b0)
+                                         // ^^^ Note that async
+                                         //     control is disabled
+                                         //     and captured by
+                                         //     $__ABC9_ASYNC below
   );
-  wire _TECHMAP_REPLACE_.$currQ = Q;
   \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
-  \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q));
+  \$__ABC9_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q));
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
+  // Special signal indicating the current value of the flip-flop
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `$currQ' wire.
+  wire _TECHMAP_REPLACE_.$currQ = $currQ;
 endmodule
 
 module FDPE (output reg Q, input C, CE, D, PRE);
@@ -107,11 +208,29 @@ module FDPE (output reg Q, input C, CE, D, PRE);
     .IS_D_INVERTED(IS_D_INVERTED),
     .IS_PRE_INVERTED(IS_PRE_INVERTED),
   ) _TECHMAP_REPLACE_ (
-    .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
+    .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(IS_PRE_INVERTED)
+                                         // ^^^ Note that async
+                                         //     control is disabled
+                                         //     and captured by
+                                         //     $__ABC9_ASYNC below
   );
-  wire _TECHMAP_REPLACE_.$currQ = Q;
   \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
-  \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
+  \$__ABC9_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
+  // Special signal indicating the current value of the flip-flop
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `$currQ' wire.
+  wire _TECHMAP_REPLACE_.$currQ = $currQ;
 endmodule
 module FDPE_1 (output reg Q, input C, CE, D, PRE);
   parameter [0:0] INIT = 1'b0;
@@ -119,11 +238,29 @@ module FDPE_1 (output reg Q, input C, CE, D, PRE);
   FDPE_1 #(
     .INIT(INIT)
   ) _TECHMAP_REPLACE_ (
-    .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
+    .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(1'b0)
+                                         // ^^^ Note that async
+                                         //     control is disabled
+                                         //     and captured by
+                                         //     $__ABC9_ASYNC below
   );
-  wire _TECHMAP_REPLACE_.$currQ = Q;
   \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
-  \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q));
+  \$__ABC9_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q));
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
+  // Special signal indicating the current value of the flip-flop
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `$currQ' wire.
+  wire _TECHMAP_REPLACE_.$currQ = $currQ;
 endmodule
 
 module FDSE (output reg Q, input C, CE, D, S);
@@ -140,8 +277,22 @@ module FDSE (output reg Q, input C, CE, D, S);
   ) _TECHMAP_REPLACE_ (
     .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
   );
-  wire _TECHMAP_REPLACE_.$currQ = Q;
   \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
+  // Special signal indicating the current value of the flip-flop
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `$currQ' wire.
+  wire _TECHMAP_REPLACE_.$currQ = Q;
 endmodule
 module FDSE_1 (output reg Q, input C, CE, D, S);
   parameter [0:0] INIT = 1'b0;
@@ -151,8 +302,22 @@ module FDSE_1 (output reg Q, input C, CE, D, S);
   ) _TECHMAP_REPLACE_ (
     .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
   );
-  wire _TECHMAP_REPLACE_.$currQ = Q;
   \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
+  // Special signal indicating the current value of the flip-flop
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `$currQ' wire.
+  wire _TECHMAP_REPLACE_.$currQ = Q;
 endmodule
 
 module RAM32X1D (
index 74b5cf66af530a8f171ef81a448ab7c8371235f5..c17d6744a873326c18c79b8753b8a18e7e1aa96b 100644 (file)
@@ -30,11 +30,8 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1);
                 : (S0 ? I1 : I0);
 endmodule
 
-module \$__ABC_FF_ (input D, output Q);
-endmodule
-
 (* abc_box_id = 1000 *)
-module \$__ABC_ASYNC (input A, S, output Y);
+module \$__ABC9_ASYNC (input A, S, output Y);
 endmodule
 
 // Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
index 6814b101f20ce8d2f3e113e21edf9111a0792831..24b1898a4e3eb4b93f172ca904141245ba73d47c 100644 (file)
@@ -44,7 +44,7 @@ CARRY4 4 1 10 8
 # Box to emulate async behaviour of FD[CP]*
 # Inputs: A S
 # Outputs: Y
-$__ABC_ASYNC 1000 0 2 1
+$__ABC9_ASYNC 1000 0 2 1
 0 764
 
