aco_ptr<Instruction> create_s_mov(Definition dst, Operand src);
+extern uint8_t int8_mul_table[512];
+
enum sendmsg {
sendmsg_none = 0,
_sendmsg_gs = 2,
return vop1(aco_opcode::v_mov_b32, dst, op);
} else if (op.bytes() > 2) {
return pseudo(aco_opcode::p_create_vector, dst, op);
+ } else if (op.bytes() == 1 && op.isConstant()) {
+ uint8_t val = op.constantValue();
+ Operand op32((uint32_t)val | (val & 0x80u ? 0xffffff00u : 0u));
+ aco_ptr<SDWA_instruction> sdwa;
+ if (op32.isLiteral()) {
+ sdwa.reset(create_instruction<SDWA_instruction>(aco_opcode::v_mul_u32_u24, asSDWA(Format::VOP2), 2, 1));
+ uint32_t a = (uint32_t)int8_mul_table[val * 2];
+ uint32_t b = (uint32_t)int8_mul_table[val * 2 + 1];
+ sdwa->operands[0] = Operand(a | (a & 0x80u ? 0xffffff00u : 0x0u));
+ sdwa->operands[1] = Operand(b | (b & 0x80u ? 0xffffff00u : 0x0u));
+ } else {
+ sdwa.reset(create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1));
+ sdwa->operands[0] = op32;
+ }
+ sdwa->definitions[0] = dst;
+ sdwa->sel[0] = sdwa_udword;
+ sdwa->sel[1] = sdwa_udword;
+ sdwa->dst_sel = sdwa_ubyte;
+ sdwa->dst_preserve = true;
+ return insert(std::move(sdwa));
+ } else if (op.bytes() == 2 && op.isConstant() && !op.isLiteral()) {
+ aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_add_f16, asSDWA(Format::VOP2), 2, 1)};
+ sdwa->operands[0] = op;
+ sdwa->operands[1] = Operand(0u);
+ sdwa->definitions[0] = dst;
+ sdwa->sel[0] = sdwa_uword;
+ sdwa->sel[1] = sdwa_udword;
+ sdwa->dst_sel = dst.bytes() == 1 ? sdwa_ubyte : sdwa_uword;
+ sdwa->dst_preserve = true;
+ return insert(std::move(sdwa));
} else if (dst.regClass().is_subdword()) {
if (program->chip_class >= GFX8) {
aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
case nir_op_fsat: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
- bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
+ bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src);
} else if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
/* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
public:
constexpr Operand()
: reg_(PhysReg{128}), isTemp_(false), isFixed_(true), isConstant_(false),
- isKill_(false), isUndef_(true), isFirstKill_(false), is64BitConst_(false),
+ isKill_(false), isUndef_(true), isFirstKill_(false), constSize(0),
isLateKill_(false) {}
explicit Operand(Temp r) noexcept
setFixed(PhysReg{128});
}
};
+ explicit Operand(uint8_t v) noexcept
+ {
+ /* 8-bit constants are only used for copies and copies from any 8-bit
+ * constant can be implemented with a SDWA v_mul_u32_u24. So consider all
+ * to be inline constants. */
+ data_.i = v;
+ isConstant_ = true;
+ constSize = 0;
+ setFixed(PhysReg{0u});
+ };
+ explicit Operand(uint16_t v) noexcept
+ {
+ data_.i = v;
+ isConstant_ = true;
+ constSize = 1;
+ if (v <= 64)
+ setFixed(PhysReg{128u + v});
+ else if (v >= 0xFFF0) /* [-16 .. -1] */
+ setFixed(PhysReg{192u + (0xFFFF - v)});
+ else if (v == 0x3800) /* 0.5 */
+ setFixed(PhysReg{240});
+ else if (v == 0xB800) /* -0.5 */
+ setFixed(PhysReg{241});
+ else if (v == 0x3C00) /* 1.0 */
+ setFixed(PhysReg{242});
+ else if (v == 0xBC00) /* -1.0 */
+ setFixed(PhysReg{243});
+ else if (v == 0x4000) /* 2.0 */
+ setFixed(PhysReg{244});
+ else if (v == 0xC000) /* -2.0 */
+ setFixed(PhysReg{245});
