--- /dev/null
+/*
+ * Copyright (c) 2010-2012 ARM Limited
+ * All rights reserved
+ *
+ * The license below extends only to copyright in the software and shall
+ * not be construed as granting a license to any other intellectual
+ * property including but not limited to intellectual property relating
+ * to a hardware implementation of the functionality of the software
+ * licensed hereunder. You may use the software subject to the license
+ * terms below provided that you ensure that this notice is replicated
+ * unmodified and in its entirety in all distributions of the software,
+ * modified or unmodified, in source code or in binary form.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Authors: Andreas Hansson
+ * Ani Udipi
+ */
+
+#include "debug/DRAM.hh"
+#include "debug/DRAMWR.hh"
+#include "mem/simple_dram.hh"
+#include "sim/stat_control.hh"
+
+using namespace std;
+
+SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
+ AbstractMemory(p),
+ port(name() + ".port", *this),
+ retryRdReq(false), retryWrReq(false),
+ rowHitFlag(false), stopReads(false),
+ writeEvent(this), respondEvent(this),
+ refreshEvent(this), nextReqEvent(this), drainEvent(NULL),
+ bytesPerCacheLine(0),
+ linesPerRowBuffer(p->lines_per_rowbuffer),
+ ranksPerChannel(p->ranks_per_channel),
+ banksPerRank(p->banks_per_rank), rowsPerBank(0),
+ readBufferSize(p->read_buffer_size),
+ writeBufferSize(p->write_buffer_size),
+ writeThresholdPerc(p->write_thresh_perc),
+ tWTR(p->tWTR), tBURST(p->tBURST),
+ tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP),
+ tRFC(p->tRFC), tREFI(p->tREFI),
+ memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
+ pageMgmt(p->page_policy),
+ busBusyUntil(0), prevdramaccess(0), writeStartTime(0),
+ prevArrival(0), numReqs(0)
+{
+ // create the bank states based on the dimensions of the ranks and
+ // banks
+ banks.resize(ranksPerChannel);
+ for (size_t c = 0; c < ranksPerChannel; ++c) {
+ banks[c].resize(banksPerRank);
+ }
+
+ // round the write threshold percent to a whole number of entries
+ // in the buffer
+ writeThreshold = writeBufferSize * writeThresholdPerc / 100.0;
+}
+
+void
+SimpleDRAM::init()
+{
+ if (!port.isConnected()) {
+ fatal("SimpleDRAM %s is unconnected!\n", name());
+ } else {
+ port.sendRangeChange();
+ }
+
+ // get the cache line size from the connected port
+ bytesPerCacheLine = port.peerBlockSize();
+
+ // we could deal with plenty options here, but for now do a quick
+ // sanity check
+ if (bytesPerCacheLine != 64 && bytesPerCacheLine != 32)
+ panic("Unexpected cache line size %d", bytesPerCacheLine);
+
+ // determine the rows per bank by looking at the total capacity
+ uint64_t capacity = AbstractMemory::size();
+ uint64_t i = 1;
+ while (i < 64 && capacity > ((1 << i))) {
+ ++i;
+ }
+
+ // rounded up to nearest power of two
+ DPRINTF(DRAM, "i is %lld\n", i);
+ capacity = 1 << i;
+
+ DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
+ AbstractMemory::size());
+ rowsPerBank = capacity / (bytesPerCacheLine * linesPerRowBuffer *
+ banksPerRank * ranksPerChannel);
+
+}
+
+void
+SimpleDRAM::startup()
+{
+ // print the configuration of the controller
+ printParams();
+
+ // kick off the refresh
+ schedule(&refreshEvent, curTick() + tREFI);
+}
+
+
+Tick
+SimpleDRAM::recvAtomic(PacketPtr pkt)
+{
+ DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
+
+ // do the actual memory access and turn the packet into a response
+ access(pkt);
+
+ Tick latency = 0;
+ if (!pkt->memInhibitAsserted() && pkt->hasData()) {
+ // this value is not supposed to be accurate, just enough to
+ // keep things going, mimic a closed page
+ latency = tRP + tRCD + tCL;
+ }
+ return latency;
+}
+
+bool
+SimpleDRAM::readQueueFull() const
+{
+ DPRINTF(DRAM, "Read queue limit %d current size %d\n",
+ readBufferSize, dramReadQueue.size() + dramRespQueue.size());
+
+ return (dramReadQueue.size() + dramRespQueue.size()) == readBufferSize;
+}
+
+bool
+SimpleDRAM::writeQueueFull() const
+{
+ DPRINTF(DRAM, "Write queue limit %d current size %d\n",
+ writeBufferSize, dramWriteQueue.size());
+ return dramWriteQueue.size() == writeBufferSize;
+}
+
+
+SimpleDRAM::DRAMPacket*
+SimpleDRAM::decodeAddr(PacketPtr pkt)
+{
+ uint8_t rank;
+ uint16_t bank;
+ uint16_t row;
+
+ Addr addr = pkt->getAddr();
+ Addr temp = addr;
+
+ // truncate the address to the access granularity
+ addr = addr / bytesPerCacheLine;
+
+ if (addrMapping == Enums::openmap) {
+ addr = addr / linesPerRowBuffer;
+
+ bank = addr % banksPerRank;
+ addr = addr / banksPerRank;
+
+ rank = addr % ranksPerChannel;
+ addr = addr / ranksPerChannel;
+
+ row = addr % rowsPerBank;
+ addr = addr / rowsPerBank;
+ } else if (addrMapping == Enums::closemap) {
+ bank = addr % banksPerRank;
+ addr = addr / banksPerRank;
+
+ rank = addr % ranksPerChannel;
+ addr = addr / ranksPerChannel;
+
+ addr = addr / linesPerRowBuffer;
+
+ row = addr % rowsPerBank;
+ addr = addr / rowsPerBank;
+ } else
+ panic("Unknown address mapping policy chosen!");
+
+ assert(rank < ranksPerChannel);
+ assert(bank < banksPerRank);
+ assert(row < rowsPerBank);
+
+ DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
+ temp, rank, bank, row);
+
+ // create the corresponding DRAM packet with the entry time and
+ // ready time set to the current tick, they will be updated later
+ DRAMPacket* dram_pkt = new DRAMPacket(pkt, rank, bank, row, temp,
+ banks[rank][bank]);
+
+ return dram_pkt;
+}
+
+void
+SimpleDRAM::addToReadQueue(PacketPtr pkt)
+{
+ // only add to the read queue here. whenever the request is
+ // eventually done, set the readyTime, and call schedule()
+ assert(!pkt->isWrite());
+
+ // First check write buffer to see if the data is already at
+ // the controller
+ std::list<DRAMPacket*>::const_iterator i;
+ Addr addr = pkt->getAddr();
+
+ // @todo: add size check
+ for (i = dramWriteQueue.begin(); i != dramWriteQueue.end(); ++i) {
+ if ((*i)->addr == addr){
+ servicedByWrQ++;
+ DPRINTF(DRAM,"Serviced by write Q\n");
+ bytesRead += bytesPerCacheLine;
+ bytesConsumedRd += pkt->getSize();
+ accessAndRespond(pkt);
+ return;
+ }
+ }
+
+ DRAMPacket* dram_pkt = decodeAddr(pkt);
+
+ assert(dramReadQueue.size() + dramRespQueue.size() < readBufferSize);
+ rdQLenPdf[dramReadQueue.size() + dramRespQueue.size()]++;
+
+ DPRINTF(DRAM, "Adding to read queue\n");
+
+ dramReadQueue.push_back(dram_pkt);
+
+ // Update stats
+ uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
+ assert(bank_id < ranksPerChannel * banksPerRank);
+ perBankRdReqs[bank_id]++;
+
+ avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
+
+ // Special case where no arbitration is required between requests
+ if (!nextReqEvent.scheduled() && !stopReads) {
+ DPRINTF(DRAM, "Request %lld - need to schedule immediately");
+ schedule(&nextReqEvent, curTick() + 1);
+ }
+}
+
+void
+SimpleDRAM::processWriteEvent()
+{
+ assert(!dramWriteQueue.empty());
+ uint32_t numWritesThisTime = 0;
+
+ DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
+ Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
+ Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
+
+ // @todo: are there any dangers with the untimed while loop?
