/* Intel 80386 machine specific gas.
Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
+ x86_64 support by Jan Hubicka (jh@suse.cz)
Bugs & suggestions are completely welcome. This is free software.
Please help us make it better. */
static int fits_in_unsigned_byte PARAMS ((offsetT));
static int fits_in_unsigned_word PARAMS ((offsetT));
static int fits_in_signed_word PARAMS ((offsetT));
+static int fits_in_unsigned_long PARAMS ((offsetT));
+static int fits_in_signed_long PARAMS ((offsetT));
static int smallest_imm_type PARAMS ((offsetT));
static offsetT offset_in_range PARAMS ((offsetT, int));
static int add_prefix PARAMS ((unsigned int));
-static void set_16bit_code_flag PARAMS ((int));
+static void set_code_flag PARAMS ((int));
static void set_16bit_gcc_code_flag PARAMS ((int));
static void set_intel_syntax PARAMS ((int));
static void set_cpu_arch PARAMS ((int));
#ifdef BFD_ASSEMBLER
static bfd_reloc_code_real_type reloc
- PARAMS ((int, int, bfd_reloc_code_real_type));
+ PARAMS ((int, int, int, bfd_reloc_code_real_type));
#endif
+#ifndef DEFAULT_ARCH
+#define DEFAULT_ARCH "i386"
+#endif
+static char *default_arch = DEFAULT_ARCH;
+
/* 'md_assemble ()' gathers together information and puts it into a
i386_insn. */
operand. */
union i386_op op[MAX_OPERANDS];
+ /* Flags for operands. */
+ unsigned int flags[MAX_OPERANDS];
+#define Operand_PCrel 1
+
/* Relocation type for operand */
#ifdef BFD_ASSEMBLER
enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
addressing modes of this insn are encoded. */
modrm_byte rm;
+ rex_byte rex;
sib_byte sib;
};
/* Current operand we are working on. */
static int this_operand;
-/* 1 if we're writing 16-bit code,
- 0 if 32-bit. */
-static int flag_16bit_code;
+/* We support four different modes. FLAG_CODE variable is used to distinguish
+ these. */
+
+enum flag_code {
+ CODE_32BIT,
+ CODE_16BIT,
+ CODE_64BIT };
+
+static enum flag_code flag_code;
+static int use_rela_relocations = 0;
+
+/* The names used to print error messages. */
+static const char *flag_code_names[] =
+ {
+ "32",
+ "16",
+ "64"
+ };
/* 1 for intel syntax,
0 if att syntax. */
static const char *cpu_arch_name = NULL;
/* CPU feature flags. */
-static unsigned int cpu_arch_flags = 0;
+static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
/* Interface to relax_segment.
There are 2 relax states for 386 jump insns: one for conditional &
{"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
{"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
{"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
- {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX|Cpu3dnow },
- {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|Cpu3dnow },
+ {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
+ {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
+ {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE },
{NULL, 0 }
};
f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
};
+ /* ??? We can't use these fillers for x86_64, since they often kills the
+ upper halves. Solve later. */
+ if (flag_code == CODE_64BIT)
+ count = 1;
+
if (count > 0 && count <= 15)
{
- if (flag_16bit_code)
+ if (flag_code == CODE_16BIT)
{
memcpy (fragP->fr_literal + fragP->fr_fix,
f16_patt[count - 1], count);
mode_from_disp_size (t)
unsigned int t;
{
- return (t & Disp8) ? 1 : (t & (Disp16 | Disp32)) ? 2 : 0;
+ return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
}
static INLINE int
{
return (-32768 <= num) && (num <= 32767);
}
+static INLINE int
+fits_in_signed_long (num)
+ offsetT num ATTRIBUTE_UNUSED;
+{
+#ifndef BFD64
+ return 1;
+#else
+ return (!(((offsetT) -1 << 31) & num)
+ || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
+#endif
+} /* fits_in_signed_long() */
+static INLINE int
+fits_in_unsigned_long (num)
+ offsetT num ATTRIBUTE_UNUSED;
+{
+#ifndef BFD64
+ return 1;
+#else
+ return (num & (((offsetT) 2 << 31) - 1)) == num;
+#endif
+} /* fits_in_unsigned_long() */
static int
smallest_imm_type (num)
offsetT num;
{
- if (cpu_arch_flags != 0
- && cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486))
+ if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
+ && !(cpu_arch_flags & (CpuUnknown)))
{
/* This code is disabled on the 486 because all the Imm1 forms
in the opcode table are slower on the i486. They're the
displacement, which has another syntax if you really want to
use that form. */
if (num == 1)
- return Imm1 | Imm8 | Imm8S | Imm16 | Imm32;
+ return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
}
return (fits_in_signed_byte (num)
- ? (Imm8S | Imm8 | Imm16 | Imm32)
+ ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
: fits_in_unsigned_byte (num)
- ? (Imm8 | Imm16 | Imm32)
+ ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
: (fits_in_signed_word (num) || fits_in_unsigned_word (num))
- ? (Imm16 | Imm32)
- : (Imm32));
+ ? (Imm16 | Imm32 | Imm32S | Imm64)
+ : fits_in_signed_long (num)
+ ? (Imm32 | Imm32S | Imm64)
+ : fits_in_unsigned_long (num)
+ ? (Imm32 | Imm64)
+ : Imm64);
}
static offsetT
case 1: mask = ((addressT) 1 << 8) - 1; break;
case 2: mask = ((addressT) 1 << 16) - 1; break;
case 4: mask = ((addressT) 2 << 31) - 1; break;
+#ifdef BFD64
+ case 8: mask = ((addressT) 2 << 63) - 1; break;
+#endif
default: abort ();
}
/* If BFD64, sign extend val. */
- if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
- val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
+ if (!use_rela_relocations)
+ if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
+ val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
{
int ret = 1;
int q;
- switch (prefix)
- {
- default:
- abort ();
+ if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
+ q = REX_PREFIX;
+ else
+ switch (prefix)
+ {
+ default:
+ abort ();
- case CS_PREFIX_OPCODE:
- case DS_PREFIX_OPCODE:
- case ES_PREFIX_OPCODE:
- case FS_PREFIX_OPCODE:
- case GS_PREFIX_OPCODE:
- case SS_PREFIX_OPCODE:
- q = SEG_PREFIX;
- break;
+ case CS_PREFIX_OPCODE:
+ case DS_PREFIX_OPCODE:
