Replace all cardinality comparison functions <=, ==, !=, >=, <, >, with a single compare() function that can return UNKNOWN in the case of unknown (or large-finite and thus not *precisely* known) cardinalities.
const Integer Cardinality::s_unknownCard(0);
const Integer Cardinality::s_intCard(-1);
const Integer Cardinality::s_realCard(-2);
+const Integer Cardinality::s_largeFiniteCard(Integer("18446744073709551617")); // 2^64 + 1
const Cardinality Cardinality::INTEGERS(CardinalityBeth(0));
const Cardinality Cardinality::REALS(CardinalityBeth(1));
-const Cardinality Cardinality::UNKNOWN((CardinalityUnknown()));
+const Cardinality Cardinality::UNKNOWN_CARD((CardinalityUnknown()));
Cardinality& Cardinality::operator+=(const Cardinality& c) throw() {
if(isUnknown()) {
return *this;
}
+ if(c.isFinite() && isLargeFinite()) {
+ return *this;
+ } else if(isFinite() && c.isLargeFinite()) {
+ d_card = s_largeFiniteCard;
+ return *this;
+ }
+
if(isFinite() && c.isFinite()) {
d_card += c.d_card - 1;
return *this;
}
- if(*this >= c) {
- return *this;
- } else {
+ if(compare(c) == LESS) {
return *this = c;
+ } else {
+ return *this;
}
+
+ Unreachable();
}
/** Assigning multiplication of this cardinality with another. */
return *this;
}
- if(*this == 0 || c == 0) {
+ if(c.isFinite() && isLargeFinite()) {
+ return *this;
+ } else if(isFinite() && c.isLargeFinite()) {
+ d_card = s_largeFiniteCard;
+ return *this;
+ }
+
+ if(compare(0) == EQUAL || c.compare(0) == EQUAL) {
return *this = 0;
} else if(!isFinite() || !c.isFinite()) {
- if(*this >= c) {
- return *this;
- } else {
+ if(compare(c) == LESS) {
return *this = c;
+ } else {
+ return *this;
}
} else {
d_card -= 1;
d_card += 1;
return *this;
}
+
+ Unreachable();
}
/** Assigning exponentiation of this cardinality with another. */
-Cardinality& Cardinality::operator^=(const Cardinality& c)
- throw(IllegalArgumentException) {
+Cardinality& Cardinality::operator^=(const Cardinality& c) throw() {
if(isUnknown()) {
return *this;
} else if(c.isUnknown()) {
return *this;
}
- if(c == 0) {
+ if(c.isFinite() && isLargeFinite()) {
+ return *this;
+ } else if(isFinite() && c.isLargeFinite()) {
+ d_card = s_largeFiniteCard;
+ return *this;
+ }
+
+ if(c.compare(0) == EQUAL) {
// (anything) ^ 0 == 1
- d_card = 2;// remember +1 for finite cardinalities
+ d_card = 2; // remember, +1 for finite cardinalities
return *this;
- } else if(*this == 0) {
+ } else if(compare(0) == EQUAL) {
// 0 ^ (>= 1) == 0
return *this;
- } else if(*this == 1) {
+ } else if(compare(1) == EQUAL) {
// 1 ^ (>= 1) == 1
return *this;
- } else if(c == 1) {
+ } else if(c.compare(1) == EQUAL) {
// (anything) ^ 1 == (that thing)
return *this;
} else if(isFinite() && c.isFinite()) {
// finite ^ finite == finite
- //
- // Note: can throw an assertion if c is too big for
- // exponentiation
- d_card = (d_card - 1).pow(c.d_card.getUnsignedLong() - 1) + 1;
+ try {
+ // Note: can throw an assertion if c is too big for
+ // exponentiation
+ if(d_card - 1 >= 2 && c.d_card - 1 >= 64) {
+ // don't bother, it's too large anyways
+ d_card = s_largeFiniteCard;
+ } else {
+ d_card = (d_card - 1).pow(c.d_card.getUnsignedLong() - 1) + 1;
+ }
+ } catch(IllegalArgumentException&) {
+ d_card = s_largeFiniteCard;
+ }
return *this;
} else if(!isFinite() && c.isFinite()) {
// inf ^ finite == inf
return *this;
} else {
- Assert(*this >= 2 && !c.isFinite(),
+ Assert(compare(2) != LESS && !c.isFinite(),
"fall-through case not as expected:\n%s\n%s",
this->toString().c_str(), c.toString().c_str());
// (>= 2) ^ beth_k == beth_(k+1)
// unless the base is already > the exponent
- if(*this > c) {
+ if(compare(c) == GREATER) {
return *this;
}
d_card = c.d_card - 1;
return *this;
}
+
+ Unreachable();
+}
+
+Cardinality::CardinalityComparison Cardinality::compare(const Cardinality& c) const throw() {
+ if(isUnknown() || c.isUnknown()) {
+ return UNKNOWN;
+ } else if(isLargeFinite()) {
+ if(c.isLargeFinite()) {
+ return UNKNOWN;
+ } else if(c.isFinite()) {
+ return GREATER;
+ } else {
+ Assert(c.isInfinite());
+ return LESS;
+ }
+ } else if(c.isLargeFinite()) {
+ if(isLargeFinite()) {
+ return UNKNOWN;
+ } else if(isFinite()) {
+ return LESS;
+ } else {
+ Assert(isInfinite());
+ return GREATER;
+ }
+ } else if(isInfinite()) {
+ if(c.isFinite()) {
+ return GREATER;
+ } else {
+ return d_card < c.d_card ? GREATER :
+ (d_card == c.d_card ? EQUAL : LESS);
+ }
+ } else if(c.isInfinite()) {
+ Assert(isFinite());
+ return LESS;
+ } else {
+ Assert(isFinite() && !isLargeFinite());
+ Assert(c.isFinite() && !c.isLargeFinite());
+ return d_card < c.d_card ? LESS :
+ (d_card == c.d_card ? EQUAL : GREATER);
+ }
+
+ Unreachable();
}
/** A representation for unknown cardinality */
static const Integer s_unknownCard;
+ /** A representation for large, finite cardinality */
+ static const Integer s_largeFiniteCard;
+
/**
* In the case of finite cardinality, this is > 0, and is equal to
* the cardinality+1. If infinite, it is < 0, and is Beth[|card|-1].
