}
}
+void
+shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
+ const fs_reg &dst,
+ const fs_reg &src,
+ uint32_t components)
+{
+ assert(type_sz(src.type) == 4);
+ assert(type_sz(dst.type) == 2);
+
+ /* A temporary is used to un-shuffle the 32-bit data of each component in
+ * into a valid 16-bit vector. We can't write directly to dst because it
+ * can be the same register as src and in that case the first MOV in the
+ * loop below would overwrite the data read in the second MOV.
+ */
+ fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
+
+ for (unsigned i = 0; i < components; i++) {
+ const fs_reg component_i =
+ subscript(offset(src, bld, i / 2), dst.type, i % 2);
+
+ bld.MOV(offset(tmp, bld, i % 2), component_i);
+
+ if (i % 2) {
+ bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
+ bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
+ }
+ }
+ if (components % 2) {
+ bld.MOV(offset(dst, bld, components - 1), tmp);
+ }
+}
+
/**
* This helper does the inverse operation of
* SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
return dst;
}
+void
+shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
+ const fs_reg &dst,
+ const fs_reg &src,
+ uint32_t components)
+{
+ assert(type_sz(src.type) == 2);
+ assert(type_sz(dst.type) == 4);
+
+ /* A temporary is used to shuffle the 16-bit data of each component in the
+ * 32-bit data vector. We can't write directly to dst because it can be the
+ * same register as src and in that case the first MOV in the loop below
+ * would overwrite the data read in the second MOV.
+ */
+ fs_reg tmp = bld.vgrf(dst.type);
+
+ for (unsigned i = 0; i < components; i++) {
+ const fs_reg component_i = offset(src, bld, i);
+ bld.MOV(subscript(tmp, src.type, i % 2), component_i);
+ if (i % 2) {
+ bld.MOV(offset(dst, bld, i / 2), tmp);
+ }
+ }
+ if (components % 2) {
+ bld.MOV(offset(dst, bld, components / 2), tmp);
+ }
+}
+
fs_reg
setup_imm_df(const fs_builder &bld, double v)
{