+ else if (v == 0x4400) /* 4.0 */
+ setFixed(PhysReg{246});
+ else if (v == 0xC400) /* -4.0 */
+ setFixed(PhysReg{247});
+ else if (v == 0x3118) /* 1/2 PI */
+ setFixed(PhysReg{248});
+ else /* Literal Constant */
+ setFixed(PhysReg{255});
+ };
explicit Operand(uint32_t v, bool is64bit = false) noexcept
{
data_.i = v;
isConstant_ = true;
- is64BitConst_ = is64bit;
+ constSize = is64bit ? 3 : 2;
if (v <= 64)
setFixed(PhysReg{128 + v});
else if (v >= 0xFFFFFFF0) /* [-16 .. -1] */
explicit Operand(uint64_t v) noexcept
{
isConstant_ = true;
- is64BitConst_ = true;
+ constSize = 3;
if (v <= 64) {
data_.i = (uint32_t) v;
setFixed(PhysReg{128 + (uint32_t) v});
constexpr unsigned bytes() const noexcept
{
if (isConstant())
- return is64BitConst_ ? 8 : 4; //TODO: sub-dword constants
+ return 1 << constSize;
else
return data_.temp.bytes();
}
constexpr unsigned size() const noexcept
{
if (isConstant())
- return is64BitConst_ ? 2 : 1;
+ return constSize > 2 ? 2 : 1;
else
return data_.temp.size();
}
constexpr uint64_t constantValue64(bool signext=false) const noexcept
{
- if (is64BitConst_) {
+ if (constSize == 3) {
if (reg_ <= 192)
return reg_ - 128;
else if (reg_ <= 208)
case 247:
return 0xC010000000000000;
}
+ } else if (constSize == 1) {
+ return (signext && (data_.i & 0x8000u) ? 0xffffffffffff0000ull : 0ull) | data_.i;
+ } else if (constSize == 0) {
+ return (signext && (data_.i & 0x80u) ? 0xffffffffffffff00ull : 0ull) | data_.i;
}
return (signext && (data_.i & 0x80000000u) ? 0xffffffff00000000ull : 0ull) | data_.i;
}
uint8_t isKill_:1;
uint8_t isUndef_:1;
uint8_t isFirstKill_:1;
- uint8_t is64BitConst_:1;
+ uint8_t constSize:2;
uint8_t isLateKill_:1;
};
/* can't initialize bit-fields in c++11, so work around using a union */
- uint8_t control_ = 0;
+ uint16_t control_ = 0;
};
};
std::vector<aco_ptr<Instruction>> instructions;
};
+/* used by handle_operands() indirectly through Builder::copy */
+uint8_t int8_mul_table[512] = {
+ 0, 20, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11,
+ 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21,
+ 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31,
+ 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41,
+ 1, 42, 1, 43, 1, 44, 1, 45, 1, 46, 1, 47, 1, 48, 1, 49, 1, 50, 1, 51,
+ 1, 52, 1, 53, 1, 54, 1, 55, 1, 56, 1, 57, 1, 58, 1, 59, 1, 60, 1, 61,
+ 1, 62, 1, 63, 1, 64, 5, 13, 2, 33, 17, 19, 2, 34, 3, 23, 2, 35, 11, 53,
+ 2, 36, 7, 47, 2, 37, 3, 25, 2, 38, 7, 11, 2, 39, 53, 243, 2, 40, 3, 27,
+ 2, 41, 17, 35, 2, 42, 5, 17, 2, 43, 3, 29, 2, 44, 15, 23, 2, 45, 7, 13,
+ 2, 46, 3, 31, 2, 47, 5, 19, 2, 48, 19, 59, 2, 49, 3, 33, 2, 50, 7, 51,
+ 2, 51, 15, 41, 2, 52, 3, 35, 2, 53, 11, 33, 2, 54, 23, 27, 2, 55, 3, 37,
+ 2, 56, 9, 41, 2, 57, 5, 23, 2, 58, 3, 39, 2, 59, 7, 17, 2, 60, 9, 241,
+ 2, 61, 3, 41, 2, 62, 5, 25, 2, 63, 35, 245, 2, 64, 3, 43, 5, 26, 9, 43,
+ 3, 44, 7, 19, 10, 39, 3, 45, 4, 34, 11, 59, 3, 46, 9, 243, 4, 35, 3, 47,
+ 22, 53, 7, 57, 3, 48, 5, 29, 10, 245, 3, 49, 4, 37, 9, 45, 3, 50, 7, 241,
+ 4, 38, 3, 51, 7, 22, 5, 31, 3, 52, 7, 59, 7, 242, 3, 53, 4, 40, 7, 23,
+ 3, 54, 15, 45, 4, 41, 3, 55, 6, 241, 9, 47, 3, 56, 13, 13, 5, 34, 3, 57,
+ 4, 43, 11, 39, 3, 58, 5, 35, 4, 44, 3, 59, 6, 243, 7, 245, 3, 60, 5, 241,