+ case ES_PREFIX_OPCODE:
+ case FS_PREFIX_OPCODE:
+ case GS_PREFIX_OPCODE:
+ case SS_PREFIX_OPCODE:
+ q = SEG_PREFIX;
+ break;
- case REPNE_PREFIX_OPCODE:
- case REPE_PREFIX_OPCODE:
- ret = 2;
- /* fall thru */
- case LOCK_PREFIX_OPCODE:
- q = LOCKREP_PREFIX;
- break;
+ case REPNE_PREFIX_OPCODE:
+ case REPE_PREFIX_OPCODE:
+ ret = 2;
+ /* fall thru */
+ case LOCK_PREFIX_OPCODE:
+ q = LOCKREP_PREFIX;
+ break;
- case FWAIT_OPCODE:
- q = WAIT_PREFIX;
- break;
+ case FWAIT_OPCODE:
+ q = WAIT_PREFIX;
+ break;
- case ADDR_PREFIX_OPCODE:
- q = ADDR_PREFIX;
- break;
+ case ADDR_PREFIX_OPCODE:
+ q = ADDR_PREFIX;
+ break;
- case DATA_PREFIX_OPCODE:
- q = DATA_PREFIX;
- break;
- }
+ case DATA_PREFIX_OPCODE:
+ q = DATA_PREFIX;
+ break;
+ }
if (i.prefix[q])
{
}
static void
-set_16bit_code_flag (new_16bit_code_flag)
- int new_16bit_code_flag;
+set_code_flag (value)
+ int value;
{
- flag_16bit_code = new_16bit_code_flag;
+ flag_code = value;
+ cpu_arch_flags &= ~(Cpu64 | CpuNo64);
+ cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
+ if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
+ {
+ as_bad (_("64bit mode not supported on this CPU."));
+ }
+ if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
+ {
+ as_bad (_("32bit mode not supported on this CPU."));
+ }
stackop_size = '\0';
}
static void
-set_16bit_gcc_code_flag (new_16bit_code_flag)
- int new_16bit_code_flag;
+set_16bit_gcc_code_flag (new_code_flag)
+ int new_code_flag;
{
- flag_16bit_code = new_16bit_code_flag;
- stackop_size = new_16bit_code_flag ? 'l' : '\0';
+ flag_code = new_code_flag;
+ cpu_arch_flags &= ~(Cpu64 | CpuNo64);
+ cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
+ stackop_size = 'l';
}
static void
if (strcmp (string, cpu_arch[i].name) == 0)
{
cpu_arch_name = cpu_arch[i].name;
- cpu_arch_flags = cpu_arch[i].flags;
+ cpu_arch_flags = cpu_arch[i].flags | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
break;
}
}
{"value", cons, 2},
{"noopt", s_ignore, 0},
{"optim", s_ignore, 0},
- {"code16gcc", set_16bit_gcc_code_flag, 1},
- {"code16", set_16bit_code_flag, 1},
- {"code32", set_16bit_code_flag, 0},
+ {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
+ {"code16", set_code_flag, CODE_16BIT},
+ {"code32", set_code_flag, CODE_32BIT},
+ {"code64", set_code_flag, CODE_64BIT},
{"intel_syntax", set_intel_syntax, 1},
{"att_syntax", set_intel_syntax, 0},
{"file", dwarf2_directive_file, 0},
(PTR) core_optab);
if (hash_err)
{
- hash_error:
as_fatal (_("Internal Error: Can't hash %s: %s"),
(optab - 1)->name,
hash_err);
{
hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
if (hash_err)
- goto hash_error;
+ as_fatal (_("Internal Error: Can't hash %s: %s"),
+ regtab->reg_name,
+ hash_err);
}
}
}
#ifdef BFD_ASSEMBLER
-static bfd_reloc_code_real_type reloc
- PARAMS ((int, int, bfd_reloc_code_real_type));
static bfd_reloc_code_real_type
-reloc (size, pcrel, other)
+reloc (size, pcrel, sign, other)
int size;
int pcrel;
+ int sign;
bfd_reloc_code_real_type other;
{
if (other != NO_RELOC)
if (pcrel)
{
+ if (!sign)
+ as_bad(_("There are no unsigned pc-relative relocations"));
switch (size)
{
case 1: return BFD_RELOC_8_PCREL;
}
else
{
- switch (size)
- {
- case 1: return BFD_RELOC_8;
- case 2: return BFD_RELOC_16;
- case 4: return BFD_RELOC_32;
- }
- as_bad (_("can not do %d byte relocation"), size);
+ if (sign)
+ switch (size)
+ {
+ case 4: return BFD_RELOC_X86_64_32S;
+ }
+ else
+ switch (size)
+ {
+ case 1: return BFD_RELOC_8;
+ case 2: return BFD_RELOC_16;
+ case 4: return BFD_RELOC_32;
+ case 8: return BFD_RELOC_64;
+ }
+ as_bad (_("can not do %s %d byte relocation"),
+ sign ? "signed" : "unsigned", size);
}
+ abort();
return BFD_RELOC_NONE;
}
if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
|| fixP->fx_r_type == BFD_RELOC_386_PLT32
|| fixP->fx_r_type == BFD_RELOC_386_GOT32
+ || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
+ || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
|| fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 0;
#define BFD_RELOC_386_PLT32 0
#define BFD_RELOC_386_GOT32 0
#define BFD_RELOC_386_GOTOFF 0
+#define BFD_RELOC_X86_64_PLT32 0
+#define BFD_RELOC_X86_64_GOT32 0
#endif
static int intel_float_operand PARAMS ((char *mnemonic));
Similarly, in 32-bit mode, do not allow addr32 or data32. */
if ((current_templates->start->opcode_modifier & (Size16 | Size32))
&& (((current_templates->start->opcode_modifier & Size32) != 0)
- ^ flag_16bit_code))
+ ^ (flag_code == CODE_16BIT)))
{
as_bad (_("redundant %s prefix"),
current_templates->start->name);
{
case WORD_MNEM_SUFFIX:
case BYTE_MNEM_SUFFIX:
+ case QWORD_MNEM_SUFFIX:
i.suffix = mnem_p[-1];
mnem_p[-1] = '\0';
current_templates = hash_find (op_hash, mnemonic);
/* Check if instruction is supported on specified architecture. */
if (cpu_arch_flags != 0)
{
- if (current_templates->start->cpu_flags & ~cpu_arch_flags)
+ if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
+ & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
{
as_warn (_("`%s' is not supported on `%s'"),
current_templates->start->name, cpu_arch_name);
}
- else if ((Cpu386 & ~cpu_arch_flags) && !flag_16bit_code)
+ else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
{
as_warn (_("use .code16 to ensure correct addressing mode"));
}
union i386_op temp_op;
unsigned int temp_type;
#ifdef BFD_ASSEMBLER
- enum bfd_reloc_code_real temp_disp_reloc;
+ enum bfd_reloc_code_real temp_reloc;
#else
- int temp_disp_reloc;
+ int temp_reloc;
#endif
int xchg1 = 0;
int xchg2 = 0;
temp_op = i.op[xchg2];
i.op[xchg2] = i.op[xchg1];
i.op[xchg1] = temp_op;
- temp_disp_reloc = i.disp_reloc[xchg2];
+ temp_reloc = i.disp_reloc[xchg2];
i.disp_reloc[xchg2] = i.disp_reloc[xchg1];
- i.disp_reloc[xchg1] = temp_disp_reloc;
+ i.disp_reloc[xchg1] = temp_reloc;
if (i.mem_operands == 2)
{
guess_suffix = BYTE_MNEM_SUFFIX;
else if (i.types[op] & Reg16)
guess_suffix = WORD_MNEM_SUFFIX;
+ else if (i.types[op] & Reg32)
+ guess_suffix = LONG_MNEM_SUFFIX;
+ else if (i.types[op] & Reg64)