* That is, "-1" means Beth 0 == |Z|, "-2" means Beth 1 == |R|, etc.
* If this field is 0, the cardinality is unknown.
+ *
+ * We impose a ceiling on finite cardinalities of 2^64. If this field
+ * is >= 2^64 + 1, we consider it at "ceiling" cardinality, and
+ * comparisons between all such cardinalities result in "unknown."
*/
Integer d_card;
static const Cardinality REALS;
/** The unknown cardinality */
- static const Cardinality UNKNOWN;
+ static const Cardinality UNKNOWN_CARD;
+
+ /** Used as a result code for Cardinality::compare(). */
+ enum CVC4_PUBLIC CardinalityComparison {
+ LESS,
+ EQUAL,
+ GREATER,
+ UNKNOWN
+ };/* enum CardinalityComparison */
/**
* Construct a finite cardinality equal to the integer argument.
Cardinality(CardinalityUnknown) : d_card(0) {
}
- /** Returns true iff this cardinality is unknown. */
+ /**
+ * Returns true iff this cardinality is unknown. "Unknown" in this
+ * sense means that the cardinality is completely unknown; it might
+ * be finite, or infinite---anything. Large, finite cardinalities
+ * at the "ceiling" return "false" for isUnknown() and true for
+ * isFinite() and isLargeFinite().
+ */
bool isUnknown() const throw() {
return d_card == 0;
}
return d_card > 0;
}
+ /**
+ * Returns true iff this cardinality is finite and large (i.e.,
+ * at the ceiling of representable finite cardinalities).
+ . */
+ bool isLargeFinite() const throw() {
+ return d_card >= s_largeFiniteCard;
+ }
+
/** Returns true iff this cardinality is infinite. */
bool isInfinite() const throw() {
return d_card < 0;
*/
Integer getFiniteCardinality() const throw(IllegalArgumentException) {
CheckArgument(isFinite(), *this, "This cardinality is not finite.");
+ CheckArgument(!isLargeFinite(), *this, "This cardinality is finite, but too large to represent.");
return d_card - 1;
}
Cardinality& operator*=(const Cardinality& c) throw();
/** Assigning exponentiation of this cardinality with another. */
- Cardinality& operator^=(const Cardinality& c) throw(IllegalArgumentException);
+ Cardinality& operator^=(const Cardinality& c) throw();
/** Add two cardinalities. */
Cardinality operator+(const Cardinality& c) const throw() {
}
/**
- * Exponentiation of two cardinalities. Throws an exception if both
- * are finite and the exponent is too large.
+ * Exponentiation of two cardinalities.
*/
- Cardinality operator^(const Cardinality& c) const throw(IllegalArgumentException) {
+ Cardinality operator^(const Cardinality& c) const throw() {
Cardinality card(*this);
card ^= c;
return card;
}
- /** Test for equality between cardinalities. */
- bool operator==(const Cardinality& c) const throw() {
- return !isUnknown() && d_card == c.d_card;
- }
-
- /** Test for disequality between cardinalities. */
- bool operator!=(const Cardinality& c) const throw() {
- return !isUnknown() && !c.isUnknown() && d_card != c.d_card;
- }
-
- /** Test whether this cardinality is less than another. */
- bool operator<(const Cardinality& c) const throw() {
- return
- !isUnknown() && !c.isUnknown() &&
- ( ( isFinite() && !c.isFinite() ) ||
- ( isFinite() && c.isFinite() && d_card < c.d_card ) ||
- ( !isFinite() && !c.isFinite() && d_card > c.d_card ) );
- }
-
- /**
- * Test whether this cardinality is less than or equal to
- * another.
- */
- bool operator<=(const Cardinality& c) const throw() {
- return !isUnknown() && !c.isUnknown() && (*this < c || *this == c);
- }
-
- /** Test whether this cardinality is greater than another. */
- bool operator>(const Cardinality& c) const throw() {
- return !isUnknown() && !c.isUnknown() && !(*this <= c);
- }
-
/**
- * Test whether this cardinality is greater than or equal to
- * another.
+ * Compare two cardinalities. This can return UNKNOWN if two
+ * finite cardinalities are at the ceiling (and thus not precisely
+ * represented), or if one or the other is the special "unknown"
+ * cardinality.
*/
- bool operator>=(const Cardinality& c) const throw() {
- return !isUnknown() && !c.isUnknown() && !(*this < c);
- }
+ Cardinality::CardinalityComparison compare(const Cardinality& c) const throw();
/**
* Return a string representation of this cardinality.