+ while (!dramWriteQueue.empty()) {
+ if (numWritesThisTime > writeThreshold)
+ break;
+
+ chooseNextWrite();
+ DRAMPacket* dram_pkt = dramWriteQueue.front();
+ // What's the earlier the request can be put on the bus
+ Tick schedTime = std::max(curTick(), busBusyUntil);
+
+ DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
+ schedTime + tBURST);
+
+ pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
+ Tick accessLat = lat.second;
+
+ // look at the rowHitFlag set by estimateLatency
+
+ // @todo: Race condition here where another packet gives rise
+ // to another call to estimateLatency in the meanwhile?
+ if (rowHitFlag)
+ writeRowHits++;
+
+ Bank& bank = dram_pkt->bank_ref;
+
+ if (pageMgmt == Enums::open) {
+ bank.openRow = dram_pkt->row;
+ bank.freeAt = schedTime + tBURST + accessLat;
+
+ if (!rowHitFlag)
+ bank.tRASDoneAt = bank.freeAt + tRP;
+
+ } else if (pageMgmt == Enums::close) {
+ bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP;
+ DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
+ "banks_id %d is %lld\n",
+ dram_pkt->rank * banksPerRank + dram_pkt->bank,
+ bank.freeAt);
+ } else
+ panic("Unknown page management policy chosen\n");
+
+ // @todo: As of now, write goes on the databus asap, maybe
+ // be held up at bank. May want to change it to delay the
+ // schedTime itself.
+ busBusyUntil = schedTime + tBURST;
+ DPRINTF(DRAMWR,"Done writing to address %lld\n",dram_pkt->addr);
+
+
+ DPRINTF(DRAMWR,"schedtime is %lld, tBURST is %lld, "
+ "busbusyuntil is %lld\n",
+ schedTime, tBURST, busBusyUntil);
+
+ dramWriteQueue.pop_front();
+ delete dram_pkt;
+
+ numWritesThisTime++;
+ }
+
+ DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
+ "banks busy for %lld ticks\n", numWritesThisTime,
+ busBusyUntil - temp1, maxBankFreeAt() - temp2);
+
+ // Update stats
+ avgWrQLen = dramWriteQueue.size();
+
+ // turn the bus back around for reads again
+ busBusyUntil += tWTR;
+ stopReads = false;
+
+ if (retryWrReq) {
+ retryWrReq = false;
+ port.sendRetry();
+ }
+
+ // if there is nothing left in any queue, signal a drain
+ if (dramWriteQueue.empty() && dramReadQueue.empty() &&
+ dramRespQueue.empty () && drainEvent) {
+ drainEvent->process();
+ drainEvent = NULL;
+ }
+
+ // Once you're done emptying the write queue, check if there's
+ // anything in the read queue, and call schedule if required
+ schedule(&nextReqEvent, busBusyUntil);
+}
+
+void
+SimpleDRAM::triggerWrites()
+{
+ DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
+ // Flag variable to stop any more read scheduling
+ stopReads = true;
+
+ writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
+
+ DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
+
+ assert(writeStartTime >= curTick());
+ assert(!writeEvent.scheduled());
+ schedule(&writeEvent, writeStartTime);
+}
+
+void
+SimpleDRAM::addToWriteQueue(PacketPtr pkt)
+{
+ // only add to the write queue here. whenever the request is
+ // eventually done, set the readyTime, and call schedule()
+ assert(pkt->isWrite());
+
+ DRAMPacket* dram_pkt = decodeAddr(pkt);
+
+ assert(dramWriteQueue.size() < writeBufferSize);
+ wrQLenPdf[dramWriteQueue.size()]++;
+
+ DPRINTF(DRAM, "Adding to write queue\n");
+
+ dramWriteQueue.push_back(dram_pkt);
+
+ // Update stats
+ uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
+ assert(bank_id < ranksPerChannel * banksPerRank);
+ perBankWrReqs[bank_id]++;
+
+ avgWrQLen = dramWriteQueue.size();
+
+ // we do not wait for the writes to be send to the actual memory,
+ // but instead take responsibility for the consistency here and
+ // snoop the write queue for any upcoming reads
+
+ bytesConsumedWr += pkt->getSize();
+ bytesWritten += bytesPerCacheLine;
+ accessAndRespond(pkt);
+
+ // If your write buffer is starting to fill up, drain it!