+ guess_suffix = QWORD_MNEM_SUFFIX;
break;
}
}
- else if (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0))
+ else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
guess_suffix = WORD_MNEM_SUFFIX;
for (op = i.operands; --op >= 0;)
- if ((i.types[op] & Imm)
- && i.op[op].imms->X_op == O_constant)
+ if (i.types[op] & Imm)
{
- /* If a suffix is given, this operand may be shortened. */
- switch (guess_suffix)
- {
- case WORD_MNEM_SUFFIX:
- i.types[op] |= Imm16;
- break;
- case BYTE_MNEM_SUFFIX:
- i.types[op] |= Imm16 | Imm8 | Imm8S;
- break;
- }
+ switch (i.op[op].imms->X_op)
+ {
+ case O_constant:
+ /* If a suffix is given, this operand may be shortened. */
+ switch (guess_suffix)
+ {
+ case LONG_MNEM_SUFFIX:
+ i.types[op] |= Imm32 | Imm64;
+ break;
+ case WORD_MNEM_SUFFIX:
+ i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
+ break;
+ case BYTE_MNEM_SUFFIX:
+ i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
+ break;
+ }
- /* If this operand is at most 16 bits, convert it to a
- signed 16 bit number before trying to see whether it will
- fit in an even smaller size. This allows a 16-bit operand
- such as $0xffe0 to be recognised as within Imm8S range. */
- if ((i.types[op] & Imm16)
- && (i.op[op].imms->X_add_number & ~(offsetT)0xffff) == 0)
- {
- i.op[op].imms->X_add_number =
- (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
+ /* If this operand is at most 16 bits, convert it to a
+ signed 16 bit number before trying to see whether it will
+ fit in an even smaller size. This allows a 16-bit operand
+ such as $0xffe0 to be recognised as within Imm8S range. */
+ if ((i.types[op] & Imm16)
+ && (i.op[op].imms->X_add_number & ~(offsetT)0xffff) == 0)
+ {
+ i.op[op].imms->X_add_number =
+ (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
+ }
+ if ((i.types[op] & Imm32)
+ && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
+ {
+ i.op[op].imms->X_add_number =
+ (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
+ }
+ i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
+ /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
+ if (guess_suffix == QWORD_MNEM_SUFFIX)
+ i.types[op] &= ~Imm32;
+ break;
+ case O_absent:
+ case O_register:
+ abort();
+ /* Symbols and expressions. */
+ default:
+ /* Convert symbolic operand to proper sizes for matching. */
+ switch (guess_suffix)
+ {
+ case QWORD_MNEM_SUFFIX:
+ i.types[op] = Imm64 | Imm32S;
+ break;
+ case LONG_MNEM_SUFFIX:
+ i.types[op] = Imm32 | Imm64;
+ break;
+ case WORD_MNEM_SUFFIX:
+ i.types[op] = Imm16 | Imm32 | Imm64;
+ break;
+ break;
+ case BYTE_MNEM_SUFFIX:
+ i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
+ break;
+ break;
+ }
+ break;
}
- i.types[op] |= smallest_imm_type ((long) i.op[op].imms->X_add_number);
}
}
disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
}
- if (fits_in_signed_byte (disp))
+ else if (i.types[op] & Disp32)
+ {
+ /* We know this operand is at most 32 bits, so convert to a
+ signed 32 bit number before trying to see whether it will
+ fit in an even smaller size. */
+ disp &= (((offsetT) 2 << 31) - 1);
+ disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
+ }
+ if (flag_code == CODE_64BIT)
+ {
+ if (fits_in_signed_long (disp))
+ i.types[op] |= Disp32S;
+ if (fits_in_unsigned_long (disp))
+ i.types[op] |= Disp32;
+ }
+ if ((i.types[op] & (Disp32 | Disp32S | Disp16))
+ && fits_in_signed_byte (disp))
i.types[op] |= Disp8;
}
}
? No_sSuf
: (i.suffix == LONG_MNEM_SUFFIX
? No_lSuf
- : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0)))));
+ : (i.suffix == QWORD_MNEM_SUFFIX
+ ? No_qSuf
+ : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
for (t = current_templates->start;
t < current_templates->end;
/* found_reverse_match holds which of D or FloatDR
we've found. */
found_reverse_match = t->opcode_modifier & (D|FloatDR);
- break;
}
/* Found a forward 2 operand match here. */
- if (t->operands == 3)
+ else if (t->operands == 3)
{
/* Here we make use of the fact that there are no
reverse match 3 operand instructions, and all 3
/* Found either forward/reverse 2 or 3 operand match here:
slip through to break. */
}
+ if (t->cpu_flags & ~cpu_arch_flags)
+ {
+ found_reverse_match = 0;
+ continue;
+ }
/* We've found a match; break out of loop. */
break;
}
}
}
+ if (i.reg_operands && flag_code < CODE_64BIT)
+ {
+ int op;
+ for (op = i.operands; --op >= 0; )
+ if ((i.types[op] & Reg)
+ && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
+ as_bad (_("Extended register `%%%s' available only in 64bit mode."),
+ i.op[op].regs->reg_name);
+ }
+
/* If matched instruction specifies an explicit instruction mnemonic
suffix, use it. */
- if (i.tm.opcode_modifier & (Size16 | Size32))
+ if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
{
if (i.tm.opcode_modifier & Size16)
i.suffix = WORD_MNEM_SUFFIX;
+ else if (i.tm.opcode_modifier & Size64)
+ i.suffix = QWORD_MNEM_SUFFIX;
else
i.suffix = LONG_MNEM_SUFFIX;
}
{
i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
(i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
+ (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
LONG_MNEM_SUFFIX);
break;
}
if (intel_syntax
&& (i.tm.base_opcode == 0xfb7
|| i.tm.base_opcode == 0xfb6
+ || i.tm.base_opcode == 0x63
|| i.tm.base_opcode == 0xfbe
|| i.tm.base_opcode == 0xfbf))
continue;
#endif
)
{
+ /* Prohibit these changes in the 64bit mode, since
+ the lowering is more complicated. */
+ if (flag_code == CODE_64BIT
+ && (i.tm.operand_types[op] & InOutPortReg) == 0)
+ as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
+ i.op[op].regs->reg_name,
+ i.suffix);
#if REGISTER_WARNINGS
if (!quiet_warnings
&& (i.tm.operand_types[op] & InOutPortReg) == 0)
i.suffix);
return;
}
-#if REGISTER_WARNINGS
/* Warn if the e prefix on a general reg is missing. */
- else if (!quiet_warnings
+ else if ((!quiet_warnings || flag_code == CODE_64BIT)
&& (i.types[op] & Reg16) != 0
&& (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
{
- as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