std::ostream& operator<<(std::ostream& out, const Cardinality& c)
throw() CVC4_PUBLIC;
-
}/* CVC4 namespace */
#endif /* __CVC4__CARDINALITY_H */
}
void testTheBasics() {
- TS_ASSERT( d_em->booleanType().getCardinality() == 2 );
- TS_ASSERT( d_em->integerType().getCardinality() == Cardinality::INTEGERS );
- TS_ASSERT( d_em->realType().getCardinality() == Cardinality::REALS );
+ TS_ASSERT( d_em->booleanType().getCardinality().compare(2) == Cardinality::EQUAL );
+ TS_ASSERT( d_em->integerType().getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL );
+ TS_ASSERT( d_em->realType().getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
}
void testArrays() {
Type boolToInt = d_em->mkArrayType(d_em->booleanType(), d_em->integerType());
Type boolToBool = d_em->mkArrayType(d_em->booleanType(), d_em->booleanType());
- TS_ASSERT( intToInt.getCardinality() == Cardinality::REALS );
- TS_ASSERT( realToReal.getCardinality() > Cardinality::REALS );
- TS_ASSERT( realToInt.getCardinality() > Cardinality::REALS );
- TS_ASSERT( intToReal.getCardinality() == Cardinality::REALS );
- TS_ASSERT( intToBool.getCardinality() == Cardinality::REALS );
- TS_ASSERT( realToBool.getCardinality() > Cardinality::REALS );
- TS_ASSERT( boolToReal.getCardinality() == Cardinality::REALS );
- TS_ASSERT( boolToInt.getCardinality() == Cardinality::INTEGERS );
-cout << "boolToBool " << boolToBool.getCardinality() << endl;
- TS_ASSERT( boolToBool.getCardinality() == 4 );
+ TS_ASSERT( intToInt.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( realToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( realToInt.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( intToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( intToBool.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( realToBool.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( boolToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( boolToInt.getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL );
+ TS_ASSERT( boolToBool.getCardinality().compare(4) == Cardinality::EQUAL );
}
void testUnaryFunctions() {
Type boolToInt = d_em->mkFunctionType(d_em->booleanType(), d_em->integerType());
Type boolToBool = d_em->mkFunctionType(d_em->booleanType(), d_em->booleanType());
- TS_ASSERT( intToInt.getCardinality() == Cardinality::REALS );
- TS_ASSERT( realToReal.getCardinality() > Cardinality::REALS );
- TS_ASSERT( realToInt.getCardinality() > Cardinality::REALS );
- TS_ASSERT( intToReal.getCardinality() == Cardinality::REALS );
- TS_ASSERT( intToBool.getCardinality() == Cardinality::REALS );
- TS_ASSERT( realToBool.getCardinality() > Cardinality::REALS );
- TS_ASSERT( boolToReal.getCardinality() == Cardinality::REALS );
- TS_ASSERT( boolToInt.getCardinality() == Cardinality::INTEGERS );
- TS_ASSERT( boolToBool.getCardinality() == 4 );
+ TS_ASSERT( intToInt.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( realToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( realToInt.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( intToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( intToBool.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( realToBool.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( boolToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( boolToInt.getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL );
+ TS_ASSERT( boolToBool.getCardinality().compare(4) == Cardinality::EQUAL );
}
void testBinaryFunctions() {
Type boolrealToInt = d_em->mkFunctionType(boolreal, d_em->integerType());
Type boolrealToReal = d_em->mkFunctionType(boolreal, d_em->realType());
- TS_ASSERT( boolboolToBool.getCardinality() == 16 );
- TS_ASSERT( boolboolToInt.getCardinality() == Cardinality::INTEGERS );
- TS_ASSERT( boolboolToReal.getCardinality() == Cardinality::REALS );
+ TS_ASSERT( boolboolToBool.getCardinality().compare(16) == Cardinality::EQUAL );
+ TS_ASSERT( boolboolToInt.getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL );
+ TS_ASSERT( boolboolToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
- TS_ASSERT( boolintToBool.getCardinality() == Cardinality::REALS );
- TS_ASSERT( boolintToInt.getCardinality() == Cardinality::REALS );
- TS_ASSERT( boolintToReal.getCardinality() == Cardinality::REALS );
+ TS_ASSERT( boolintToBool.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( boolintToInt.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( boolintToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
- TS_ASSERT( intboolToBool.getCardinality() == Cardinality::REALS );
- TS_ASSERT( intboolToInt.getCardinality() == Cardinality::REALS );
- TS_ASSERT( intboolToReal.getCardinality() == Cardinality::REALS );
+ TS_ASSERT( intboolToBool.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( intboolToInt.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( intboolToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
- TS_ASSERT( intintToBool.getCardinality() == Cardinality::REALS );
