}
}
+/* The message length for all SEND messages is restricted to [1,15]. This
+ * includes 1 for the header, so anything in slots 14 and above needs to be
+ * placed in a general-purpose register and emitted using a second URB write.
+ */
+#define MAX_SLOTS_IN_FIRST_URB_WRITE 14
+
+/**
+ * Determine whether the given vertex output can be written directly to a MRF
+ * or whether it has to be stored in a general-purpose register.
+ */
+static inline bool can_use_direct_mrf(int vert_result,
+ int first_reladdr_output, int slot)
+{
+ if (vert_result == VERT_RESULT_HPOS || vert_result == VERT_RESULT_PSIZ) {
+ /* These never go straight into MRF's. They are placed in the MRF by
+ * epilog code.
+ */
+ return false;
+ }
+ if (first_reladdr_output <= vert_result && vert_result < VERT_RESULT_MAX) {
+ /* Relative addressing might be used to access this vert_result, so it
+ * needs to go into a general-purpose register.
+ */
+ return false;
+ }
+ if (slot >= MAX_SLOTS_IN_FIRST_URB_WRITE) {
+ /* This output won't go out until the second URB write so it must be
+ * stored in a general-purpose register until then.
+ */
+ return false;
+ }
+ return true;
+}
+
/**
* Preallocate GRF register before code emit.
* Do things as simply as possible. Allocate and populate all regs
static void brw_vs_alloc_regs( struct brw_vs_compile *c )
{
struct intel_context *intel = &c->func.brw->intel;
- GLuint i, reg = 0, mrf, j;
+ GLuint i, reg = 0, slot;
int attributes_in_vue;
int first_reladdr_output;
int max_constant;
int constant = 0;
- int vert_result_reoder[VERT_RESULT_MAX];
- int bfc = 0;
struct brw_vertex_program *vp = c->vp;
const struct gl_program_parameter_list *params = vp->program.Base.Parameters;
/* Allocate outputs. The non-position outputs go straight into message regs.
*/
- c->nr_outputs = 0;
+ brw_compute_vue_map(&c->vue_map, intel, c->key.nr_userclip,
+ c->key.two_side_color, c->prog_data.outputs_written);
c->first_output = reg;
- c->first_overflow_output = 0;
-
- if (intel->gen >= 6) {
- mrf = 3;
- if (c->key.nr_userclip)
- mrf += 2;
- } else if (intel->gen == 5)
- mrf = 8;
- else
- mrf = 4;
first_reladdr_output = get_first_reladdr_output(&c->vp->program);
- for (i = 0; i < VERT_RESULT_MAX; i++)
- vert_result_reoder[i] = i;
-
- /* adjust attribute order in VUE for BFC0/BFC1 on Gen6+ */
- if (intel->gen >= 6 && c->key.two_side_color) {
- if ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_COL1)) &&
- (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC1))) {
- assert(c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0));
- assert(c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0));
- bfc = 2;
- } else if ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0)) &&
- (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0)))
- bfc = 1;
-
- if (bfc) {
- for (i = 0; i < bfc; i++) {
- vert_result_reoder[VERT_RESULT_COL0 + i * 2 + 0] = VERT_RESULT_COL0 + i;
- vert_result_reoder[VERT_RESULT_COL0 + i * 2 + 1] = VERT_RESULT_BFC0 + i;
- }
-
- for (i = VERT_RESULT_COL0 + bfc * 2; i < VERT_RESULT_BFC0 + bfc; i++) {
- vert_result_reoder[i] = i - bfc;
- }
- }
- }
-
- for (j = 0; j < VERT_RESULT_MAX; j++) {
- i = vert_result_reoder[j];
-
- if (c->prog_data.outputs_written & BITFIELD64_BIT(i)) {
- c->nr_outputs++;
- assert(i < Elements(c->regs[PROGRAM_OUTPUT]));
- if (i == VERT_RESULT_HPOS) {
- c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
- reg++;
- }
- else if (i == VERT_RESULT_PSIZ) {
- c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
- reg++;
- }
- else {
- /* Two restrictions on our compute-to-MRF here. The
- * message length for all SEND messages is restricted to
- * [1,15], so we can't use mrf 15, as that means a length
- * of 16.
- *
- * Additionally, URB writes are aligned to URB rows, so we
- * need to put an even number of registers of URB data in
- * each URB write so that the later write is aligned. A
- * message length of 15 means 1 message header reg plus 14
- * regs of URB data.
- *
- * For attributes beyond the compute-to-MRF, we compute to
- * GRFs and they will be written in the second URB_WRITE.