- (i.op[op].regs + 8)->reg_name,
- i.op[op].regs->reg_name,
- i.suffix);
- }
+ /* Prohibit these changes in the 64bit mode, since
+ the lowering is more complicated. */
+ if (flag_code == CODE_64BIT)
+ as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
+ i.op[op].regs->reg_name,
+ i.suffix);
+#if REGISTER_WARNINGS
+ else
+ as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
+ (i.op[op].regs + 8)->reg_name,
+ i.op[op].regs->reg_name,
+ i.suffix);
#endif
+ }
+ /* Warn if the r prefix on a general reg is missing. */
+ else if ((i.types[op] & Reg64) != 0
+ && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
+ {
+ as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
+ i.op[op].regs->reg_name,
+ i.suffix);
+ }
+ }
+ else if (i.suffix == QWORD_MNEM_SUFFIX)
+ {
+ int op;
+ if (flag_code < CODE_64BIT)
+ as_bad (_("64bit operations available only in 64bit modes."));
+
+ for (op = i.operands; --op >= 0; )
+ /* Reject eight bit registers, except where the template
+ requires them. (eg. movzb) */
+ if ((i.types[op] & Reg8) != 0
+ && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
+ {
+ as_bad (_("`%%%s' not allowed with `%s%c'"),
+ i.op[op].regs->reg_name,
+ i.tm.name,
+ i.suffix);
+ return;
+ }
+ /* Warn if the e prefix on a general reg is missing. */
+ else if (((i.types[op] & Reg16) != 0
+ || (i.types[op] & Reg32) != 0)
+ && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
+ {
+ /* Prohibit these changes in the 64bit mode, since
+ the lowering is more complicated. */
+ as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
+ i.op[op].regs->reg_name,
+ i.suffix);
+ }
}
else if (i.suffix == WORD_MNEM_SUFFIX)
{
i.suffix);
return;
}
-#if REGISTER_WARNINGS
/* Warn if the e prefix on a general reg is present. */
- else if (!quiet_warnings
+ else if ((!quiet_warnings || flag_code == CODE_64BIT)
&& (i.types[op] & Reg32) != 0
&& (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
{
- as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
- (i.op[op].regs - 8)->reg_name,
- i.op[op].regs->reg_name,
- i.suffix);
- }
+ /* Prohibit these changes in the 64bit mode, since
+ the lowering is more complicated. */
+ if (flag_code == CODE_64BIT)
+ as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
+ i.op[op].regs->reg_name,
+ i.suffix);
+ else
+#if REGISTER_WARNINGS
+ as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
+ (i.op[op].regs - 8)->reg_name,
+ i.op[op].regs->reg_name,
+ i.suffix);
#endif
+ }
}
else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
/* Do nothing if the instruction is going to ignore the prefix. */
{
i.suffix = stackop_size;
}
-
/* Make still unresolved immediate matches conform to size of immediate
given in i.suffix. Note: overlap2 cannot be an immediate! */
- if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32))
+ if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
&& overlap0 != Imm8 && overlap0 != Imm8S
- && overlap0 != Imm16 && overlap0 != Imm32)
+ && overlap0 != Imm16 && overlap0 != Imm32S
+ && overlap0 != Imm32 && overlap0 != Imm64)
{
if (i.suffix)
{
overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
- (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
+ (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
+ (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
}
- else if (overlap0 == (Imm16 | Imm32))
+ else if (overlap0 == (Imm16 | Imm32S | Imm32)
+ || overlap0 == (Imm16 | Imm32)
+ || overlap0 == (Imm16 | Imm32S))
{
overlap0 =
- (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
+ ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
}
- else
+ if (overlap0 != Imm8 && overlap0 != Imm8S
+ && overlap0 != Imm16 && overlap0 != Imm32S
+ && overlap0 != Imm32 && overlap0 != Imm64)
{
as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
return;
}
}
- if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32))
+ if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
&& overlap1 != Imm8 && overlap1 != Imm8S
- && overlap1 != Imm16 && overlap1 != Imm32)
+ && overlap1 != Imm16 && overlap1 != Imm32S
+ && overlap1 != Imm32 && overlap1 != Imm64)
{
if (i.suffix)
{
overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
- (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
+ (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
+ (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
}
- else if (overlap1 == (Imm16 | Imm32))
+ else if (overlap1 == (Imm16 | Imm32 | Imm32S)
+ || overlap1 == (Imm16 | Imm32)
+ || overlap1 == (Imm16 | Imm32S))
{
overlap1 =
- (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
+ ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
}
- else
+ if (overlap1 != Imm8 && overlap1 != Imm8S
+ && overlap1 != Imm16 && overlap1 != Imm32S
+ && overlap1 != Imm32 && overlap1 != Imm64)
{
- as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
+ as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
return;
}
}
/* Now select between word & dword operations via the operand
size prefix, except for instructions that will ignore this
prefix anyway. */
- if ((i.suffix == LONG_MNEM_SUFFIX) == flag_16bit_code
+ if (i.suffix != QWORD_MNEM_SUFFIX
+ && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
&& !(i.tm.opcode_modifier & IgnoreSize))
{
unsigned int prefix = DATA_PREFIX_OPCODE;
if (! add_prefix (prefix))
return;
}
+
+ /* Set mode64 for an operand. */
+ if (i.suffix == QWORD_MNEM_SUFFIX
+ && !(i.tm.opcode_modifier & NoRex64))
+ i.rex.mode64 = 1;
+
/* Size floating point instruction. */
if (i.suffix == LONG_MNEM_SUFFIX)
{
unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
/* Register goes in low 3 bits of opcode. */
i.tm.base_opcode |= i.op[op].regs->reg_num;
+ if (i.op[op].regs->reg_flags & RegRex)
+ i.rex.extZ=1;
if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
{
/* Warn about some common errors, but press on regardless.
{
i.rm.reg = i.op[dest].regs->reg_num;
i.rm.regmem = i.op[source].regs->reg_num;
+ if (i.op[dest].regs->reg_flags & RegRex)
+ i.rex.extX=1;