 # The following FD*.{CE,R,CLR,PRE) are offset by 46ps to
index 309ee500a33c4e1676d38b9ed03a3c0c0549717b..35d9aac96abf192efe5d54b43883f18a274762b1 100644 (file)
@@ -258,33 +258,10 @@ module FDRE (
   parameter [0:0] IS_D_INVERTED = 1'b0;
   parameter [0:0] IS_R_INVERTED = 1'b0;
   initial Q <= INIT;
-  wire \$currQ ;
-  reg \$nextQ ;
-  always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
-`ifdef _ABC9
-  // `abc9' requires that complex flops be split into a combinatorial
-  //   box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
-  //   In order to achieve clock-enable behaviour, the current value
-  //   of the sequential output is required which Yosys will
-  //   connect to the special `$currQ' wire.
-
-  // Special signal indicating clock domain
-  //   (used to partition the module so that `abc9' only performs
-  //    sequential synthesis (reachability analysis) correctly on
-  //    one domain at a time)
-  wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
-  // Special signal indicating control domain
-  //   (which, combined with this spell type, encodes to `abc9'
-  //    which flops may be merged together)
-  wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
-  always @* Q = \$nextQ ;
-`else
-  assign \$currQ = Q;
   generate case (|IS_C_INVERTED)
-    1'b0: always @(posedge C) Q <= \$nextQ ;
-    1'b1: always @(negedge C) Q <= \$nextQ ;
+    1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+    1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
   endcase endgenerate
-`endif
 endmodule
 
 (* abc9_box_id=1002, lib_whitebox, abc9_flop *)
@@ -297,30 +274,7 @@ module FDRE_1 (
 );
   parameter [0:0] INIT = 1'b0;
   initial Q <= INIT;
-  wire \$currQ ;
-  reg \$nextQ ;
-  always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
-`ifdef _ABC9
-  // `abc9' requires that complex flops be split into a combinatorial
-  //   box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
-  //   In order to achieve clock-enable behaviour, the current value
-  //   of the sequential output is required which Yosys will
-  //   connect to the special `$currQ' wire.
-
-  // Special signal indicating clock domain
-  //   (used to partition the module so that `abc9' only performs
-  //    sequential synthesis (reachability analysis) correctly on
-  //    one domain at a time)
-  wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
-  // Special signal indicating control domain
-  //   (which, combined with this spell type, encodes to `abc9'
-  //    which flops may be merged together)
-  wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
-  always @* Q = \$nextQ ;
-`else
-  assign \$currQ = Q;
-  always @(negedge C) Q <= \$nextQ ;
-`endif
+  always @(negedge C) if (R) Q <= 1'b0; else if (CE) Q <= D;
 endmodule
 
 (* abc9_box_id=1003, lib_whitebox, abc9_flop *)
@@ -341,37 +295,12 @@ module FDCE (
   parameter [0:0] IS_D_INVERTED = 1'b0;
   parameter [0:0] IS_CLR_INVERTED = 1'b0;
   initial Q <= INIT;
-  wire \$currQ ;
-  reg \$nextQ ;
-  always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
-`ifdef _ABC9
-  // `abc9' requires that complex flops be split into a combinatorial
-  //   box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
-  //   In order to achieve clock-enable behaviour, the current value
-  //   of the sequential output is required which Yosys will
-  //   connect to the special `$currQ' wire.
-  // Since this is an async flop, async behaviour is also dealt with
-  //   using the $_ABC9_ASYNC box by abc9_map.v
-
-  // Special signal indicating clock domain
-  //   (used to partition the module so that `abc9' only performs
-  //    sequential synthesis (reachability analysis) correctly on
-  //    one domain at a time)
-  wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
-  // Special signal indicating control domain
-  //   (which, combined with this spell type, encodes to `abc9'
-  //    which flops may be merged together)
-  wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
-  always @* Q = \$nextQ ;
-`else
-  assign \$currQ = Q;
   generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
-    2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
-    2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
-    2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
-    2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
+    2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+    2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+    2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+    2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
   endcase endgenerate
-`endif
 endmodule
 
 (* abc9_box_id=1004, lib_whitebox, abc9_flop *)
@@ -384,32 +313,7 @@ module FDCE_1 (
 );
   parameter [0:0] INIT = 1'b0;
   initial Q <= INIT;
-  wire \$currQ ;
-  reg \$nextQ ;
-  always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
-`ifdef _ABC9
-  // `abc9' requires that complex flops be split into a combinatorial
-  //   box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
-  //   In order to achieve clock-enable behaviour, the current value
-  //   of the sequential output is required which Yosys will
-  //   connect to the special `$currQ' wire.
-  // Since this is an async flop, async behaviour is also dealt with
-  //   using the $_ABC9_ASYNC box by abc9_map.v
-
-  // Special signal indicating clock domain
-  //   (used to partition the module so that `abc9' only performs
-  //    sequential synthesis (reachability analysis) correctly on
-  //    one domain at a time)
-  wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
-  // Special signal indicating control domain
-  //   (which, combined with this spell type, encodes to `abc9'
-  //    which flops may be merged together)
-  wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
-  always @* Q = \$nextQ ;
-`else
-  assign \$currQ = Q;
-  always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ;
-`endif
+  always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
 endmodule
 