+ if (dramWriteQueue.size() > writeThreshold && !stopReads){
+ triggerWrites();
+ }
+}
+
+void
+SimpleDRAM::printParams() const
+{
+ // Sanity check print of important parameters
+ DPRINTF(DRAM,
+ "Memory controller %s physical organization\n" \
+ "Bytes per cacheline %d\n" \
+ "Lines per row buffer %d\n" \
+ "Rows per bank %d\n" \
+ "Banks per rank %d\n" \
+ "Ranks per channel %d\n" \
+ "Total mem capacity %u\n",
+ name(), bytesPerCacheLine ,linesPerRowBuffer, rowsPerBank,
+ banksPerRank, ranksPerChannel, bytesPerCacheLine *
+ linesPerRowBuffer * rowsPerBank * banksPerRank * ranksPerChannel);
+
+ string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
+ string address_mapping = addrMapping == Enums::openmap ? "OPENMAP" :
+ "CLOSEMAP";
+ string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
+
+ DPRINTF(DRAM,
+ "Memory controller %s characteristics\n" \
+ "Read buffer size %d\n" \
+ "Write buffer size %d\n" \
+ "Write buffer thresh %d\n" \
+ "Scheduler %s\n" \
+ "Address mapping %s\n" \
+ "Page policy %s\n",
+ name(), readBufferSize, writeBufferSize, writeThreshold,
+ scheduler, address_mapping, page_policy);
+
+ DPRINTF(DRAM, "Memory controller %s timing specs\n" \
+ "tRCD %d ticks\n" \
+ "tCL %d ticks\n" \
+ "tRP %d ticks\n" \
+ "tBURST %d ticks\n" \
+ "tRFC %d ticks\n" \
+ "tREFI %d ticks\n" \
+ "tWTR %d ticks\n",
+ name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR);
+}
+
+void
+SimpleDRAM::printQs() const {
+
+ list<DRAMPacket*>::const_iterator i;
+
+ DPRINTF(DRAM, "===READ QUEUE===\n\n");
+ for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
+ DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
+ }
+ DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
+ for (i = dramRespQueue.begin() ; i != dramRespQueue.end() ; ++i) {
+ DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
+ }
+ DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
+ for (i = dramWriteQueue.begin() ; i != dramWriteQueue.end() ; ++i) {
+ DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
+ }
+}
+
+bool
+SimpleDRAM::recvTimingReq(PacketPtr pkt)
+{
+ // This is where we enter from the outside world
+ DPRINTF(DRAM, "Inside recvTimingReq: request %s addr %lld size %d\n",
+ pkt->cmdString(),pkt->getAddr(), pkt->getSize());
+
+ int index;
+
+ if (pkt->getSize() == bytesPerCacheLine)
+ cpuReqs++;
+
+ if (numReqs % 1000000 == 0)
+ printQs();
+
+ // Calc avg gap between requests
+ if (prevArrival != 0) {
+ totGap += curTick() - prevArrival;
+ }
+ prevArrival = curTick();
+
+ // simply drop inhibited packets for now
+ if (pkt->memInhibitAsserted()) {
+ DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
+ delete pkt;
+ return true;
+ }
+
+ unsigned size = pkt->getSize();
+ if (size > bytesPerCacheLine)
+ panic("Request size %d is greater than cache line size %d",
+ size, bytesPerCacheLine);
+
+ if (size == 0)
+ index = log2(bytesPerCacheLine) + 1;
+ else
+ index = log2(size);
+
+ if (size != 0 && (1 << index) != size)
+ index = log2(bytesPerCacheLine) + 2;
+
+ // @todo: Do we really want to do all this before the packet is
+ // actually accepted?
+
+ /* Index 0 - Size 1 byte
+ Index 1 - Size 2 bytes
+ Index 2 - Size 4 bytes
+ .
+ .
+ Index 6 - Size 64 bytes
+ Index 7 - Size 0 bytes
+ Index 8 - Non-power-of-2 size */
+
+ if (pkt->isRead())
+ readPktSize[index]++;
+ else if (pkt->isWrite())
+ writePktSize[index]++;
+ else
+ neitherPktSize[index]++;
+
+ // check local buffers and do not accept if full
+ if (pkt->isRead()) {
+ if (readQueueFull()) {
+ DPRINTF(DRAM,"Read queue full, not accepting\n");
+ // remember that we have to retry this port
+ retryRdReq = true;
+ numRdRetry++;
+ return false;
+ } else {
+ addToReadQueue(pkt);
+ readReqs++;
+ numReqs++;
+ }
+ } else if (pkt->isWrite()) {
+ if (writeQueueFull()) {
+ DPRINTF(DRAM,"Write queue full, not accepting\n");
+ // remember that we have to retry this port
+ retryWrReq = true;
+ numWrRetry++;
+ return false;
+ } else {
+ addToWriteQueue(pkt);
+ writeReqs++;
+ numReqs++;
+ }
+ } else {
+ DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
+ neitherReadNorWrite++;
+ accessAndRespond(pkt);
+ }
+
+
+ retryRdReq = false;
+ retryWrReq = false;
+ return true;
+}
+
+void
+SimpleDRAM::processRespondEvent()
+{
+ DPRINTF(DRAM,
+ "processRespondEvent(): Some req has reached its readyTime\n");
+
+ PacketPtr pkt = dramRespQueue.front()->pkt;
+
+ // Actually responds to the requestor
+ bytesConsumedRd += pkt->getSize();
+ bytesRead += bytesPerCacheLine;
+ accessAndRespond(pkt);
+
+ DRAMPacket* dram_pkt = dramRespQueue.front();
+ dramRespQueue.pop_front();
+ delete dram_pkt;
+
+ // Update stats
+ avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
+
+ if (!dramRespQueue.empty()){
+ assert(dramRespQueue.front()->readyTime >= curTick());
+ assert(!respondEvent.scheduled());
+ schedule(&respondEvent, dramRespQueue.front()->readyTime);
+ } else {
+ // if there is nothing left in any queue, signal a drain
+ if (dramWriteQueue.empty() && dramReadQueue.empty() &&
+ drainEvent) {
+ drainEvent->process();
+ drainEvent = NULL;
+ }
+ }
+}
+
+void
+SimpleDRAM::chooseNextWrite()
+{
+ // This method does the arbitration between requests. The chosen
+ // packet is simply moved to the head of the queue. The other
+ // methods know that this is the place to look. For example, with
+ // FCFS, this method does nothing
+ assert(!dramWriteQueue.empty());
+
+ if (dramWriteQueue.size() == 1) {
+ DPRINTF(DRAMWR, "chooseNextWrite(): Single element, nothing to do\n");
+ return;
+ }
+
+ if (memSchedPolicy == Enums::fcfs) {
+
+ // Do nothing, since the correct request is already head
+
+ } else if (memSchedPolicy == Enums::frfcfs) {
+
+ list<DRAMPacket*>::iterator i = dramWriteQueue.begin();
+ bool foundRowHit = false;
+ while (!foundRowHit && i != dramWriteQueue.end()) {
+ DRAMPacket* dram_pkt = *i;
+ const Bank& bank = dram_pkt->bank_ref;
+ if (bank.openRow == dram_pkt->row) { //FR part
+ DPRINTF(DRAMWR,"Row buffer hit\n");
+ dramWriteQueue.erase(i);
+ dramWriteQueue.push_front(dram_pkt);
+ foundRowHit = true;
+ } else { //FCFS part
+ ;
+ }
+ ++i;
+ }
+
+ } else
+ panic("No scheduling policy chosen\n");
+
+ DPRINTF(DRAMWR, "chooseNextWrite(): Something chosen\n");
+}
+
+bool
+SimpleDRAM::chooseNextReq()
+{
+ // This method does the arbitration between requests.