- TS_ASSERT( intintToInt.getCardinality() == Cardinality::REALS );
- TS_ASSERT( intintToReal.getCardinality() == Cardinality::REALS );
+ TS_ASSERT( intintToBool.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( intintToInt.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
+ TS_ASSERT( intintToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL );
- TS_ASSERT( intrealToBool.getCardinality() > Cardinality::REALS );
- TS_ASSERT( intrealToInt.getCardinality() > Cardinality::REALS );
- TS_ASSERT( intrealToReal.getCardinality() > Cardinality::REALS );
+ TS_ASSERT( intrealToBool.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( intrealToInt.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( intrealToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
- TS_ASSERT( realintToBool.getCardinality() > Cardinality::REALS );
- TS_ASSERT( realintToInt.getCardinality() > Cardinality::REALS );
- TS_ASSERT( realintToReal.getCardinality() > Cardinality::REALS );
+ TS_ASSERT( realintToBool.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( realintToInt.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( realintToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
- TS_ASSERT( realrealToBool.getCardinality() > Cardinality::REALS );
- TS_ASSERT( realrealToInt.getCardinality() > Cardinality::REALS );
- TS_ASSERT( realrealToReal.getCardinality() > Cardinality::REALS );
+ TS_ASSERT( realrealToBool.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( realrealToInt.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( realrealToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
- TS_ASSERT( realboolToBool.getCardinality() > Cardinality::REALS );
- TS_ASSERT( realboolToInt.getCardinality() > Cardinality::REALS );
- TS_ASSERT( realboolToReal.getCardinality() > Cardinality::REALS );
+ TS_ASSERT( realboolToBool.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( realboolToInt.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( realboolToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
- TS_ASSERT( boolrealToBool.getCardinality() > Cardinality::REALS );
- TS_ASSERT( boolrealToInt.getCardinality() > Cardinality::REALS );
- TS_ASSERT( boolrealToReal.getCardinality() > Cardinality::REALS );
+ TS_ASSERT( boolrealToBool.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( boolrealToInt.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
+ TS_ASSERT( boolrealToReal.getCardinality().compare(Cardinality::REALS) == Cardinality::GREATER );
}
void testTernaryFunctions() {
Type boolboolToBoolbool = d_em->mkFunctionType(boolbool, boolboolTuple);
Type boolToBoolboolbool = d_em->mkFunctionType(d_em->booleanType(), boolboolboolTuple);
- TS_ASSERT( boolboolboolToBool.getCardinality() == /* 2 ^ 8 */ 1 << 8 );
- TS_ASSERT( boolboolToBoolbool.getCardinality() == /* 4 ^ 4 */ 4 * 4 * 4 * 4 );
- TS_ASSERT( boolToBoolboolbool.getCardinality() == /* 8 ^ 2 */ 8 * 8 );
+ TS_ASSERT( boolboolboolToBool.getCardinality().compare(/* 2 ^ 8 */ 1 << 8) == Cardinality::EQUAL );
+ TS_ASSERT( boolboolToBoolbool.getCardinality().compare(/* 4 ^ 4 */ 4 * 4 * 4 * 4) == Cardinality::EQUAL );
+ TS_ASSERT( boolToBoolboolbool.getCardinality().compare(/* 8 ^ 2 */ 8 * 8) == Cardinality::EQUAL );
}
void testUndefinedSorts() {
void testBitvectors() {
Debug.on("bvcard");
- TS_ASSERT( d_em->mkBitVectorType(0).getCardinality() == 0 );
- for(unsigned i = 1; i < 128; ++i) {
+ TS_ASSERT( d_em->mkBitVectorType(0).getCardinality().compare(0) == Cardinality::EQUAL );
+ Cardinality lastCard = 0;
+ for(unsigned i = 1; i <= 65; ++i) {
try {
Cardinality card = Cardinality(2) ^ i;
- if( d_em->mkBitVectorType(i).getCardinality() != card ) {
- stringstream ss;
- ss << "test failed for bitvector(" << i << ")";
- TS_FAIL(ss.str().c_str());
+ Cardinality typeCard = d_em->mkBitVectorType(i).getCardinality();
+ TS_ASSERT( typeCard.compare(lastCard) == Cardinality::GREATER ||
+ (typeCard.isLargeFinite() && lastCard.isLargeFinite()) );
+ if( typeCard.compare(card) != Cardinality::EQUAL ) {
+ if( typeCard.isLargeFinite() ) {
+ cout << "test hit large finite card at bitvector(" << i << ")" << endl;
+ } else {
+ stringstream ss;
+ ss << "test failed for bitvector(" << i << ")";
+ TS_FAIL(ss.str().c_str());
+ }
}
+ lastCard = typeCard;
} catch(Exception& e) {
cout << endl << e << endl;
throw;
Cardinality r(Cardinality::REALS);
Cardinality i(Cardinality::INTEGERS);
- TS_ASSERT( zero < one );
- TS_ASSERT( one < two );
- TS_ASSERT( two < invalid );
- TS_ASSERT( invalid < big );
- TS_ASSERT( big < i );
- TS_ASSERT( i < r );
-
- TS_ASSERT( zero <= one );
- TS_ASSERT( zero <= zero );
- TS_ASSERT( one <= two );
- TS_ASSERT( one <= one );
- TS_ASSERT( two <= invalid );
- TS_ASSERT( two <= two );
- TS_ASSERT( invalid <= big );
- TS_ASSERT( invalid <= invalid );
- TS_ASSERT( big <= i );
- TS_ASSERT( big <= big );
- TS_ASSERT( i <= r );
- TS_ASSERT( i <= i );
- TS_ASSERT( r <= r );
-
- TS_ASSERT( zero == zero );