+ 7, 26, 3, 61, 4, 46, 5, 37, 3, 62, 11, 17, 4, 47, 3, 63, 5, 38, 5, 243,
+ 3, 64, 7, 247, 9, 50, 5, 39, 4, 241, 33, 37, 6, 33, 13, 35, 4, 242, 5, 245,
+ 6, 247, 7, 29, 4, 51, 5, 41, 5, 246, 7, 249, 3, 240, 11, 19, 5, 42, 3, 241,
+ 4, 245, 25, 29, 3, 242, 5, 43, 4, 246, 3, 243, 17, 58, 17, 43, 3, 244,
+ 5, 249, 6, 37, 3, 245, 2, 240, 5, 45, 2, 241, 21, 23, 2, 242, 3, 247,
+ 2, 243, 5, 251, 2, 244, 29, 61, 2, 245, 3, 249, 2, 246, 17, 29, 2, 247,
+ 9, 55, 1, 240, 1, 241, 1, 242, 1, 243, 1, 244, 1, 245, 1, 246, 1, 247,
+ 1, 248, 1, 249, 1, 250, 1, 251, 1, 252, 1, 253, 1, 254, 1, 255
+};
+
+
aco_opcode get_reduce_opcode(chip_class chip, ReduceOp op) {
/* Because some 16-bit instructions are already VOP3 on GFX10, we use the
* 32-bit opcodes (VOP2) which allows to remove the tempory VGPR and to use
RegClass(src.def.regClass().type(), bytes).as_subdword();
*def = Definition(src.def.tempId(), def_reg, def_cls);
if (src.op.isConstant()) {
- assert(offset == 0 || (offset == 4 && src.op.bytes() == 8));
- if (src.op.bytes() == 8 && bytes == 4)
+ assert(bytes >= 1 && bytes <= 8);
+ if (bytes == 8)
+ *op = Operand(src.op.constantValue64() >> (offset * 8u));
+ else if (bytes == 4)
*op = Operand(uint32_t(src.op.constantValue64() >> (offset * 8u)));
- else
- *op = src.op;
+ else if (bytes == 2)
+ *op = Operand(uint16_t(src.op.constantValue64() >> (offset * 8u)));
+ else if (bytes == 1)
+ *op = Operand(uint8_t(src.op.constantValue64() >> (offset * 8u)));
} else {
RegClass op_cls = bytes % 4 == 0 ? RegClass(src.op.regClass().type(), bytes / 4u) :
RegClass(src.op.regClass().type(), bytes).as_subdword();
enum Label {
label_vec = 1 << 0,
- label_constant = 1 << 1,
+ label_constant_32bit = 1 << 1,
/* label_{abs,neg,mul,omod2,omod4,omod5,clamp} are used for both 16 and
* 32-bit operations but this shouldn't cause any issues because we don't
* look through any conversions */
label_vcc_hint = 1 << 25,
label_scc_needed = 1 << 26,
label_b2i = 1 << 27,
+ label_constant_16bit = 1 << 29,
};
static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success |
label_add_sub | label_bitwise | label_uniform_bitwise | label_minmax | label_fcmp;
static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool |
label_omod2 | label_omod4 | label_omod5 | label_clamp | label_scc_invert | label_b2i;
-static constexpr uint32_t val_labels = label_constant | label_constant_64bit | label_literal | label_mad;
+static constexpr uint32_t val_labels = label_constant_32bit | label_constant_64bit | label_constant_16bit | label_literal | label_mad;
struct ssa_info {
uint32_t val;
label &= ~instr_labels; /* instr and temp alias */
}
- if (new_label & val_labels)
+ uint32_t const_labels = label_literal | label_constant_32bit | label_constant_64bit | label_constant_16bit;
+ if (new_label & const_labels)
+ label &= ~val_labels | const_labels;
+ else if (new_label & val_labels)
label &= ~val_labels;
label |= new_label;
return label & label_vec;
}
- void set_constant(uint32_t constant)
+ void set_constant(chip_class chip, uint64_t constant)
{
- add_label(label_constant);
+ Operand op16((uint16_t)constant);
+ Operand op32((uint32_t)constant);
+ add_label(label_literal);
val = constant;
- }
- bool is_constant()
+ if (chip >= GFX8 && !op16.isLiteral())
+ add_label(label_constant_16bit);