+ // The chosen packet is simply moved to the head of the
+ // queue. The other methods know that this is the place
+ // to look. For example, with FCFS, this method does nothing
+ list<DRAMPacket*>::iterator i;
+ DRAMPacket* dram_pkt;
+
+ if (dramReadQueue.empty()){
+ DPRINTF(DRAM, "chooseNextReq(): Returning False\n");
+ return false;
+ }
+
+ if (dramReadQueue.size() == 1)
+ return true;
+
+ if (memSchedPolicy == Enums::fcfs) {
+
+ // Do nothing, since the correct request is already head
+
+ } else if (memSchedPolicy == Enums::frfcfs) {
+
+ for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
+ dram_pkt = *i;
+ const Bank& bank = dram_pkt->bank_ref;
+ if (bank.openRow == dram_pkt->row) { //FR part
+ DPRINTF(DRAM, "Row buffer hit\n");
+ dramReadQueue.erase(i);
+ dramReadQueue.push_front(dram_pkt);
+ break;
+ } else { //FCFS part
+ ;
+ }
+
+ }
+
+ } else
+ panic("No scheduling policy chosen!\n");
+
+
+ DPRINTF(DRAM,"chooseNextReq(): Chosen something, returning True\n");
+ return true;
+}
+
+void
+SimpleDRAM::accessAndRespond(PacketPtr pkt)
+{
+ DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
+
+ bool needsResponse = pkt->needsResponse();
+ // do the actual memory access which also turns the packet into a
+ // response
+ access(pkt);
+
+ // turn packet around to go back to requester if response expected
+ if (needsResponse) {
+ // access already turned the packet into a response
+ assert(pkt->isResponse());
+
+ // queue the packet in the response queue to be sent out the
+ // next tick
+ port.schedTimingResp(pkt, curTick() + 1);
+ } else {
+ }
+
+ DPRINTF(DRAM, "Done\n");
+
+ return;
+}
+
+pair<Tick, Tick>
+SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
+{
+ // If a request reaches a bank at tick 'inTime', how much time
+ // *after* that does it take to finish the request, depending
+ // on bank status and page open policy. Note that this method
+ // considers only the time taken for the actual read or write
+ // to complete, NOT any additional time thereafter for tRAS or
+ // tRP.
+ Tick accLat = 0;
+ Tick bankLat = 0;
+ rowHitFlag = false;
+
+ const Bank& bank = dram_pkt->bank_ref;
+ if (pageMgmt == Enums::open) { // open-page policy
+ if (bank.openRow == dram_pkt->row) {
+ // When we have a row-buffer hit,
+ // we don't care about tRAS having expired or not,
+ // but do care about bank being free for access
+ rowHitFlag = true;
+
+ if (bank.freeAt < inTime) {
+ // CAS latency only
+ accLat += tCL;
+ bankLat += tCL;
+ } else {
+ accLat += 0;
+ bankLat += 0;
+ }
+
+ } else {
+ // Row-buffer miss, need to close existing row
+ // once tRAS has expired, then open the new one,
+ // then add cas latency.
+ Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
+
+ if (freeTime > inTime)
+ accLat += freeTime - inTime;
+
+ accLat += tRP + tRCD + tCL;
+ bankLat += tRP + tRCD + tCL;
+ }
+ } else if (pageMgmt == Enums::close) {
+
+ // With a close page policy, no notion of
+ // bank.tRASDoneAt
+ if (bank.freeAt > inTime)
+ accLat += bank.freeAt - inTime;
+
+ // page already closed, simply open the row, and
+ // add cas latency
+ accLat += tRCD + tCL;
+ bankLat += tRCD + tCL;
+ } else
+ panic("No page management policy chosen\n");
+
+ DPRINTF(DRAM, "Returning %lld from estimateLatency()\n",accLat);
+
+ return make_pair(bankLat, accLat);
+}
+
+void
+SimpleDRAM::processNextReqEvent()
+{
+ scheduleNextReq();
+}
+
+void
+SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
+{
+
+ DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
+ dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
+
+ assert(curTick() >= prevdramaccess);
+ prevdramaccess = curTick();
+
+ // estimate the bank and access latency
+ pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
+ Tick bankLat = lat.first;
+ Tick accessLat = lat.second;
+
+ // This request was woken up at this time based on a prior call
+ // to estimateLatency(). However, between then and now, both the
+ // accessLatency and/or busBusyUntil may have changed. We need
+ // to correct for that.
+
+ Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
+ busBusyUntil - (curTick() + accessLat) : 0;
+
+ Bank& bank = dram_pkt->bank_ref;
+
+ // Update bank state
+ if (pageMgmt == Enums::open) {
+ bank.openRow = dram_pkt->row;
+ bank.freeAt = curTick() + addDelay + accessLat;
+ // If you activated a new row do to this access, the next access
+ // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP
+ if (!rowHitFlag)
+ bank.tRASDoneAt = bank.freeAt + tRP;
+
+ } else if (pageMgmt == Enums::close) { // accounting for tRAS also
+ // assuming that tRAS ~= 3 * tRP, and tRAS ~= 4 * tRP, as is common
+ // (refer Jacob/Ng/Wang and Micron datasheets)
+ bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP;
+ DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt);
+ } else
+ panic("No page management policy chosen\n");
+
+ // Update request parameters
+ dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
+
+
+ DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
+ "readytime is %lld busbusyuntil is %lld. " \
+ "Scheduling at readyTime\n", dram_pkt->addr,
+ curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
+
+ // Make sure requests are not overlapping on the databus
+ assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
+
+ // Update bus state
+ busBusyUntil = dram_pkt->readyTime;
+
+ DPRINTF(DRAM,"Access time is %lld\n",
+ dram_pkt->readyTime - dram_pkt->entryTime);
+
+ // Update stats
+ totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
+ totBankLat += bankLat;
+ totBusLat += tBURST;
+ totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
+
+ if (rowHitFlag)
+ readRowHits++;
+
+ // At this point we're done dealing with the request
+ // It will be moved to a separate response queue with a
+ // correct readyTime, and eventually be sent back at that
+ //time
+ moveToRespQ();
+
+ // The absolute soonest you have to start thinking about the
+ // next request is the longest access time that can occur before
+ // busBusyUntil. Assuming you need to meet tRAS, then precharge,
+ // open a new row, and access, it is ~4*tRCD.