- TS_ASSERT( one == one );
- TS_ASSERT( two == two );
- TS_ASSERT( invalid == invalid );
- TS_ASSERT( copy == copy );
- TS_ASSERT( copy == one );
- TS_ASSERT( one == copy );
- TS_ASSERT( big == big );
- TS_ASSERT( i == i );
- TS_ASSERT( r == r );
-
- TS_ASSERT( zero != one );
- TS_ASSERT( one != two );
- TS_ASSERT( two != invalid );
- TS_ASSERT( copy != r );
- TS_ASSERT( copy != i );
- TS_ASSERT( big != i );
- TS_ASSERT( i != big );
- TS_ASSERT( big != zero );
- TS_ASSERT( r != i );
- TS_ASSERT( i != r );
-
- TS_ASSERT( r > zero );
- TS_ASSERT( r > one );
- TS_ASSERT( r > two );
- TS_ASSERT( r > copy );
- TS_ASSERT( r > invalid );
- TS_ASSERT( r > big );
- TS_ASSERT( r > i );
- TS_ASSERT( !( r > r ) );
- TS_ASSERT( r >= r );
+ TS_ASSERT( zero.compare(one) == Cardinality::LESS );
+ TS_ASSERT( one.compare(two) == Cardinality::LESS );
+ TS_ASSERT( two.compare(invalid) == Cardinality::LESS );
+ TS_ASSERT( invalid.compare(big) == Cardinality::LESS );
+ TS_ASSERT( big.compare(i) == Cardinality::LESS );
+ TS_ASSERT( i.compare(r) == Cardinality::LESS );
+
+ TS_ASSERT( zero.compare(one) != Cardinality::GREATER );
+ TS_ASSERT( zero.compare(zero) != Cardinality::GREATER );
+ TS_ASSERT( one.compare(two) != Cardinality::GREATER );
+ TS_ASSERT( one.compare(one) != Cardinality::GREATER );
+ TS_ASSERT( two.compare(invalid) != Cardinality::GREATER );
+ TS_ASSERT( two.compare(two) != Cardinality::GREATER );
+ TS_ASSERT( invalid.compare(big) != Cardinality::GREATER );
+ TS_ASSERT( invalid.compare(invalid) != Cardinality::GREATER );
+ TS_ASSERT( big.compare(i) != Cardinality::GREATER );
+ TS_ASSERT( big.compare(big) != Cardinality::GREATER );
+ TS_ASSERT( i.compare(r) != Cardinality::GREATER );
+ TS_ASSERT( i.compare(i) != Cardinality::GREATER );
+ TS_ASSERT( r.compare(r) != Cardinality::GREATER );
+
+ TS_ASSERT( zero.compare(zero) == Cardinality::EQUAL );
+ TS_ASSERT( one.compare(one) == Cardinality::EQUAL );
+ TS_ASSERT( two.compare(two) == Cardinality::EQUAL );
+ TS_ASSERT( invalid.compare(invalid) == Cardinality::EQUAL );
+ TS_ASSERT( copy.compare(copy) == Cardinality::EQUAL );
+ TS_ASSERT( copy.compare(one) == Cardinality::EQUAL );
+ TS_ASSERT( one.compare(copy) == Cardinality::EQUAL );
+ TS_ASSERT( big.compare(big) == Cardinality::UNKNOWN );
+ TS_ASSERT( i.compare(i) == Cardinality::EQUAL );
+ TS_ASSERT( r.compare(r) == Cardinality::EQUAL );
+
+ TS_ASSERT( zero.compare(one) != Cardinality::EQUAL );
+ TS_ASSERT( one.compare(two) != Cardinality::EQUAL );
+ TS_ASSERT( two.compare(invalid) != Cardinality::EQUAL );
+ TS_ASSERT( copy.compare(r) != Cardinality::EQUAL );
+ TS_ASSERT( copy.compare(i) != Cardinality::EQUAL );
+ TS_ASSERT( big.compare(i) != Cardinality::EQUAL );
+ TS_ASSERT( i.compare(big) != Cardinality::EQUAL );
+ TS_ASSERT( big.compare(zero) != Cardinality::EQUAL );
+ TS_ASSERT( r.compare(i) != Cardinality::EQUAL );
+ TS_ASSERT( i.compare(r) != Cardinality::EQUAL );
+
+ TS_ASSERT( r.compare(zero) == Cardinality::GREATER );
+ TS_ASSERT( r.compare(one) == Cardinality::GREATER );
+ TS_ASSERT( r.compare(two) == Cardinality::GREATER );
+ TS_ASSERT( r.compare(copy) == Cardinality::GREATER );
+ TS_ASSERT( r.compare(invalid) == Cardinality::GREATER );
+ TS_ASSERT( r.compare(big) == Cardinality::GREATER );
+ TS_ASSERT( r.compare(i) == Cardinality::GREATER );
+ TS_ASSERT( r.compare(r) != Cardinality::GREATER );
+ TS_ASSERT( r.compare(r) != Cardinality::LESS );
TS_ASSERT( zero.isFinite() );
TS_ASSERT( one.isFinite() );
TS_ASSERT( !i.isFinite() );
TS_ASSERT( !r.isFinite() );
+ TS_ASSERT( !zero.isLargeFinite() );
+ TS_ASSERT( !one.isLargeFinite() );
+ TS_ASSERT( !two.isLargeFinite() );
+ TS_ASSERT( !copy.isLargeFinite() );
+ TS_ASSERT( !invalid.isLargeFinite() );
+ TS_ASSERT( big.isLargeFinite() );
+ TS_ASSERT( !i.isLargeFinite() );
+ TS_ASSERT( !r.isLargeFinite() );
+
TS_ASSERT( zero.getFiniteCardinality() == 0 );
TS_ASSERT( one.getFiniteCardinality() == 1 );
TS_ASSERT( two.getFiniteCardinality() == 2 );
TS_ASSERT( copy.getFiniteCardinality() == 1 );
TS_ASSERT( invalid.getFiniteCardinality() == 5 );
- TS_ASSERT( big.getFiniteCardinality() == Integer("3983982192391747295721957") );
+ TS_ASSERT_THROWS( big.getFiniteCardinality(), IllegalArgumentException );
TS_ASSERT_THROWS( i.getFiniteCardinality(), IllegalArgumentException );
TS_ASSERT_THROWS( r.getFiniteCardinality(), IllegalArgumentException );
TS_ASSERT( i.getBethNumber() == 0 );
TS_ASSERT( r.getBethNumber() == 1 );
- TS_ASSERT( zero != Cardinality::INTEGERS );
- TS_ASSERT( one != Cardinality::INTEGERS );
- TS_ASSERT( two != Cardinality::INTEGERS );
- TS_ASSERT( copy != Cardinality::INTEGERS );
- TS_ASSERT( invalid != Cardinality::INTEGERS );
- TS_ASSERT( big != Cardinality::INTEGERS );
- TS_ASSERT( r != Cardinality::INTEGERS );
- TS_ASSERT( i == Cardinality::INTEGERS );
-
- TS_ASSERT( zero != Cardinality::REALS );
- TS_ASSERT( one != Cardinality::REALS );
- TS_ASSERT( two != Cardinality::REALS );