+ if (i.op[source].regs->reg_flags & RegRex)
+ i.rex.extZ=1;
}
else
{
i.rm.reg = i.op[source].regs->reg_num;
i.rm.regmem = i.op[dest].regs->reg_num;
+ if (i.op[dest].regs->reg_flags & RegRex)
+ i.rex.extZ=1;
+ if (i.op[source].regs->reg_flags & RegRex)
+ i.rex.extX=1;
}
}
else
if (! i.index_reg)
{
/* Operand is just <disp> */
- if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
+ if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
{
i.rm.regmem = NO_BASE_REGISTER_16;
i.types[op] &= ~Disp;
i.types[op] |= Disp16;
}
- else
+ else if (flag_code != CODE_64BIT)
{
i.rm.regmem = NO_BASE_REGISTER;
i.types[op] &= ~Disp;
i.types[op] |= Disp32;
}
+ else
+ {
+ /* 64bit mode overwrites the 32bit absolute addressing
+ by RIP relative addressing and absolute addressing
+ is encoded by one of the redundant SIB forms. */
+
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ i.sib.base = NO_BASE_REGISTER;
+ i.sib.index = NO_INDEX_REGISTER;
+ i.types[op] &= ~Disp;
+ i.types[op] |= Disp32S;
+ }
}
else /* ! i.base_reg && i.index_reg */
{
i.sib.scale = i.log2_scale_factor;
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
i.types[op] &= ~Disp;
- i.types[op] |= Disp32; /* Must be 32 bit. */
+ if (flag_code != CODE_64BIT)
+ i.types[op] |= Disp32; /* Must be 32 bit */
+ else
+ i.types[op] |= Disp32S;
+ if (i.index_reg->reg_flags & RegRex)
+ i.rex.extY=1;
}
}
+ /* RIP addressing for 64bit mode. */
+ else if (i.base_reg->reg_type == BaseIndex)
+ {
+ i.rm.regmem = NO_BASE_REGISTER;
+ i.types[op] &= ~Disp;
+ i.types[op] |= Disp32S;
+ i.flags[op] = Operand_PCrel;
+ }
else if (i.base_reg->reg_type & Reg16)
{
switch (i.base_reg->reg_num)
}
i.rm.mode = mode_from_disp_size (i.types[op]);
}
- else /* i.base_reg and 32 bit mode */
+ else /* i.base_reg and 32/64 bit mode */
{
+ if (flag_code == CODE_64BIT
+ && (i.types[op] & Disp))
+ {
+ if (i.types[op] & Disp8)
+ i.types[op] = Disp8 | Disp32S;
+ else
+ i.types[op] = Disp32S;
+ }
i.rm.regmem = i.base_reg->reg_num;
+ if (i.base_reg->reg_flags & RegRex)
+ i.rex.extZ=1;
i.sib.base = i.base_reg->reg_num;
- if (i.base_reg->reg_num == EBP_REG_NUM)
+ /* x86-64 ignores REX prefix bit here to avoid
+ decoder complications. */
+ if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
{
default_seg = &ss;
if (i.disp_operands == 0)
{
i.sib.index = i.index_reg->reg_num;
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ if (i.index_reg->reg_flags & RegRex)
+ i.rex.extY=1;
}
i.rm.mode = mode_from_disp_size (i.types[op]);
}
/* If there is an extension opcode to put here, the
register number must be put into the regmem field. */
if (i.tm.extension_opcode != None)
- i.rm.regmem = i.op[op].regs->reg_num;
+ {
+ i.rm.regmem = i.op[op].regs->reg_num;
+ if (i.op[op].regs->reg_flags & RegRex)
+ i.rex.extZ=1;
+ }
else
- i.rm.reg = i.op[op].regs->reg_num;
+ {
+ i.rm.reg = i.op[op].regs->reg_num;
+ if (i.op[op].regs->reg_flags & RegRex)
+ i.rex.extX=1;
+ }
/* Now, if no memory operand has set i.rm.mode = 0, 1, 2
we must set it to 3 to indicate this is a register
return;
}
i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
+ if (i.op[0].regs->reg_flags & RegRex)
+ i.rex.extZ = 1;
}
else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
{
i.op[0].disps->X_op = O_symbol;
}
+ if (i.tm.opcode_modifier & Rex64)
+ i.rex.mode64 = 1;
+
+ /* For 8bit registers we would need an empty rex prefix.
+ Also in the case instruction is already having prefix,
+ we need to convert old registers to new ones. */
+
+ if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
+ || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
+ || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
+ && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
+ {
+ int x;
+ i.rex.empty=1;
+ for (x = 0; x < 2; x++)
+ {
+ /* Look for 8bit operand that does use old registers. */
+ if (i.types[x] & Reg8
+ && !(i.op[x].regs->reg_flags & RegRex64))
+ {
+ /* In case it is "hi" register, give up. */
+ if (i.op[x].regs->reg_num > 3)
+ as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
+ i.op[x].regs->reg_name);
+
+ /* Otherwise it is equivalent to the extended register.
+ Since the encoding don't change this is merely cosmetical
+ cleanup for debug output. */
+
+ i.op[x].regs = i.op[x].regs + 8;
+ }
+ }
+ }
+
+ if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
+ add_prefix (0x40
+ | (i.rex.mode64 ? 8 : 0)
+ | (i.rex.extX ? 4 : 0)
+ | (i.rex.extY ? 2 : 0)
+ | (i.rex.extZ ? 1 : 0));
+
/* We are ready to output the insn. */
{
register char *p;
int prefix;
code16 = 0;
- if (flag_16bit_code)
+ if (flag_code == CODE_16BIT)
code16 = CODE16;
prefix = 0;
i.prefixes -= 1;
code16 ^= CODE16;
}
+ if (i.prefix[REX_PREFIX])
+ {
+ prefix++;
+ i.prefixes --;
+ }
size = 4;
if (code16)
insn_size += prefix + 1;
/* Prefix and 1 opcode byte go in fr_fix. */
p = frag_more (prefix + 1);
- if (prefix)
+ if (i.prefix[DATA_PREFIX])
*p++ = DATA_PREFIX_OPCODE;
+ if (i.prefix[REX_PREFIX])
+ *p++ = i.prefix[REX_PREFIX];
*p = i.tm.base_opcode;
/* 1 possible extra opcode + displacement go in var part.
Pass reloc in fr_var. */
int code16;
code16 = 0;
- if (flag_16bit_code)
+ if (flag_code == CODE_16BIT)
code16 = CODE16;
if (i.prefix[DATA_PREFIX])
size = 2;
}
+ if (i.prefix[REX_PREFIX])
+ {
+ FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
+ insn_size++;
+ i.prefixes -= 1;
+ }
+
if (i.prefixes != 0 && !intel_syntax)
as_warn (_("skipping prefixes on this instruction"));
*p++ = i.tm.base_opcode & 0xff;
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
- i.op[0].disps, 1, reloc (size, 1, i.disp_reloc[0]));
+ i.op[0].disps, 1, reloc (size, 1, 1, i.disp_reloc[0]));
}
else if (i.tm.opcode_modifier & JumpInterSegment)
{
int code16;
code16 = 0;
- if (flag_16bit_code)
+ if (flag_code == CODE_16BIT)
code16 = CODE16;
prefix = 0;
i.prefixes -= 1;
code16 ^= CODE16;
}
+ if (i.prefix[REX_PREFIX])
+ {
+ prefix++;
+ i.prefixes -= 1;
+ }
size = 4;
if (code16)
/* 1 opcode; 2 segment; offset */
insn_size += prefix + 1 + 2 + size;