+
+
+ Tick newTime = (busBusyUntil > 4 * tRCD) ?
+ std::max(busBusyUntil - 4 * tRCD, curTick()) :
+ curTick();
+
+ if (!nextReqEvent.scheduled() && !stopReads){
+ schedule(&nextReqEvent, newTime);
+ } else {
+ if (newTime < nextReqEvent.when())
+ reschedule(&nextReqEvent, newTime);
+ }
+
+
+}
+
+void
+SimpleDRAM::moveToRespQ()
+{
+ // Remove from read queue
+ DRAMPacket* dram_pkt = dramReadQueue.front();
+ dramReadQueue.pop_front();
+
+ // Insert into response queue sorted by readyTime
+ // It will be sent back to the requestor at its
+ // readyTime
+ if (dramRespQueue.empty()) {
+ dramRespQueue.push_front(dram_pkt);
+ assert(!respondEvent.scheduled());
+ assert(dram_pkt->readyTime >= curTick());
+ schedule(&respondEvent, dram_pkt->readyTime);
+ } else {
+ bool done = false;
+ std::list<DRAMPacket*>::iterator i = dramRespQueue.begin();
+ while (!done && i != dramRespQueue.end()) {
+ if ((*i)->readyTime > dram_pkt->readyTime) {
+ dramRespQueue.insert(i, dram_pkt);
+ done = true;
+ }
+ ++i;
+ }
+
+ if (!done)
+ dramRespQueue.push_back(dram_pkt);
+
+ assert(respondEvent.scheduled());
+
+ if (dramRespQueue.front()->readyTime < respondEvent.when()) {
+ assert(dramRespQueue.front()->readyTime >= curTick());
+ reschedule(&respondEvent, dramRespQueue.front()->readyTime);
+ }
+ }
+
+ if (retryRdReq) {
+ retryRdReq = false;
+ port.sendRetry();
+ }
+}
+
+void
+SimpleDRAM::scheduleNextReq()
+{
+ DPRINTF(DRAM, "Reached scheduleNextReq()\n");
+
+ // Figure out which request goes next, and move it to front()
+ if (!chooseNextReq())
+ return;
+
+ doDRAMAccess(dramReadQueue.front());
+}
+
+
+
+
+Tick
+SimpleDRAM::maxBankFreeAt() const
+{
+ Tick banksFree = 0;
+
+ for(int i = 0; i < ranksPerChannel; i++)
+ for(int j = 0; j < banksPerRank; j++)
+ banksFree = std::max(banks[i][j].freeAt, banksFree);
+
+ return banksFree;
+}
+
+void
+SimpleDRAM::processRefreshEvent()
+{
+ DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
+
+ Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
+
+ for(int i = 0; i < ranksPerChannel; i++)
+ for(int j = 0; j < banksPerRank; j++)
+ banks[i][j].freeAt = banksFree;
+
+ schedule(&refreshEvent, curTick() + tREFI);
+}
+
+void
+SimpleDRAM::regStats()
+{
+ using namespace Stats;
+
+ AbstractMemory::regStats();
+
+ readReqs
+ .name(name() + ".readReqs")
+ .desc("Total number of read requests seen");
+
+ writeReqs
+ .name(name() + ".writeReqs")
+ .desc("Total number of write requests seen");
+
+ servicedByWrQ
+ .name(name() + ".servicedByWrQ")
+ .desc("Number of read reqs serviced by write Q");
+
+ cpuReqs
+ .name(name() + ".cpureqs")
+ .desc("Reqs generatd by CPU via cache - shady");
+
+ neitherReadNorWrite
+ .name(name() + ".neitherReadNorWrite")
+ .desc("Reqs where no action is needed");
+
+ perBankRdReqs
+ .init(banksPerRank * ranksPerChannel)
+ .name(name() + ".perBankRdReqs")
+ .desc("Track reads on a per bank basis");
+
+ perBankWrReqs
+ .init(banksPerRank * ranksPerChannel)
+ .name(name() + ".perBankWrReqs")
+ .desc("Track writes on a per bank basis");
+
+ avgRdQLen
+ .name(name() + ".avgRdQLen")
+ .desc("Average read queue length over time")
+ .precision(2);
+
+ avgWrQLen
+ .name(name() + ".avgWrQLen")
+ .desc("Average write queue length over time")
+ .precision(2);
+
+ totQLat
+ .name(name() + ".totQLat")
+ .desc("Total cycles spent in queuing delays");
+
+ totBankLat
+ .name(name() + ".totBankLat")
+ .desc("Total cycles spent in bank access");
+
+ totBusLat
+ .name(name() + ".totBusLat")
+ .desc("Total cycles spent in databus access");
+
+ totMemAccLat
+ .name(name() + ".totMemAccLat")
+ .desc("Sum of mem lat for all requests");
+
+ avgQLat
+ .name(name() + ".avgQLat")
+ .desc("Average queueing delay per request")
+ .precision(2);
+
+ avgQLat = totQLat / (readReqs - servicedByWrQ);
+
+ avgBankLat
+ .name(name() + ".avgBankLat")
+ .desc("Average bank access latency per request")
+ .precision(2);
+
+ avgBankLat = totBankLat / (readReqs - servicedByWrQ);
+
+ avgBusLat
+ .name(name() + ".avgBusLat")
+ .desc("Average bus latency per request")
+ .precision(2);
+
+ avgBusLat = totBusLat / (readReqs - servicedByWrQ);
+
+ avgMemAccLat
+ .name(name() + ".avgMemAccLat")
+ .desc("Average memory access latency")
+ .precision(2);
+
+ avgMemAccLat = totMemAccLat / (readReqs - servicedByWrQ);
+
+ numRdRetry
+ .name(name() + ".numRdRetry")
+ .desc("Number of times rd buffer was full causing retry");
+
+ numWrRetry
+ .name(name() + ".numWrRetry")
+ .desc("Number of times wr buffer was full causing retry");
+
+ readRowHits
+ .name(name() + ".readRowHits")
+ .desc("Number of row buffer hits during reads");
+
+ writeRowHits
+ .name(name() + ".writeRowHits")
+ .desc("Number of row buffer hits during writes");
+
+ readRowHitRate
+ .name(name() + ".readRowHitRate")
+ .desc("Row buffer hit rate for reads")
+ .precision(2);
+
+ readRowHitRate = (readRowHits / (readReqs - servicedByWrQ)) * 100;
+
+ writeRowHitRate
+ .name(name() + ".writeRowHitRate")
+ .desc("Row buffer hit rate for writes")
+ .precision(2);
+
+ writeRowHitRate = (writeRowHits / writeReqs) * 100;
+
+ readPktSize
+ .init(log2(bytesPerCacheLine)+3)
+ .name(name() + ".readPktSize")
+ .desc("Categorize read packet sizes");
+
+ writePktSize
+ .init(log2(bytesPerCacheLine)+3)
+ .name(name() + ".writePktSize")
+ .desc("categorize write packet sizes");
+
+ neitherPktSize