- TS_ASSERT( copy != Cardinality::REALS );
- TS_ASSERT( invalid != Cardinality::REALS );
- TS_ASSERT( big != Cardinality::REALS );
- TS_ASSERT( i != Cardinality::REALS );
- TS_ASSERT( r == Cardinality::REALS );
+ TS_ASSERT( zero.compare(Cardinality::INTEGERS) != Cardinality::EQUAL );
+ TS_ASSERT( one.compare(Cardinality::INTEGERS) != Cardinality::EQUAL );
+ TS_ASSERT( two.compare(Cardinality::INTEGERS) != Cardinality::EQUAL );
+ TS_ASSERT( copy.compare(Cardinality::INTEGERS) != Cardinality::EQUAL );
+ TS_ASSERT( invalid.compare(Cardinality::INTEGERS) != Cardinality::EQUAL );
+ TS_ASSERT( big.compare(Cardinality::INTEGERS) != Cardinality::EQUAL );
+ TS_ASSERT( r.compare(Cardinality::INTEGERS) != Cardinality::EQUAL );
+ TS_ASSERT( i.compare(Cardinality::INTEGERS) == Cardinality::EQUAL );
+
+ TS_ASSERT( zero.compare(Cardinality::REALS) != Cardinality::EQUAL );
+ TS_ASSERT( one.compare(Cardinality::REALS) != Cardinality::EQUAL );
+ TS_ASSERT( two.compare(Cardinality::REALS) != Cardinality::EQUAL );
+ TS_ASSERT( copy.compare(Cardinality::REALS) != Cardinality::EQUAL );
+ TS_ASSERT( invalid.compare(Cardinality::REALS) != Cardinality::EQUAL );
+ TS_ASSERT( big.compare(Cardinality::REALS) != Cardinality::EQUAL );
+ TS_ASSERT( i.compare(Cardinality::REALS) != Cardinality::EQUAL );
+ TS_ASSERT( r.compare(Cardinality::REALS) == Cardinality::EQUAL );
// should work the other way too
- TS_ASSERT( Cardinality::INTEGERS != zero );
- TS_ASSERT( Cardinality::INTEGERS != one );
- TS_ASSERT( Cardinality::INTEGERS != two );
- TS_ASSERT( Cardinality::INTEGERS != copy );
- TS_ASSERT( Cardinality::INTEGERS != invalid );
- TS_ASSERT( Cardinality::INTEGERS != big );
- TS_ASSERT( Cardinality::INTEGERS != r );
- TS_ASSERT( Cardinality::INTEGERS == i );
-
- TS_ASSERT( Cardinality::REALS != zero );
- TS_ASSERT( Cardinality::REALS != one );
- TS_ASSERT( Cardinality::REALS != two );
- TS_ASSERT( Cardinality::REALS != copy );
- TS_ASSERT( Cardinality::REALS != invalid );
- TS_ASSERT( Cardinality::REALS != big );
- TS_ASSERT( Cardinality::REALS != i );
- TS_ASSERT( Cardinality::REALS == r );
+ TS_ASSERT( Cardinality::INTEGERS.compare(zero) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::INTEGERS.compare(one) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::INTEGERS.compare(two) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::INTEGERS.compare(copy) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::INTEGERS.compare(invalid) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::INTEGERS.compare(big) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::INTEGERS.compare(r) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::INTEGERS.compare(i) == Cardinality::EQUAL );
+
+ TS_ASSERT( Cardinality::REALS.compare(zero) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::REALS.compare(one) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::REALS.compare(two) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::REALS.compare(copy) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::REALS.compare(invalid) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::REALS.compare(big) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::REALS.compare(i) != Cardinality::EQUAL );
+ TS_ASSERT( Cardinality::REALS.compare(r) == Cardinality::EQUAL );
// finite cardinal arithmetic
- TS_ASSERT( zero + zero == zero );
- TS_ASSERT( zero * zero == zero );
- TS_ASSERT( (zero ^ zero) == one );
- TS_ASSERT( zero + one == one );
- TS_ASSERT( zero * one == zero );
- TS_ASSERT( (zero ^ one) == zero );
- TS_ASSERT( one + zero == one );
- TS_ASSERT( one * zero == zero );
- TS_ASSERT( (one ^ zero) == one );
- TS_ASSERT( two + two == 4 );
- TS_ASSERT( (two ^ two) == 4 );
- TS_ASSERT( two * two == 4 );
- TS_ASSERT( (two += two) == 4 );
- TS_ASSERT( two == 4 );
- TS_ASSERT( (two = 2) == 2 );
- TS_ASSERT( two == 2 );
- TS_ASSERT( (two *= 2) == 4 );
- TS_ASSERT( two == 4 );
- TS_ASSERT( ((two = 2) ^= 2) == 4 );
- TS_ASSERT( two == 4 );
- TS_ASSERT( (two = 2) == 2 );
+ TS_ASSERT( (zero + zero).compare(zero) == Cardinality::EQUAL );
+ TS_ASSERT( (zero * zero).compare(zero) == Cardinality::EQUAL );
+ TS_ASSERT( (zero ^ zero).compare(one) == Cardinality::EQUAL );
+ TS_ASSERT( (zero + one).compare(one) == Cardinality::EQUAL );
+ TS_ASSERT( (zero * one).compare(zero) == Cardinality::EQUAL );
+ TS_ASSERT( (zero ^ one).compare(zero) == Cardinality::EQUAL );
+ TS_ASSERT( (one + zero).compare(one) == Cardinality::EQUAL );
+ TS_ASSERT( (one * zero).compare(zero) == Cardinality::EQUAL );
+ TS_ASSERT( (one ^ zero).compare(one) == Cardinality::EQUAL );
+ TS_ASSERT( (two + two).compare(4) == Cardinality::EQUAL );
+ TS_ASSERT( (two ^ two).compare(4) == Cardinality::EQUAL );
+ TS_ASSERT( (two * two).compare(4) == Cardinality::EQUAL );
+ TS_ASSERT( (two += two).compare(4) == Cardinality::EQUAL );
+ TS_ASSERT( two.compare(4) == Cardinality::EQUAL );
+ TS_ASSERT( (two = 2).compare(2) == Cardinality::EQUAL );
+ TS_ASSERT( two.compare(2) == Cardinality::EQUAL );