+
+ if (!op32.isLiteral() || ((uint32_t)constant == 0x3e22f983 && chip >= GFX8))
+ add_label(label_constant_32bit);
+
+ if (constant <= 64) {
+ add_label(label_constant_64bit);
+ } else if (constant >= 0xFFFFFFFFFFFFFFF0) { /* [-16 .. -1] */
+ add_label(label_constant_64bit);
+ } else if (constant == 0x3FE0000000000000) { /* 0.5 */
+ add_label(label_constant_64bit);
+ } else if (constant == 0xBFE0000000000000) { /* -0.5 */
+ add_label(label_constant_64bit);
+ } else if (constant == 0x3FF0000000000000) { /* 1.0 */
+ add_label(label_constant_64bit);
+ } else if (constant == 0xBFF0000000000000) { /* -1.0 */
+ add_label(label_constant_64bit);
+ } else if (constant == 0x4000000000000000) { /* 2.0 */
+ add_label(label_constant_64bit);
+ } else if (constant == 0xC000000000000000) { /* -2.0 */
+ add_label(label_constant_64bit);
+ } else if (constant == 0x4010000000000000) { /* 4.0 */
+ add_label(label_constant_64bit);
+ } else if (constant == 0xC010000000000000) { /* -4.0 */
+ add_label(label_constant_64bit);
+ }
+
+ if (label & label_constant_64bit) {
+ val = Operand(constant).constantValue();
+ if (val != constant)
+ label &= ~(label_literal | label_constant_16bit | label_constant_32bit);
+ }
+ }
+
+ bool is_constant(unsigned bits)
{
- return label & label_constant;
+ switch (bits) {
+ case 8:
+ return label & label_literal;
+ case 16:
+ return label & label_constant_16bit;
+ case 32:
+ return label & label_constant_32bit;
+ case 64:
+ return label & label_constant_64bit;
+ }
+ return false;
}
- void set_constant_64bit(uint32_t constant)
+ bool is_literal(unsigned bits)
{
- add_label(label_constant_64bit);
- val = constant;
+ bool is_lit = label & label_literal;
+ switch (bits) {
+ case 8:
+ return false;
+ case 16:
+ return is_lit && ~(label & label_constant_16bit);
+ case 32:
+ return is_lit && ~(label & label_constant_32bit);
+ case 64:
+ return false;
+ }
+ return false;
}
- bool is_constant_64bit()
+ bool is_constant_or_literal(unsigned bits)
{
- return label & label_constant_64bit;
+ if (bits == 64)
+ return label & label_constant_64bit;
+ else
+ return label & label_literal;
}
void set_abs(Temp abs_temp)
return label & label_temp;
}
- void set_literal(uint32_t lit)
- {
- add_label(label_literal);
- val = lit;
- }
-
- bool is_literal()
- {
- return label & label_literal;
- }
-
void set_mad(Instruction* mad, uint32_t mad_info_idx)
{
add_label(label_mad);
return label & label_vcc;
}
- bool is_constant_or_literal()
- {
- return is_constant() || is_literal();
- }
-
void set_b2f(Temp val)
{
add_label(label_b2f);
if (add_instr->operands[i].isConstant()) {
*offset = add_instr->operands[i].constantValue();
} else if (add_instr->operands[i].isTemp() &&
- ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
+ ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal(32)) {
*offset = ctx.info[add_instr->operands[i].tempId()].val;
} else {
continue;
return 0;
}
-Operand get_constant_op(opt_ctx &ctx, uint32_t val, bool is64bit = false)
+Operand get_constant_op(opt_ctx &ctx, ssa_info info, uint32_t bits)
{
+ if (bits == 8)
+ return Operand((uint8_t)info.val);
+ if (bits == 16)
+ return Operand((uint16_t)info.val);
// TODO: this functions shouldn't be needed if we store Operand instead of value.