+ .init(log2(bytesPerCacheLine)+3)
+ .name(name() + ".neitherpktsize")
+ .desc("categorize neither packet sizes");
+
+ rdQLenPdf
+ .init(readBufferSize + 1)
+ .name(name() + ".rdQLenPdf")
+ .desc("What read queue length does an incoming req see");
+
+ wrQLenPdf
+ .init(writeBufferSize + 1)
+ .name(name() + ".wrQLenPdf")
+ .desc("What write queue length does an incoming req see");
+
+
+ bytesRead
+ .name(name() + ".bytesRead")
+ .desc("Total number of bytes read from memory");
+
+ bytesWritten
+ .name(name() + ".bytesWritten")
+ .desc("Total number of bytes written to memory");
+
+ bytesConsumedRd
+ .name(name() + ".bytesConsumedRd")
+ .desc("bytesRead derated as per pkt->getSize()");
+
+ bytesConsumedWr
+ .name(name() + ".bytesConsumedWr")
+ .desc("bytesWritten derated as per pkt->getSize()");
+
+ avgRdBW
+ .name(name() + ".avgRdBW")
+ .desc("Average achieved read bandwidth in MB/s")
+ .precision(2);
+
+ avgRdBW = (bytesRead / 1000000) / simSeconds;
+
+ avgWrBW
+ .name(name() + ".avgWrBW")
+ .desc("Average achieved write bandwidth in MB/s")
+ .precision(2);
+
+ avgWrBW = (bytesWritten / 1000000) / simSeconds;
+
+ avgConsumedRdBW
+ .name(name() + ".avgConsumedRdBW")
+ .desc("Average consumed read bandwidth in MB/s")
+ .precision(2);
+
+ avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
+
+ avgConsumedWrBW
+ .name(name() + ".avgConsumedWrBW")
+ .desc("Average consumed write bandwidth in MB/s")
+ .precision(2);
+
+ avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
+
+ peakBW
+ .name(name() + ".peakBW")
+ .desc("Theoretical peak bandwidth in MB/s")
+ .precision(2);
+
+ peakBW = (SimClock::Frequency / tBURST) * bytesPerCacheLine / 1000000;
+
+ busUtil
+ .name(name() + ".busUtil")
+ .desc("Data bus utilization in percentage")
+ .precision(2);
+
+ busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
+
+ totGap
+ .name(name() + ".totGap")
+ .desc("Total gap between requests");
+
+ avgGap
+ .name(name() + ".avgGap")
+ .desc("Average gap between requests")
+ .precision(2);
+
+ avgGap = totGap / (readReqs + writeReqs);
+}
+
+void
+SimpleDRAM::recvFunctional(PacketPtr pkt)
+{
+ // rely on the abstract memory
+ functionalAccess(pkt);
+}
+
+SlavePort&
+SimpleDRAM::getSlavePort(const string &if_name, int idx)
+{
+ if (if_name != "port") {
+ return MemObject::getSlavePort(if_name, idx);
+ } else {
+ return port;
+ }
+}
+
+unsigned int
+SimpleDRAM::drain(Event *de)
+{
+ unsigned int count = port.drain(de);
+
+ // if there is anything in any of our internal queues, keep track
+ // of that as well
+ if (!(dramWriteQueue.empty() && dramReadQueue.empty() &&
+ dramRespQueue.empty())) {
+ ++count;
+ drainEvent = de;
+ }
+
+ if (count)
+ changeState(Draining);
+ else
+ changeState(Drained);
+ return count;
+}
+
+SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
+ : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
+ memory(_memory)
+{ }
+
+AddrRangeList
+SimpleDRAM::MemoryPort::getAddrRanges() const
+{
+ AddrRangeList ranges;
+ ranges.push_back(memory.getAddrRange());
+ return ranges;
+}
+
+void
+SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
+{
+ pkt->pushLabel(memory.name());
+
+ if (!queue.checkFunctional(pkt)) {
+ // Default implementation of SimpleTimingPort::recvFunctional()
+ // calls recvAtomic() and throws away the latency; we can save a
+ // little here by just not calculating the latency.
+ memory.recvFunctional(pkt);
+ }
+
+ pkt->popLabel();
+}
+
+Tick
+SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
+{
+ return memory.recvAtomic(pkt);
+}
+
+bool
+SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
+{
+ // pass it to the memory controller
+ return memory.recvTimingReq(pkt);
+}
+
+SimpleDRAM*
+SimpleDRAMParams::create()
+{
+ return new SimpleDRAM(this);
+}
--- /dev/null
+/*
+ * Copyright (c) 2012 ARM Limited
+ * All rights reserved
+ *
+ * The license below extends only to copyright in the software and shall
+ * not be construed as granting a license to any other intellectual
+ * property including but not limited to intellectual property relating
+ * to a hardware implementation of the functionality of the software
+ * licensed hereunder. You may use the software subject to the license
+ * terms below provided that you ensure that this notice is replicated
+ * unmodified and in its entirety in all distributions of the software,
+ * modified or unmodified, in source code or in binary form.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Authors: Andreas Hansson
+ * Ani Udipi
+ */
+
+/**
+ * @file
+ * SimpleDRAM declaration
+ */
+
+#ifndef __MEM_SIMPLE_DRAM_HH__
+#define __MEM_SIMPLE_DRAM_HH__
+
+#include "base/statistics.hh"
+#include "enums/AddrMap.hh"
+#include "enums/MemSched.hh"
+#include "enums/PageManage.hh"
+#include "mem/abstract_mem.hh"
+#include "mem/qport.hh"
+#include "params/SimpleDRAM.hh"
+#include "sim/eventq.hh"
+
+/**
+ * The simple DRAM is a basic single-channel memory controller aiming
+ * to mimic a high-level DRAM controller and the most important timing
+ * constraints associated with the DRAM. The focus is really on
+ * modelling the impact on the system rather than the DRAM itself,
+ * hence the focus is on the controller model and not on the
+ * memory. By adhering to the correct timing constraints, ultimately
+ * there is no need for a memory model in addition to the controller
+ * model.