p = frag_more (prefix + 1 + 2 + size);
- if (prefix)
+
+ if (i.prefix[DATA_PREFIX])
*p++ = DATA_PREFIX_OPCODE;
+
+ if (i.prefix[REX_PREFIX])
+ *p++ = i.prefix[REX_PREFIX];
+
*p++ = i.tm.base_opcode;
if (i.op[1].imms->X_op == O_constant)
{
}
else
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
- i.op[1].imms, 0, reloc (size, 0, i.disp_reloc[0]));
+ i.op[1].imms, 0, reloc (size, 0, 0, i.disp_reloc[0]));
if (i.op[0].imms->X_op != O_constant)
as_bad (_("can't handle non absolute segment in `%s'"),
i.tm.name);
offsetT val;
size = 4;
- if (i.types[n] & (Disp8 | Disp16))
+ if (i.types[n] & (Disp8 | Disp16 | Disp64))
{
size = 2;
if (i.types[n] & Disp8)
size = 1;
+ if (i.types[n] & Disp64)
+ size = 8;
}
val = offset_in_range (i.op[n].disps->X_add_number,
size);
else
{
int size = 4;
+ int sign = 0;
+ int pcrel = (i.flags[n] & Operand_PCrel) != 0;
+
+ /* The PC relative address is computed relative
+ to the instruction boundary, so in case immediate
+ fields follows, we need to adjust the value. */
+ if (pcrel && i.imm_operands)
+ {
+ int imm_size = 4;
+ register unsigned int n1;
+
+ for (n1 = 0; n1 < i.operands; n1++)
+ if (i.types[n1] & Imm)
+ {
+ if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
+ {
+ imm_size = 2;
+ if (i.types[n1] & (Imm8 | Imm8S))
+ imm_size = 1;
+ if (i.types[n1] & Imm64)
+ imm_size = 8;
+ }
+ break;
+ }
+ /* We should find the immediate. */
+ if (n1 == i.operands)
+ abort();
+ i.op[n].disps->X_add_number -= imm_size;
+ }
- if (i.types[n] & Disp16)
- size = 2;
+ if (i.types[n] & Disp32S)
+ sign = 1;
+
+ if (i.types[n] & (Disp16 | Disp64))
+ {
+ size = 2;
+ if (i.types[n] & Disp64)
+ size = 8;
+ }
insn_size += size;
p = frag_more (size);
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
- i.op[n].disps, 0,
- reloc (size, 0, i.disp_reloc[n]));
+ i.op[n].disps, pcrel,
+ reloc (size, pcrel, sign, i.disp_reloc[n]));
}
}
}
offsetT val;
size = 4;
- if (i.types[n] & (Imm8 | Imm8S | Imm16))
+ if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
{
size = 2;
if (i.types[n] & (Imm8 | Imm8S))
size = 1;
+ else if (i.types[n] & Imm64)
+ size = 8;
}
val = offset_in_range (i.op[n].imms->X_add_number,
size);
int reloc_type;
#endif
int size = 4;
+ int sign = 0;
- if (i.types[n] & Imm16)
- size = 2;
- else if (i.types[n] & (Imm8 | Imm8S))
- size = 1;
+ if ((i.types[n] & (Imm32S))
+ && i.suffix == QWORD_MNEM_SUFFIX)
+ sign = 1;
+ if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
+ {
+ size = 2;
+ if (i.types[n] & (Imm8 | Imm8S))
+ size = 1;
+ if (i.types[n] & Imm64)
+ size = 8;
+ }
insn_size += size;
p = frag_more (size);
- reloc_type = reloc (size, 0, i.disp_reloc[0]);
+ reloc_type = reloc (size, 0, sign, i.disp_reloc[0]);
#ifdef BFD_ASSEMBLER
if (reloc_type == BFD_RELOC_32
&& GOT_symbol
(i.op[n].imms->X_op_symbol)->X_op)
== O_subtract))))
{
+ /* We don't support dynamic linking on x86-64 yet. */
+ if (flag_code == CODE_64BIT)
+ abort();
reloc_type = BFD_RELOC_386_GOTPC;
i.op[n].imms->X_add_number += 3;
}
int first;
/* GOT relocations are not supported in 16 bit mode. */
- if (flag_16bit_code)
+ if (flag_code == CODE_16BIT)
as_bad (_("GOT relocations not supported in 16 bit mode"));
if (GOT_symbol == NULL)
if (strncmp (cp + 1, "PLT", 3) == 0)
{
- i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
+ if (flag_code == CODE_64BIT)
+ i.disp_reloc[this_operand] = BFD_RELOC_X86_64_PLT32;
+ else
+ i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
len = 3;
}
else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
{
+ if (flag_code == CODE_64BIT)
+ as_bad ("GOTOFF relocations are unsupported in 64bit mode.");
i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
len = 6;
}
else if (strncmp (cp + 1, "GOT", 3) == 0)
{
- i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
+ if (flag_code == CODE_64BIT)
+ i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOT32;
+ else
+ i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
+ len = 3;
+ }
+ else if (strncmp (cp + 1, "GOTPCREL", 3) == 0)
+ {
+ if (flag_code == CODE_64BIT)
+ i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOTPCREL;
+ else
+ as_bad ("GOTPCREL relocations are supported only in 64bit mode.");
len = 3;
}
else
exp->X_add_symbol = (symbolS *) 0;
exp->X_op_symbol = (symbolS *) 0;
}
-
- if (exp->X_op == O_constant)
+ else if (exp->X_op == O_constant)
{
/* Size it properly later. */
- i.types[this_operand] |= Imm32;
+ i.types[this_operand] |= Imm64;
+ /* If BFD64, sign extend val. */
+ if (!use_rela_relocations)
+ if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
+ exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
}
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
else if (1
{
/* This is an address. The size of the address will be
determined later, depending on destination register,
- suffix, or the default for the section. We exclude
- Imm8S here so that `push $foo' and other instructions
- with an Imm8S form will use Imm16 or Imm32. */
- i.types[this_operand] |= (Imm8 | Imm16 | Imm32);
+ suffix, or the default for the section. */
+ i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
}
return 1;
char *save_input_line_pointer;
int bigdisp = Disp32;
- if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
+ if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
bigdisp = Disp16;
+ if (flag_code == CODE_64BIT)
+ bigdisp = Disp64;
i.types[this_operand] |= bigdisp;
exp = &disp_expressions[i.disp_operands];
int first;
/* GOT relocations are not supported in 16 bit mode. */
- if (flag_16bit_code)
+ if (flag_code == CODE_16BIT)
as_bad (_("GOT relocations not supported in 16 bit mode"));
if (GOT_symbol == NULL)
if (strncmp (cp + 1, "PLT", 3) == 0)
{
- i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
+ if (flag_code == CODE_64BIT)
+ i.disp_reloc[this_operand] = BFD_RELOC_X86_64_PLT32;
+ else
+ i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
len = 3;
}
else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
{
+ if (flag_code == CODE_64BIT)