- Operand op(val, is64bit);
- if (val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
+ Operand op(info.val, bits == 64);
+ if (info.is_literal(32) && info.val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
return op;
}
if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
ASSERTED bool all_const = false;
for (Operand& op : instr->operands)
- all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
+ all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal(32));
perfwarn(all_const, "All instruction operands are constant", instr.get());
}
/* SALU / PSEUDO: propagate inline constants */
if (instr->isSALU() || instr->format == Format::PSEUDO) {
bool is_subdword = false;
- // TODO: optimize SGPR and constant propagation for subdword pseudo instructions on gfx9+
+ // TODO: optimize SGPR propagation for subdword pseudo instructions on gfx9+
if (instr->format == Format::PSEUDO) {
is_subdword = std::any_of(instr->definitions.begin(), instr->definitions.end(),
[] (const Definition& def) { return def.regClass().is_subdword();});
is_subdword = is_subdword || std::any_of(instr->operands.begin(), instr->operands.end(),
[] (const Operand& op) { return op.hasRegClass() && op.regClass().is_subdword();});
- if (is_subdword)
+ if (is_subdword && ctx.program->chip_class < GFX9)
continue;
}
break;
}
}
- if ((info.is_constant() || info.is_constant_64bit() || (info.is_literal() && instr->format == Format::PSEUDO)) &&
+ unsigned bits = get_operand_size(instr, i);
+ if ((info.is_constant(bits) || (!is_subdword && info.is_literal(bits) && instr->format == Format::PSEUDO)) &&
!instr->operands[i].isFixed() && alu_can_accept_constant(instr->opcode, i)) {
- instr->operands[i] = get_constant_op(ctx, info.val, info.is_constant_64bit());
+ instr->operands[i] = get_constant_op(ctx, info, bits);
continue;
}
}
static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
continue;
}
- if ((info.is_constant() || info.is_constant_64bit()) && alu_can_accept_constant(instr->opcode, i)) {
- Operand op = get_constant_op(ctx, info.val, info.is_constant_64bit());
+ unsigned bits = get_operand_size(instr, i);
+ if (info.is_constant(bits) && alu_can_accept_constant(instr->opcode, i)) {
+ Operand op = get_constant_op(ctx, info, bits);
perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
instr->operands[i] = op;
while (info.is_temp())
info = ctx.info[info.temp.id()];
- if (mubuf->offen && i == 1 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
+ if (mubuf->offen && i == 1 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) {
assert(!mubuf->idxen);
instr->operands[1] = Operand(v1);
mubuf->offset += info.val;
mubuf->offen = false;
continue;
- } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
+ } else if (i == 2 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) {
instr->operands[2] = Operand((uint32_t) 0);
mubuf->offset += info.val;
continue;
SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
Temp base;
uint32_t offset;
- if (i == 1 && info.is_constant_or_literal() &&
+ if (i == 1 && info.is_constant_or_literal(32) &&
((ctx.program->chip_class == GFX6 && info.val <= 0x3FF) ||
(ctx.program->chip_class == GFX7 && info.val <= 0xFFFFFFFF) ||
(ctx.program->chip_class >= GFX8 && info.val <= 0xFFFFF))) {
} else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
if (soe &&
- (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
+ (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal(32) ||
ctx.info[smem->operands.back().tempId()].val != 0)) {
continue;
}
Operand vec_op = vec->operands[vec_index];
if (vec_op.isConstant()) {
- if (vec_op.isLiteral())
- ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
- else if (vec_op.size() == 1)
- ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
- else if (vec_op.size() == 2)
- ctx.info[instr->definitions[i].tempId()].set_constant_64bit(vec_op.constantValue());
+ ctx.info[instr->definitions[i].tempId()].set_constant(ctx.program->chip_class, vec_op.constantValue64());
} else if (vec_op.isUndefined()) {
ctx.info[instr->definitions[i].tempId()].set_undefined();
} else {
instr->operands[0] = op;
if (op.isConstant()) {
- if (op.isLiteral())
- ctx.info[instr->definitions[0].tempId()].set_literal(op.constantValue());
- else if (op.size() == 1)
- ctx.info[instr->definitions[0].tempId()].set_constant(op.constantValue());
- else if (op.size() == 2)
- ctx.info[instr->definitions[0].tempId()].set_constant_64bit(op.constantValue());
+ ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, op.constantValue64());
} else if (op.isUndefined()) {
ctx.info[instr->definitions[0].tempId()].set_undefined();
} else {
} else if (instr->usesModifiers()) {
// TODO
} else if (instr->operands[0].isConstant()) {