+ *
+ * As a basic design principle, this controller is not cycle callable,
+ * but instead uses events to decide when new decisions can be made,
+ * when resources become available, when things are to be considered
+ * done, and when to send things back. Through these simple
+ * principles, we achieve a performant model that is not
+ * cycle-accurate, but enables us to evaluate the system impact of a
+ * wide range of memory technologies, and also collect statistics
+ * about the use of the memory.
+ */
+class SimpleDRAM : public AbstractMemory
+{
+
+ private:
+
+ // For now, make use of a queued slave port to avoid dealing with
+ // flow control for the responses being sent back
+ class MemoryPort : public QueuedSlavePort
+ {
+
+ SlavePacketQueue queue;
+ SimpleDRAM& memory;
+
+ public:
+
+ MemoryPort(const std::string& name, SimpleDRAM& _memory);
+
+ protected:
+
+ Tick recvAtomic(PacketPtr pkt);
+
+ void recvFunctional(PacketPtr pkt);
+
+ bool recvTimingReq(PacketPtr);
+
+ virtual AddrRangeList getAddrRanges() const;
+
+ };
+
+ /**
+ * Our incoming port, for a multi-ported controller add a crossbar
+ * in front of it
+ */
+ MemoryPort port;
+
+ /**
+ * Remember if we have to retry a request when available.
+ */
+ bool retryRdReq;
+ bool retryWrReq;
+
+ /**
+ * Remember that a row buffer hit occured
+ */
+ bool rowHitFlag;
+
+ /**
+ * Use this flag to shutoff reads, i.e. do not schedule any reads
+ * beyond those already done so that we can turn the bus around
+ * and do a few writes, or refresh, or whatever
+ */
+ bool stopReads;
+
+ /**
+ * A basic class to track the bank state indirectly via
+ * times "freeAt" and "tRASDoneAt" and what page is currently open
+ */
+ class Bank
+ {
+
+ public:
+
+ static const uint32_t INVALID_ROW = -1;
+
+ uint32_t openRow;
+
+ Tick freeAt;
+ Tick tRASDoneAt;
+
+ Bank() : openRow(INVALID_ROW), freeAt(0), tRASDoneAt(0)
+ { }
+ };
+
+ /**
+ * A DRAM packet stores packets along with the timestamp of when
+ * the packet entered the queue, and also the decoded address.
+ */
+ class DRAMPacket {
+
+ public:
+
+ /** When did request enter the controller */
+ const Tick entryTime;
+
+ /** When will request leave the controller */
+ Tick readyTime;
+
+ /** This comes from the outside world */
+ const PacketPtr pkt;
+
+ /** Will be populated by address decoder */
+ const uint8_t rank;
+ const uint16_t bank;
+ const uint16_t row;
+ const Addr addr;
+ Bank& bank_ref;
+
+ DRAMPacket(PacketPtr _pkt, uint8_t _rank,
+ uint16_t _bank, uint16_t _row, Addr _addr, Bank& _bank_ref)
+ : entryTime(curTick()), readyTime(curTick()),
+ pkt(_pkt), rank(_rank), bank(_bank), row(_row), addr(_addr),
+ bank_ref(_bank_ref)
+ { }
+
+ };
+
+ /**
+ * Bunch of things requires to setup "events" in gem5
+ * When event "writeEvent" occurs for example, the method
+ * processWriteEvent is called; no parameters are allowed
+ * in these methods
+ */
+ void processWriteEvent();
+ EventWrapper<SimpleDRAM, &SimpleDRAM::processWriteEvent> writeEvent;
+
+ void processRespondEvent();
+ EventWrapper<SimpleDRAM, &SimpleDRAM::processRespondEvent> respondEvent;
+
+ void processRefreshEvent();
+ EventWrapper<SimpleDRAM, &SimpleDRAM::processRefreshEvent> refreshEvent;
+
+ void processNextReqEvent();
+ EventWrapper<SimpleDRAM,&SimpleDRAM::processNextReqEvent> nextReqEvent;
+
+
+ /**
+ * Check if the read queue has room for more entries
+ *
+ * @return true if read queue is full, false otherwise
+ */
+ bool readQueueFull() const;
+
+ /**
+ * Check if the write queue has room for more entries
+ *
+ * @return true if write queue is full, false otherwise
+ */
+ bool writeQueueFull() const;
+
+ /**
+ * When a new read comes in, first check if the write q has a
+ * pending request to the same address.\ If not, decode the
+ * address to populate rank/bank/row, create a "dram_pkt", and
+ * push it to the back of the read queue.\ If this is the only
+ * read request in the system, schedule an event to start
+ * servicing it.
+ *
+ * @param pkt The request packet from the outside world
+ */
+ void addToReadQueue(PacketPtr pkt);
+
+ /**
+ * Decode the incoming pkt, create a dram_pkt and push to the
+ * back of the write queue. \If the write q length is more than
+ * the threshold specified by the user, ie the queue is beginning
+ * to get full, stop reads, and start draining writes.
+ *
+ * @param pkt The request packet from the outside world
+ */
+ void addToWriteQueue(PacketPtr pkt);
+
+ /**
+ * Actually do the DRAM access - figure out the latency it
+ * will take to service the req based on bank state, channel state etc
+ * and then update those states to account for this request.\ Based
+ * on this, update the packet's "readyTime" and move it to the
+ * response q from where it will eventually go back to the outside
+ * world.
+ *
+ * @param pkt The DRAM packet created from the outside world pkt
+ */
+ void doDRAMAccess(DRAMPacket* dram_pkt);
+
+ /**
+ * Check when the channel is free to turnaround, add turnaround
+ * delay and schedule a whole bunch of writes.
+ */
+ void triggerWrites();
+
+ /**
+ * When a packet reaches its "readyTime" in the response Q,
+ * use the "access()" method in AbstractMemory to actually
+ * create the response packet, and send it back to the outside
+ * world requestor.
+ *
+ * @param pkt The packet from the outside world
+ */
+ void accessAndRespond(PacketPtr pkt);
+
+ /**
+ * Address decoder to figure out physical mapping onto ranks,
+ * banks, and rows.