- */
- if (first_reladdr_output > i && mrf < 15) {
- c->regs[PROGRAM_OUTPUT][i] = brw_message_reg(mrf);
- mrf++;
- }
- else {
- if (mrf >= 15 && !c->first_overflow_output)
- c->first_overflow_output = i;
- c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
- reg++;
- mrf++;
- }
- }
+ for (slot = 0; slot < c->vue_map.num_slots; slot++) {
+ int vert_result = c->vue_map.slot_to_vert_result[slot];
+ assert(vert_result < Elements(c->regs[PROGRAM_OUTPUT]));
+ if (can_use_direct_mrf(vert_result, first_reladdr_output, slot)) {
+ c->regs[PROGRAM_OUTPUT][vert_result] = brw_message_reg(slot + 1);
+ } else {
+ c->regs[PROGRAM_OUTPUT][vert_result] = brw_vec8_grf(reg, 0);
+ reg++;
}
}
struct brw_reg ndc;
int eot;
GLuint len_vertex_header = 2;
- int next_mrf, i;
+ int i;
int msg_len;
+ int slot;
if (c->key.copy_edgeflag) {
brw_MOV(p,
}
/* Move variable-addressed, non-overflow outputs to their MRFs. */
- next_mrf = 2 + len_vertex_header;
- for (i = 0; i < VERT_RESULT_MAX; i++) {
- if (c->first_overflow_output > 0 && i >= c->first_overflow_output)
- break;
- if (!(c->prog_data.outputs_written & BITFIELD64_BIT(i)))
- continue;
- if (i == VERT_RESULT_PSIZ)
- continue;
+ for (slot = len_vertex_header; slot < c->vue_map.num_slots; ++slot) {
+ if (slot >= MAX_SLOTS_IN_FIRST_URB_WRITE)
+ break;
- if (i >= VERT_RESULT_TEX0 &&
- c->regs[PROGRAM_OUTPUT][i].file == BRW_GENERAL_REGISTER_FILE) {
- brw_MOV(p, brw_message_reg(next_mrf), c->regs[PROGRAM_OUTPUT][i]);
- next_mrf++;
- } else if (c->regs[PROGRAM_OUTPUT][i].file == BRW_MESSAGE_REGISTER_FILE) {
- next_mrf = c->regs[PROGRAM_OUTPUT][i].nr + 1;
+ int mrf = slot + 1;
+ int vert_result = c->vue_map.slot_to_vert_result[slot];
+ if (c->regs[PROGRAM_OUTPUT][vert_result].file ==
+ BRW_GENERAL_REGISTER_FILE) {
+ brw_MOV(p, brw_message_reg(mrf),
+ c->regs[PROGRAM_OUTPUT][vert_result]);
}
}
- eot = (c->first_overflow_output == 0);
+ eot = (slot >= c->vue_map.num_slots);
- /* Message header, plus VUE header, plus the (first set of) outputs. */
- msg_len = 1 + len_vertex_header + c->nr_outputs;
+ /* Message header, plus the (first part of the) VUE. */
+ msg_len = 1 + slot;
msg_len = align_interleaved_urb_mlen(brw, msg_len);
- /* Any outputs beyond BRW_MAX_MRF should be past first_overflow_output */
- msg_len = MIN2(msg_len, (BRW_MAX_MRF - 1)),
+ /* Any outputs beyond BRW_MAX_MRF should be in the second URB write */
+ assert (msg_len <= BRW_MAX_MRF - 1);
brw_urb_WRITE(p,
brw_null_reg(), /* dest */
0, /* urb destination offset */
BRW_URB_SWIZZLE_INTERLEAVE);
- if (c->first_overflow_output > 0) {
+ if (slot < c->vue_map.num_slots) {
/* Not all of the vertex outputs/results fit into the MRF.
* Move the overflowed attributes from the GRF to the MRF and
* issue another brw_urb_WRITE().
*/
- GLuint i, mrf = 1;
- for (i = c->first_overflow_output; i < VERT_RESULT_MAX; i++) {
- if (c->prog_data.outputs_written & BITFIELD64_BIT(i)) {
- /* move from GRF to MRF */
- brw_MOV(p, brw_message_reg(mrf), c->regs[PROGRAM_OUTPUT][i]);
- mrf++;
- }
+ GLuint mrf = 1;
+ for (; slot < c->vue_map.num_slots; ++slot) {
+ int vert_result = c->vue_map.slot_to_vert_result[slot];
+ /* move from GRF to MRF */
+ brw_MOV(p, brw_message_reg(mrf),
+ c->regs[PROGRAM_OUTPUT][vert_result]);
+ mrf++;
}
brw_urb_WRITE(p,
0, /* response len */
1, /* eot */
1, /* writes complete */
- 14 / 2, /* urb destination offset */
+ MAX_SLOTS_IN_FIRST_URB_WRITE / 2, /* urb destination offset */
BRW_URB_SWIZZLE_INTERLEAVE);
}
}