+ TS_ASSERT( (two *= 2).compare(4) == Cardinality::EQUAL );
+ TS_ASSERT( two.compare(4) == Cardinality::EQUAL );
+ TS_ASSERT( ((two = 2) ^= 2).compare(4) == Cardinality::EQUAL );
+ TS_ASSERT( two.compare(4) == Cardinality::EQUAL );
+ TS_ASSERT( (two = 2).compare(2) == Cardinality::EQUAL );
// infinite cardinal arithmetic
Cardinality x = i, y = Cardinality(2)^x, z = Cardinality(2)^y;
- TS_ASSERT( x == i && y == r );
- TS_ASSERT( x != r && y != i );
- TS_ASSERT( x != z && y != z );
+ TS_ASSERT( x.compare(i) == Cardinality::EQUAL && y.compare(r) == Cardinality::EQUAL );
+ TS_ASSERT( x.compare(r) != Cardinality::EQUAL && y.compare(i) != Cardinality::EQUAL );
+ TS_ASSERT( x.compare(z) != Cardinality::EQUAL && y.compare(z) != Cardinality::EQUAL );
TS_ASSERT( x.isCountable() && !x.isFinite() );
TS_ASSERT( !y.isCountable() && !y.isFinite() );
TS_ASSERT( !z.isCountable() && !z.isFinite() );
- TS_ASSERT( big < x );
- TS_ASSERT( x < y );
- TS_ASSERT( y < z );
+ TS_ASSERT( big.compare(x) == Cardinality::LESS );
+ TS_ASSERT( x.compare(y) == Cardinality::LESS );
+ TS_ASSERT( y.compare(z) == Cardinality::LESS );
TS_ASSERT_THROWS( big.getBethNumber(), IllegalArgumentException );
TS_ASSERT( x.getBethNumber() == 0 );
TS_ASSERT( y.getBethNumber() == 1 );
TS_ASSERT( z.getBethNumber() == 2 );
- TS_ASSERT( (zero ^ x) == zero );
- TS_ASSERT( (one ^ x) == one );
- TS_ASSERT( (two ^ x) == y && (two ^ x) != x );
- TS_ASSERT( (big ^ x) == y && (big ^ x) != x );
- TS_ASSERT( (two ^ x) == (big ^ x) );
-
- TS_ASSERT( (x ^ zero) == one );
- TS_ASSERT( (x ^ one) == x );
- TS_ASSERT( (x ^ two) == x );
- TS_ASSERT( (x ^ big) == x );
- TS_ASSERT( (x ^ big) == (x ^ two) );
-
- TS_ASSERT( (zero ^ y) == zero );
- TS_ASSERT( (one ^ y) == one );
- TS_ASSERT( (two ^ y) != x && (two ^ y) != y );
- TS_ASSERT( (big ^ y) != y && (big ^ y) != y );
+ TS_ASSERT( (zero ^ x).compare(zero) == Cardinality::EQUAL );
+ TS_ASSERT( (one ^ x).compare(one) == Cardinality::EQUAL );
+ TS_ASSERT( (two ^ x).compare(y) == Cardinality::EQUAL && (two ^ x).compare(x) != Cardinality::EQUAL );
+ TS_ASSERT( (big ^ x).compare(y) == Cardinality::EQUAL && (big ^ x).compare(x) != Cardinality::EQUAL );
+ TS_ASSERT( (two ^ x).compare(big ^ x) == Cardinality::EQUAL );
+
+ TS_ASSERT( (x ^ zero).compare(one) == Cardinality::EQUAL );
+ TS_ASSERT( (x ^ one).compare(x) == Cardinality::EQUAL );
+ TS_ASSERT( (x ^ two).compare(x) == Cardinality::EQUAL );
+ TS_ASSERT( (x ^ big).compare(x) == Cardinality::EQUAL );
+ TS_ASSERT( (x ^ big).compare(x ^ two) == Cardinality::EQUAL );
+
+ TS_ASSERT( (zero ^ y).compare(zero) == Cardinality::EQUAL );
+ TS_ASSERT( (one ^ y).compare(one) == Cardinality::EQUAL );
+ TS_ASSERT( (two ^ y).compare(x) != Cardinality::EQUAL && (two ^ y).compare(y) != Cardinality::EQUAL );
+ TS_ASSERT( (big ^ y).compare(y) != Cardinality::EQUAL && (big ^ y).compare(y) != Cardinality::EQUAL );
TS_ASSERT( (big ^ y).getBethNumber() == 2 );
- TS_ASSERT( (two ^ y) == (big ^ y) );
-
- TS_ASSERT( (y ^ zero) == one );
- TS_ASSERT( (y ^ one) == y );
- TS_ASSERT( (y ^ two) == y );
- TS_ASSERT( (y ^ big) == y );
- TS_ASSERT( (y ^ big) == (y ^ two) );
-
- TS_ASSERT( (x ^ x) == y );
- TS_ASSERT( (y ^ x) == y );
- TS_ASSERT( (x ^ y) == z );
- TS_ASSERT( (y ^ y) == z );
- TS_ASSERT( (z ^ x) == z );
- TS_ASSERT( (z ^ y) == z );
- TS_ASSERT( (zero ^ z) == 0 );
- TS_ASSERT( (z ^ zero) == 1 );
- TS_ASSERT( (z ^ 0) == 1 );
- TS_ASSERT( (two ^ z) > z );
- TS_ASSERT( (big ^ z) == (two ^ z) );
- TS_ASSERT( (x ^ z) == (two ^ z) );
- TS_ASSERT( (y ^ z) == (x ^ z) );
- TS_ASSERT( (z ^ z) == (x ^ z) );
+ TS_ASSERT( (two ^ y).compare(big ^ y) == Cardinality::EQUAL );
+
+ TS_ASSERT( (y ^ zero).compare(one) == Cardinality::EQUAL );
+ TS_ASSERT( (y ^ one).compare(y) == Cardinality::EQUAL );
+ TS_ASSERT( (y ^ two).compare(y) == Cardinality::EQUAL );
+ TS_ASSERT( (y ^ big).compare(y) == Cardinality::EQUAL );
+ TS_ASSERT( (y ^ big).compare(y ^ two) == Cardinality::EQUAL );
+
+ TS_ASSERT( (x ^ x).compare(y) == Cardinality::EQUAL );
+ TS_ASSERT( (y ^ x).compare(y) == Cardinality::EQUAL );
+ TS_ASSERT( (x ^ y).compare(z) == Cardinality::EQUAL );
+ TS_ASSERT( (y ^ y).compare(z) == Cardinality::EQUAL );
+ TS_ASSERT( (z ^ x).compare(z) == Cardinality::EQUAL );
+ TS_ASSERT( (z ^ y).compare(z) == Cardinality::EQUAL );
+ TS_ASSERT( (zero ^ z).compare(0) == Cardinality::EQUAL );
+ TS_ASSERT( (z ^ zero).compare(1) == Cardinality::EQUAL );
+ TS_ASSERT( (z ^ 0).compare(1) == Cardinality::EQUAL );
+ TS_ASSERT( (two ^ z).compare(z) == Cardinality::GREATER );
+ TS_ASSERT( (big ^ z).compare(two ^ z) == Cardinality::EQUAL );
+ TS_ASSERT( (x ^ z).compare(two ^ z) == Cardinality::EQUAL );
+ TS_ASSERT( (y ^ z).compare(x ^ z) == Cardinality::EQUAL );
+ TS_ASSERT( (z ^ z).compare(x ^ z) == Cardinality::EQUAL );
TS_ASSERT( (z ^ z).getBethNumber() == 3 );
}/* testCardinalities() */
TS_ASSERT_THROWS(colorsDT["blue"]["foo"], IllegalArgumentException);