 (* abc9_box_id=1005, lib_whitebox, abc9_flop *)
@@ -430,37 +334,12 @@ module FDPE (
   parameter [0:0] IS_D_INVERTED = 1'b0;
   parameter [0:0] IS_PRE_INVERTED = 1'b0;
   initial Q <= INIT;
-  wire \$currQ ;
-  reg \$nextQ ;
-  always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
-`ifdef _ABC9
-  // `abc9' requires that complex flops be split into a combinatorial
-  //   box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
-  //   In order to achieve clock-enable behaviour, the current value
-  //   of the sequential output is required which Yosys will
-  //   connect to the special `$currQ' wire.
-  // Since this is an async flop, async behaviour is also dealt with
-  //   using the $_ABC9_ASYNC box by abc9_map.v
-
-  // Special signal indicating clock domain
-  //   (used to partition the module so that `abc9' only performs
-  //    sequential synthesis (reachability analysis) correctly on
-  //    one domain at a time)
-  wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
-  // Special signal indicating control domain
-  //   (which, combined with this spell type, encodes to `abc9'
-  //    which flops may be merged together)
-  wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
-  always @* Q = \$nextQ ;
-`else
-  assign \$currQ = Q;
   generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
-    2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
-    2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
-    2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
-    2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
+    2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= Q ;
+    2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= Q ;
+    2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= Q ;
+    2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= Q ;
   endcase endgenerate
-`endif
 endmodule
 
 (* abc9_box_id=1006, lib_whitebox, abc9_flop *)
@@ -473,32 +352,7 @@ module FDPE_1 (
 );
   parameter [0:0] INIT = 1'b1;
   initial Q <= INIT;
-  wire \$currQ ;
-  reg \$nextQ ;
-  always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
-`ifdef _ABC9
-  // `abc9' requires that complex flops be split into a combinatorial
-  //   box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
-  //   In order to achieve clock-enable behaviour, the current value
-  //   of the sequential output is required which Yosys will
-  //   connect to the special `$currQ' wire.
-  // Since this is an async flop, async behaviour is also dealt with
-  //   using the $_ABC9_ASYNC box by abc9_map.v
-
-  // Special signal indicating clock domain
-  //   (used to partition the module so that `abc9' only performs
-  //    sequential synthesis (reachability analysis) correctly on
-  //    one domain at a time)
-  wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
-  // Special signal indicating control domain
-  //   (which, combined with this spell type, encodes to `abc9'
-  //    which flops may be merged together)
-  wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
-  always @* Q = \$nextQ ;
-`else
-  assign \$currQ = Q;
-  always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
-`endif
+  always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
 endmodule
 
 (* abc9_box_id=1007, lib_whitebox, abc9_flop *)
@@ -519,33 +373,10 @@ module FDSE (
   parameter [0:0] IS_D_INVERTED = 1'b0;
   parameter [0:0] IS_S_INVERTED = 1'b0;
   initial Q <= INIT;
-  wire \$currQ ;
-  reg \$nextQ ;
-  always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
-`ifdef _ABC9
-  // `abc9' requires that complex flops be split into a combinatorial
-  //   box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
-  //   In order to achieve clock-enable behaviour, the current value
-  //   of the sequential output is required which Yosys will
-  //   connect to the special `$currQ' wire.
-
-  // Special signal indicating clock domain
-  //   (used to partition the module so that `abc9' only performs
-  //    sequential synthesis (reachability analysis) correctly on
-  //    one domain at a time)
-  wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
-  // Special signal indicating control domain
-  //   (which, combined with this spell type, encodes to `abc9'
-  //    which flops may be merged together)
-  wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
-  always @* Q = \$nextQ ;
-`else
-  assign \$currQ = Q;
   generate case (|IS_C_INVERTED)
-    1'b0: always @(posedge C) Q <= \$nextQ ;
-    1'b1: always @(negedge C) Q <= \$nextQ ;
+    1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
+    1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
   endcase endgenerate
-`endif
 endmodule
 
 (* abc9_box_id=1008, lib_whitebox, abc9_flop *)
@@ -558,30 +389,7 @@ module FDSE_1 (
 );
   parameter [0:0] INIT = 1'b1;
   initial Q <= INIT;
-  wire \$currQ ;
-  reg \$nextQ ;
-  always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
-`ifdef _ABC9
-  // `abc9' requires that complex flops be split into a combinatorial
-  //   box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
-  //   In order to achieve clock-enable behaviour, the current value
-  //   of the sequential output is required which Yosys will
-  //   connect to the special `$currQ' wire.
-
-  // Special signal indicating clock domain
-  //   (used to partition the module so that `abc9' only performs
-  //    sequential synthesis (reachability analysis) correctly on
-  //    one domain at a time)
-  wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
-  // Special signal indicating control domain
-  //   (which, combined with this spell type, encodes to `abc9'
-  //    which flops may be merged together)
-  wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
-  always @* Q = \$nextQ ;
-`else
-  assign \$currQ = Q;
-  always @(negedge C) Q <= \$nextQ ;
-`endif
+  always @(negedge C) if (S) Q <= 1'b1; else if (CE) Q <= D;
 endmodule
 
 module LDCE (