+ as_bad ("GOTOFF relocation is not supported in 64bit mode.");
i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
len = 6;
}
else if (strncmp (cp + 1, "GOT", 3) == 0)
{
- i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
+ if (flag_code == CODE_64BIT)
+ i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOT32;
+ else
+ i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
+ len = 3;
+ }
+ else if (strncmp (cp + 1, "GOTPCREL", 3) == 0)
+ {
+ if (flag_code != CODE_64BIT)
+ as_bad ("GOTPCREL relocation is supported only in 64bit mode.");
+ i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOTPCREL;
len = 3;
}
else
/* We do this to make sure that the section symbol is in
the symbol table. We will ultimately change the relocation
to be relative to the beginning of the section. */
- if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF)
+ if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF
+ || i.disp_reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
{
if (S_IS_LOCAL(exp->X_add_symbol)
&& S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
return 0;
}
#endif
+ else if (flag_code == CODE_64BIT)
+ i.types[this_operand] |= Disp32S | Disp32;
return 1;
}
i386_index_check (operand_string)
const char *operand_string;
{
+ int ok;
#if INFER_ADDR_PREFIX
int fudged = 0;
tryprefix:
#endif
- if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0)
- /* 16 bit mode checks. */
- ? ((i.base_reg
- && ((i.base_reg->reg_type & (Reg16|BaseIndex))
- != (Reg16|BaseIndex)))
- || (i.index_reg
- && (((i.index_reg->reg_type & (Reg16|BaseIndex))
- != (Reg16|BaseIndex))
- || ! (i.base_reg
- && i.base_reg->reg_num < 6
- && i.index_reg->reg_num >= 6
- && i.log2_scale_factor == 0))))
- /* 32 bit mode checks. */
- : ((i.base_reg
- && (i.base_reg->reg_type & Reg32) == 0)
- || (i.index_reg
- && ((i.index_reg->reg_type & (Reg32|BaseIndex))
- != (Reg32|BaseIndex)))))
+ ok = 1;
+ if (flag_code == CODE_64BIT)
+ {
+ /* 64bit checks. */
+ if ((i.base_reg
+ && ((i.base_reg->reg_type & Reg64) == 0)
+ && (i.base_reg->reg_type != BaseIndex
+ || i.index_reg))
+ || (i.index_reg
+ && ((i.index_reg->reg_type & (Reg64|BaseIndex))
+ != (Reg64|BaseIndex))))
+ ok = 0;
+ }
+ else
+ {
+ if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
+ {
+ /* 16bit checks. */
+ if ((i.base_reg
+ && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
+ != (Reg16|BaseIndex)))
+ || (i.index_reg
+ && (((i.index_reg->reg_type & (Reg16|BaseIndex))
+ != (Reg16|BaseIndex))
+ || ! (i.base_reg
+ && i.base_reg->reg_num < 6
+ && i.index_reg->reg_num >= 6
+ && i.log2_scale_factor == 0))))
+ ok = 0;
+ }
+ else
+ {
+ /* 32bit checks. */
+ if ((i.base_reg
+ && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
+ || (i.index_reg
+ && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
+ != (Reg32|BaseIndex))))
+ ok = 0;
+ }
+ }
+ if (!ok)
{
#if INFER_ADDR_PREFIX
- if (i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
+ if (flag_code != CODE_64BIT
+ && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
{
i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
i.prefixes += 1;
#endif
as_bad (_("`%s' is not a valid %s bit base/index expression"),
operand_string,
- flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0) ? "16" : "32");
+ flag_code_names[flag_code]);
return 0;
}
return 1;
switch (fixP->fx_r_type)
{
case BFD_RELOC_386_PLT32:
+ case BFD_RELOC_X86_64_PLT32:
/* Make the jump instruction point to the address of the operand. At
runtime we merely add the offset to the actual PLT entry. */
value = -4;
value -= 1;
break;
case BFD_RELOC_386_GOT32:
+ case BFD_RELOC_X86_64_GOT32:
value = 0; /* Fully resolved at runtime. No addend. */
break;
case BFD_RELOC_386_GOTOFF:
+ case BFD_RELOC_X86_64_GOTPCREL:
break;
case BFD_RELOC_VTABLE_INHERIT:
#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
*valp = value;
#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
+
+#ifndef BFD_ASSEMBLER
md_number_to_chars (p, value, fixP->fx_size);
+#else
+ /* Are we finished with this relocation now? */
+ if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
+ fixP->fx_done = 1;
+ else if (use_rela_relocations)
+ {
+ fixP->fx_no_overflow = 1;
+ value = 0;
+ }
+ md_number_to_chars (p, value, fixP->fx_size);
+#endif
return 1;
}
const char *md_shortopts = "q";
#endif
struct option md_longopts[] = {
+#define OPTION_32 (OPTION_MD_BASE + 0)
+ {"32", no_argument, NULL, OPTION_32},
+#define OPTION_64 (OPTION_MD_BASE + 1)
+ {"64", no_argument, NULL, OPTION_64},
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
.stab instead of .stab.excl. We always use .stab anyhow. */
break;
#endif
+#ifdef OBJ_ELF
+ case OPTION_32:
+ case OPTION_64:
+ {
+ const char **list, **l;
+
+ default_arch = c == OPTION_32 ? "i386" : "x86_64";
+ list = bfd_target_list ();
+ for (l = list; *l != NULL; l++)
+ {
+ if (c == OPTION_32)
+ {
+ if (strcmp (*l, "elf32-i386") == 0)
+ break;
+ }
+ else
+ {
+ if (strcmp (*l, "elf64-x86-64") == 0)
+ break;
+ }
+ }
+ if (*l == NULL)
+ as_fatal (_("No compiled in support for %d bit object file format"),
+ c == OPTION_32 ? 32 : 64);
+ free (list);
+ }
+ break;
+#endif
default:
return 0;
}
#ifdef BFD_ASSEMBLER
-#if ((defined (OBJ_MAYBE_ELF) && defined (OBJ_MAYBE_COFF)) \
- || (defined (OBJ_MAYBE_ELF) && defined (OBJ_MAYBE_AOUT)) \
- || (defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)))
+#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
+ || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
/* Pick the target format to use. */
const char *
i386_target_format ()
{
+ if (!strcmp (default_arch, "x86_64"))
+ set_code_flag (CODE_64BIT);
+ else if (!strcmp (default_arch, "i386"))
+ set_code_flag (CODE_32BIT);
+ else
+ as_fatal (_("Unknown architecture"));
switch (OUTPUT_FLAVOR)
{
#ifdef OBJ_MAYBE_AOUT
case bfd_target_coff_flavour:
return "coff-i386";
#endif
-#ifdef OBJ_MAYBE_ELF
+#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
case bfd_target_elf_flavour:
- return "elf32-i386";
+ {
+ if (flag_code == CODE_64BIT)