TS_ASSERT(colorsType.getDatatype().isFinite());
- TS_ASSERT(colorsType.getDatatype().getCardinality() == 4);
- TS_ASSERT(ctor.getType().getCardinality() == 1);
+ TS_ASSERT(colorsType.getDatatype().getCardinality().compare(4) == Cardinality::EQUAL);
+ TS_ASSERT(ctor.getType().getCardinality().compare(1) == Cardinality::EQUAL);
TS_ASSERT(colorsType.getDatatype().isWellFounded());
Debug("groundterms") << "ground term of " << colorsType.getDatatype().getName() << endl
<< " is " << colorsType.mkGroundTerm() << endl;
Debug("datatypes") << apply << std::endl;
TS_ASSERT(! natType.getDatatype().isFinite());
- TS_ASSERT(natType.getDatatype().getCardinality() == Cardinality::INTEGERS);
+ TS_ASSERT(natType.getDatatype().getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL);
TS_ASSERT(natType.getDatatype().isWellFounded());
Debug("groundterms") << "ground term of " << natType.getDatatype().getName() << endl
<< " is " << natType.mkGroundTerm() << endl;
TS_ASSERT_THROWS(treeType.getConstructor("leff"), IllegalArgumentException);
TS_ASSERT(! treeType.getDatatype().isFinite());
- TS_ASSERT(treeType.getDatatype().getCardinality() == Cardinality::INTEGERS);
+ TS_ASSERT(treeType.getDatatype().getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL);
TS_ASSERT(treeType.getDatatype().isWellFounded());
Debug("groundterms") << "ground term of " << treeType.getDatatype().getName() << endl
<< " is " << treeType.mkGroundTerm() << endl;
Debug("datatypes") << listType << std::endl;
TS_ASSERT(! listType.getDatatype().isFinite());
- TS_ASSERT(listType.getDatatype().getCardinality() == Cardinality::INTEGERS);
+ TS_ASSERT(listType.getDatatype().getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL);
TS_ASSERT(listType.getDatatype().isWellFounded());
Debug("groundterms") << "ground term of " << listType.getDatatype().getName() << endl
<< " is " << listType.mkGroundTerm() << endl;
Debug("datatypes") << listType << std::endl;
TS_ASSERT(! listType.getDatatype().isFinite());
- TS_ASSERT(listType.getDatatype().getCardinality() == Cardinality::REALS);
+ TS_ASSERT(listType.getDatatype().getCardinality().compare(Cardinality::REALS) == Cardinality::EQUAL);
TS_ASSERT(listType.getDatatype().isWellFounded());
Debug("groundterms") << "ground term of " << listType.getDatatype().getName() << endl
<< " is " << listType.mkGroundTerm() << endl;
Debug("datatypes") << listType << std::endl;
TS_ASSERT(! listType.getDatatype().isFinite());
- TS_ASSERT(listType.getDatatype().getCardinality() == Cardinality::INTEGERS);
+ TS_ASSERT(listType.getDatatype().getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL);
TS_ASSERT(listType.getDatatype().isWellFounded());
Debug("groundterms") << "ground term of " << listType.getDatatype().getName() << endl
<< " is " << listType.mkGroundTerm() << endl;
TS_ASSERT(dtts[1].getDatatype().isResolved());
TS_ASSERT(! dtts[0].getDatatype().isFinite());
- TS_ASSERT(dtts[0].getDatatype().getCardinality() == Cardinality::INTEGERS);
+ TS_ASSERT(dtts[0].getDatatype().getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL);
TS_ASSERT(dtts[0].getDatatype().isWellFounded());
Debug("groundterms") << "ground term of " << dtts[0].getDatatype().getName() << endl
<< " is " << dtts[0].mkGroundTerm() << endl;
}
TS_ASSERT(! dtts[1].getDatatype().isFinite());
- TS_ASSERT(dtts[1].getDatatype().getCardinality() == Cardinality::INTEGERS);
+ TS_ASSERT(dtts[1].getDatatype().getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL);
TS_ASSERT(dtts[1].getDatatype().isWellFounded());
Debug("groundterms") << "ground term of " << dtts[1].getDatatype().getName() << endl
<< " is " << dtts[1].mkGroundTerm() << endl;
TS_ASSERT_DIFFERS(dtts[0], dtts2[0]);
TS_ASSERT(! dtts2[0].getDatatype().isFinite());
- TS_ASSERT(dtts2[0].getDatatype().getCardinality() == Cardinality::INTEGERS);
+ TS_ASSERT(dtts2[0].getDatatype().getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL);
TS_ASSERT(dtts2[0].getDatatype().isWellFounded());
Debug("groundterms") << "ground term of " << dtts2[0].getDatatype().getName() << endl
<< " is " << dtts2[0].mkGroundTerm() << endl;
}
TS_ASSERT(! dtts2[1].getDatatype().isFinite());
- TS_ASSERT(dtts2[1].getDatatype().getCardinality() == Cardinality::INTEGERS);
+ TS_ASSERT(dtts2[1].getDatatype().getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL);
TS_ASSERT(dtts2[1].getDatatype().isWellFounded());
Debug("groundterms") << "ground term of " << dtts2[1].getDatatype().getName() << endl
<< " is " << dtts2[1].mkGroundTerm() << endl;
Debug("datatypes") << treeType << std::endl;
TS_ASSERT(! treeType.getDatatype().isFinite());
- TS_ASSERT(treeType.getDatatype().getCardinality() == Cardinality::INTEGERS);
+ TS_ASSERT(treeType.getDatatype().getCardinality().compare(Cardinality::INTEGERS) == Cardinality::EQUAL);
TS_ASSERT(! treeType.getDatatype().isWellFounded());
TS_ASSERT_THROWS_ANYTHING( treeType.mkGroundTerm() );
TS_ASSERT_THROWS_ANYTHING( treeType.getDatatype().mkGroundTerm( treeType ) );