- if (instr->operands[0].isLiteral())
- ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
- else if (instr->operands[0].size() == 1)
- ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
- else if (instr->operands[0].size() == 2)
- ctx.info[instr->definitions[0].tempId()].set_constant_64bit(instr->operands[0].constantValue());
+ ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, instr->operands[0].constantValue64());
} else if (instr->operands[0].isTemp()) {
ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
} else {
break;
case aco_opcode::p_is_helper:
if (!ctx.program->needs_wqm)
- ctx.info[instr->definitions[0].tempId()].set_constant(0u);
+ ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, 0u);
break;
case aco_opcode::s_movk_i32: {
uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
v = v & 0x8000 ? (v | 0xffff0000) : v;
- if (v <= 64 || v >= 0xfffffff0)
- ctx.info[instr->definitions[0].tempId()].set_constant(v);
- else
- ctx.info[instr->definitions[0].tempId()].set_literal(v);
+ ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
break;
}
case aco_opcode::v_bfrev_b32:
case aco_opcode::s_brev_b32: {
if (instr->operands[0].isConstant()) {
uint32_t v = util_bitreverse(instr->operands[0].constantValue());
- if (v <= 64 || v >= 0xfffffff0)
- ctx.info[instr->definitions[0].tempId()].set_constant(v);
- else
- ctx.info[instr->definitions[0].tempId()].set_literal(v);
+ ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
}
break;
}
unsigned size = instr->operands[0].constantValue() & 0x1f;
unsigned start = instr->operands[1].constantValue() & 0x1f;
uint32_t v = ((1u << size) - 1u) << start;
- if (v <= 64 || v >= 0xfffffff0)
- ctx.info[instr->definitions[0].tempId()].set_constant(v);
- else
- ctx.info[instr->definitions[0].tempId()].set_literal(v);
+ ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
}
break;
}
} else if (cmp->operands[constant_operand].isTemp()) {
Temp tmp = cmp->operands[constant_operand].getTemp();
unsigned id = original_temp_id(ctx, tmp);
- if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
+ if (!ctx.info[id].is_constant_or_literal(32))
return false;
constant = ctx.info[id].val;
} else {
uint32_t val;
if (operands[i].isConstant()) {
val = operands[i].constantValue();
- } else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal()) {
+ } else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal(32)) {
val = ctx.info[operands[i].tempId()].val;
} else {
continue;
}
if (!instr->operands[i].isTemp())
continue;
+ unsigned bits = get_operand_size(instr, i);
/* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */
if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) {
- if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal()) {
+ if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal(bits)) {
literal_uses = ctx.uses[instr->operands[i].tempId()];
literal_idx = i;
} else {
sgpr_used = true;
/* don't break because we still need to check constants */
} else if (!sgpr_used &&
- ctx.info[instr->operands[i].tempId()].is_literal() &&
+ ctx.info[instr->operands[i].tempId()].is_literal(bits) &&
ctx.uses[instr->operands[i].tempId()] < literal_uses) {
literal_uses = ctx.uses[instr->operands[i].tempId()];
literal_idx = i;
/* choose a literal to apply */
for (unsigned i = 0; i < num_operands; i++) {
Operand op = instr->operands[i];
+ unsigned bits = get_operand_size(instr, i);
if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr &&
op.tempId() != sgpr_ids[0])
if (op.isLiteral()) {
current_literal = op;
continue;
- } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal()) {
+ } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal(bits)) {
continue;
}
if (instr->isSALU() || instr->isVALU()) {
for (unsigned i = 0; i < instr->operands.size(); i++) {
Operand op = instr->operands[i];
- if (op.isTemp() && ctx.info[op.tempId()].is_literal() && ctx.uses[op.tempId()] == 0) {
+ unsigned bits = get_operand_size(instr, i);
+ if (op.isTemp() && ctx.info[op.tempId()].is_literal(bits) && ctx.uses[op.tempId()] == 0) {
Operand literal(ctx.info[op.tempId()].val);
if (instr->isVALU() && i > 0)
to_VOP3(ctx, instr);
static void print_operand(const Operand *operand, FILE *output)
{
- if (operand->isLiteral()) {
- fprintf(output, "0x%x", operand->constantValue());
+ if (operand->isLiteral() || (operand->isConstant() && operand->bytes() == 1)) {
+ if (operand->bytes() == 1)
+ fprintf(output, "0x%.2x", operand->constantValue());
+ else if (operand->bytes() == 2)
+ fprintf(output, "0x%.4x", operand->constantValue());
+ else
+ fprintf(output, "0x%x", operand->constantValue());
} else if (operand->isConstant()) {
print_constant(operand->physReg().reg(), output);
} else if (operand->isUndefined()) {