+ *
+ * @param pkt The packet from the outside world
+ * @return A DRAMPacket pointer with the decoded information
+ */
+ DRAMPacket* decodeAddr(PacketPtr pkt);
+
+ /**
+ * The memory schduler/arbiter - picks which request needs to
+ * go next, based on the specified policy such as fcfs or frfcfs
+ * and moves it to the head of the read queue
+ *
+ * @return True if a request was chosen, False if Q is empty
+ */
+ bool chooseNextReq();
+
+ /**
+ * Calls chooseNextReq() to pick the right request, then calls
+ * doDRAMAccess on that request in order to actually service
+ * that request
+ */
+ void scheduleNextReq();
+
+ /**
+ *Looks at the state of the banks, channels, row buffer hits etc
+ * to estimate how long a request will take to complete.
+ *
+ * @param dram_pkt The request for which we want to estimate latency
+ * @param inTime The tick at which you want to probe the memory
+ *
+ * @return A pair of ticks, one indicating how many ticks *after*
+ * inTime the request require, and the other indicating how
+ * much of that was just the bank access time, ignoring the
+ * ticks spent simply waiting for resources to become free
+ */
+ std::pair<Tick, Tick> estimateLatency(DRAMPacket* dram_pkt, Tick inTime);
+
+ /**
+ * Move the request at the head of the read queue to the response
+ * queue, sorting by readyTime.\ If it is the only packet in the
+ * response queue, schedule a respond event to send it back to the
+ * outside world
+ */
+ void moveToRespQ();
+
+ /**
+ * Scheduling policy within the write Q
+ */
+ void chooseNextWrite();
+
+ /**
+ * Looking at all banks, determine the moment in time when they
+ * are all free.
+ *
+ * @return The tick when all banks are free
+ */
+ Tick maxBankFreeAt() const;
+
+ void printParams() const;
+ void printQs() const;
+
+ /**
+ * The controller's main read and write queues
+ */
+ std::list<DRAMPacket*> dramReadQueue;
+ std::list<DRAMPacket*> dramWriteQueue;
+
+ /**
+ * Response queue where read packets wait after we're done working
+ * with them, but it's not time to send the response yet.\ It is
+ * seperate mostly to keep the code clean and help with gem5 events,
+ * but for all logical purposes such as sizing the read queue, this
+ * and the main read queue need to be added together.
+ */
+ std::list<DRAMPacket*> dramRespQueue;
+
+ /** If we need to drain, keep the drain event around until we're done
+ * here.
+ */
+ Event *drainEvent;
+
+ /**
+ * Multi-dimensional vector of banks, first dimension is ranks,
+ * second is bank
+ */
+ std::vector<std::vector<Bank> > banks;
+
+ /**
+ * The following are basic design parameters of the memory
+ * controller, and are initialized based on parameter values. The
+ * bytesPerCacheLine is based on the neighbouring port and thus
+ * determined outside the constructor. Similarly, the rowsPerBank
+ * is determined based on the capacity, number of ranks and banks,
+ * the cache line size, and the row buffer size.
+ */
+ uint32_t bytesPerCacheLine;
+ const uint32_t linesPerRowBuffer;
+ const uint32_t ranksPerChannel;
+ const uint32_t banksPerRank;
+ uint32_t rowsPerBank;
+ const uint32_t readBufferSize;
+ const uint32_t writeBufferSize;
+ const double writeThresholdPerc;
+ uint32_t writeThreshold;
+
+ /**
+ * Basic memory timing parameters initialized based on parameter
+ * values.
+ */
+ const Tick tWTR;
+ const Tick tBURST;
+ const Tick tRCD;
+ const Tick tCL;
+ const Tick tRP;
+ const Tick tRFC;
+ const Tick tREFI;
+
+ /**
+ * Memory controller configuration initialized based on parameter
+ * values.
+ */
+ Enums::MemSched memSchedPolicy;
+ Enums::AddrMap addrMapping;
+ Enums::PageManage pageMgmt;
+
+ /**
+ * Till when has the main data bus been spoken for already?
+ */
+ Tick busBusyUntil;
+
+ Tick prevdramaccess;
+ Tick writeStartTime;
+ Tick prevArrival;
+ int numReqs;
+
+ // All statistics that the model needs to capture
+ Stats::Scalar readReqs;
+ Stats::Scalar writeReqs;
+ Stats::Scalar cpuReqs;
+ Stats::Scalar bytesRead;
+ Stats::Scalar bytesWritten;
+ Stats::Scalar bytesConsumedRd;
+ Stats::Scalar bytesConsumedWr;
+ Stats::Scalar servicedByWrQ;
+ Stats::Scalar neitherReadNorWrite;
+ Stats::Vector perBankRdReqs;
+ Stats::Vector perBankWrReqs;
+ Stats::Scalar numRdRetry;
+ Stats::Scalar numWrRetry;
+ Stats::Scalar totGap;
+ Stats::Vector readPktSize;
+ Stats::Vector writePktSize;
+ Stats::Vector neitherPktSize;
+ Stats::Vector rdQLenPdf;
+ Stats::Vector wrQLenPdf;
+
+
+ // Latencies summed over all requests
+ Stats::Scalar totQLat;
+ Stats::Scalar totMemAccLat;
+ Stats::Scalar totBusLat;
+ Stats::Scalar totBankLat;
+
+ // Average latencies per request
+ Stats::Formula avgQLat;
+ Stats::Formula avgBankLat;
+ Stats::Formula avgBusLat;
+ Stats::Formula avgMemAccLat;
+
+ // Average bandwidth
+ Stats::Formula avgRdBW;
+ Stats::Formula avgWrBW;
+ Stats::Formula avgConsumedRdBW;
+ Stats::Formula avgConsumedWrBW;
+ Stats::Formula peakBW;
+ Stats::Formula busUtil;
+
+ // Average queue lengths
+ Stats::Average avgRdQLen;
+ Stats::Average avgWrQLen;
+
+ // Row hit count and rate
+ Stats::Scalar readRowHits;
+ Stats::Scalar writeRowHits;
+ Stats::Formula readRowHitRate;
+ Stats::Formula writeRowHitRate;
+ Stats::Formula avgGap;
+
+ public:
+
+ void regStats();
+
+ SimpleDRAM(const SimpleDRAMParams* p);
+
+ unsigned int drain(Event* de);
+
+ virtual SlavePort& getSlavePort(const std::string& if_name,
+ int idx = InvalidPortID);
+
+ virtual void init();
+ virtual void startup();
+
+ protected:
+
+ Tick recvAtomic(PacketPtr pkt);
+ void recvFunctional(PacketPtr pkt);
+ bool recvTimingReq(PacketPtr pkt);
+
+};
+
+#endif //__MEM_SIMPLE_DRAM_HH__