+ use_rela_relocations = 1;
+ return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
+ }
#endif
default:
abort ();
{
if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
{
+ /* GOTOFF relocation are nonsense in 64bit mode. */
+ if (flag_code == CODE_64BIT)
+ abort();
fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
fixp->fx_subsy = 0;
}
switch (fixp->fx_r_type)
{
+ case BFD_RELOC_X86_64_PLT32:
+ case BFD_RELOC_X86_64_GOT32:
+ case BFD_RELOC_X86_64_GOTPCREL:
case BFD_RELOC_386_PLT32:
case BFD_RELOC_386_GOT32:
case BFD_RELOC_386_GOTOFF:
case BFD_RELOC_386_GOTPC:
+ case BFD_RELOC_X86_64_32S:
case BFD_RELOC_RVA:
case BFD_RELOC_VTABLE_ENTRY:
case BFD_RELOC_VTABLE_INHERIT:
case 1: code = BFD_RELOC_8; break;
case 2: code = BFD_RELOC_16; break;
case 4: code = BFD_RELOC_32; break;
+ case 8: code = BFD_RELOC_64; break;
}
}
break;
if (code == BFD_RELOC_32
&& GOT_symbol
&& fixp->fx_addsy == GOT_symbol)
- code = BFD_RELOC_386_GOTPC;
+ {
+ /* We don't support GOTPC on 64bit targets. */
+ if (flag_code == CODE_64BIT)
+ abort();
+ code = BFD_RELOC_386_GOTPC;
+ }
rel = (arelent *) xmalloc (sizeof (arelent));
rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
- /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
- vtable entry to be used in the relocation's section offset. */
- if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
- rel->address = fixp->fx_offset;
+ if (!use_rela_relocations)
+ {
+ /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
+ vtable entry to be used in the relocation's section offset. */
+ if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
+ rel->address = fixp->fx_offset;
- if (fixp->fx_pcrel)
- rel->addend = fixp->fx_addnumber;
+ if (fixp->fx_pcrel)
+ rel->addend = fixp->fx_addnumber;
+ else
+ rel->addend = 0;
+ }
+ /* Use the rela in 64bit mode. */
else
- rel->addend = 0;
+ {
+ rel->addend = fixp->fx_offset;
+#ifdef OBJ_ELF
+ /* Ohhh, this is ugly. The problem is that if this is a local global
+ symbol, the relocation will entirely be performed at link time, not
+ at assembly time. bfd_perform_reloc doesn't know about this sort
+ of thing, and as a result we need to fake it out here. */
+ if ((S_IS_EXTERN (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy))
+ && !S_IS_COMMON(fixp->fx_addsy))
+ rel->addend -= symbol_get_bfdsym (fixp->fx_addsy)->value;
+#endif
+ if (fixp->fx_pcrel)
+ rel->addend -= fixp->fx_size;
+ }
+
rel->howto = bfd_reloc_type_lookup (stdoutput, code);
if (rel->howto == NULL)
if (intel_parser.got_a_float == 1) /* "f..." */
i.suffix = LONG_MNEM_SUFFIX;
else
- {
- as_bad (_("operand modifier `%s' supported only for i387 operations\n"),
- prev_token.str);
- return 0;
- }
+ i.suffix = QWORD_MNEM_SUFFIX;
}
else if (prev_token.code == T_XWORD)
#define MOV_AX_DISP32 0xa0
{ "mov", 2, 0xa0, X, 0, bwl_Suf|D|W, { Disp16|Disp32, Acc, 0 } },
{ "mov", 2, 0x88, X, 0, bwl_Suf|D|W|Modrm, { Reg, Reg|AnyMem, 0 } },
-{ "mov", 2, 0xb0, X, 0, bwl_Suf|W|ShortForm, { Imm, Reg, 0 } },
-{ "mov", 2, 0xc6, X, 0, bwl_Suf|W|Modrm, { Imm, Reg|AnyMem, 0 } },
+{ "mov", 2, 0xb0, X, 0, bwl_Suf|W|ShortForm, { EncImm, Reg, 0 } },
+{ "mov", 2, 0xc6, X, 0, bwl_Suf|W|Modrm, { EncImm, Reg|AnyMem, 0 } },
/* The segment register moves accept WordReg so that a segment register
can be copied to a 32 bit register, and vice versa, without using a
size prefix. When moving to a 32 bit register, the upper 16 bits
/* Arithmetic. */
{"add", 2, 0x00, X, 0, bwl_Suf|D|W|Modrm, { Reg, Reg|AnyMem, 0} },
{"add", 2, 0x83, 0, 0, wl_Suf|Modrm, { Imm8S, WordReg|WordMem, 0} },
-{"add", 2, 0x04, X, 0, bwl_Suf|W, { Imm, Acc, 0} },
-{"add", 2, 0x80, 0, 0, bwl_Suf|W|Modrm, { Imm, Reg|AnyMem, 0} },
+{"add", 2, 0x04, X, 0, bwl_Suf|W, { EncImm, Acc, 0} },
+{"add", 2, 0x80, 0, 0, bwl_Suf|W|Modrm, { EncImm, Reg|AnyMem, 0} },
{"inc", 1, 0x40, X, 0, wl_Suf|ShortForm, { WordReg, 0, 0} },
{"inc", 1, 0xfe, 0, 0, bwl_Suf|W|Modrm, { Reg|AnyMem, 0, 0} },
{"sub", 2, 0x28, X, 0, bwl_Suf|D|W|Modrm, { Reg, Reg|AnyMem, 0} },
{"sub", 2, 0x83, 5, 0, wl_Suf|Modrm, { Imm8S, WordReg|WordMem, 0} },
-{"sub", 2, 0x2c, X, 0, bwl_Suf|W, { Imm, Acc, 0} },
-{"sub", 2, 0x80, 5, 0, bwl_Suf|W|Modrm, { Imm, Reg|AnyMem, 0} },
+{"sub", 2, 0x2c, X, 0, bwl_Suf|W, { EncImm, Acc, 0} },
+{"sub", 2, 0x80, 5, 0, bwl_Suf|W|Modrm, { EncImm, Reg|AnyMem, 0} },
{"dec", 1, 0x48, X, 0, wl_Suf|ShortForm, { WordReg, 0, 0} },
{"dec", 1, 0xfe, 1, 0, bwl_Suf|W|Modrm, { Reg|AnyMem, 0, 0} },
{"sbb", 2, 0x18, X, 0, bwl_Suf|D|W|Modrm, { Reg, Reg|AnyMem, 0} },
{"sbb", 2, 0x83, 3, 0, wl_Suf|Modrm, { Imm8S, WordReg|WordMem, 0} },
-{"sbb", 2, 0x1c, X, 0, bwl_Suf|W, { Imm, Acc, 0} },
-{"sbb", 2, 0x80, 3, 0, bwl_Suf|W|Modrm, { Imm, Reg|AnyMem, 0} },
+{"sbb", 2, 0x1c, X, 0, bwl_Suf|W, { EncImm, Acc, 0} },
+{"sbb", 2, 0x80, 3, 0, bwl_Suf|W|Modrm, { EncImm, Reg|AnyMem, 0} },
{"cmp", 2, 0x38, X, 0, bwl_Suf|D|W|Modrm, { Reg, Reg|AnyMem, 0} },
{"cmp", 2, 0x83, 7, 0, wl_Suf|Modrm, { Imm8S, WordReg|WordMem, 0} },
-{"cmp", 2, 0x3c, X, 0, bwl_Suf|W, { Imm, Acc, 0} },
-{"cmp", 2, 0x80, 7, 0, bwl_Suf|W|Modrm, { Imm, Reg|AnyMem, 0} },
+{"cmp", 2, 0x3c, X, 0, bwl_Suf|W, { EncImm, Acc, 0} },
+{"cmp", 2, 0x80, 7, 0, bwl_Suf|W|Modrm, { EncImm, Reg|AnyMem, 0} },
{"test", 2, 0x84, X, 0, bwl_Suf|W|Modrm, { Reg|AnyMem, Reg, 0} },
{"test", 2, 0x84, X, 0, bwl_Suf|W|Modrm, { Reg, Reg|AnyMem, 0} },
-{"test", 2, 0xa8, X, 0, bwl_Suf|W, { Imm, Acc, 0} },
-{"test", 2, 0xf6, 0, 0, bwl_Suf|W|Modrm, { Imm, Reg|AnyMem, 0} },
+{"test", 2, 0xa8, X, 0, bwl_Suf|W, { EncImm, Acc, 0} },
+{"test", 2, 0xf6, 0, 0, bwl_Suf|W|Modrm, { EncImm, Reg|AnyMem, 0} },
{"and", 2, 0x20, X, 0, bwl_Suf|D|W|Modrm, { Reg, Reg|AnyMem, 0} },
{"and", 2, 0x83, 4, 0, wl_Suf|Modrm, { Imm8S, WordReg|WordMem, 0} },
-{"and", 2, 0x24, X, 0, bwl_Suf|W, { Imm, Acc, 0} },
-{"and", 2, 0x80, 4, 0, bwl_Suf|W|Modrm, { Imm, Reg|AnyMem, 0} },
+{"and", 2, 0x24, X, 0, bwl_Suf|W, { EncImm, Acc, 0} },
+{"and", 2, 0x80, 4, 0, bwl_Suf|W|Modrm, { EncImm, Reg|AnyMem, 0} },
{"or", 2, 0x08, X, 0, bwl_Suf|D|W|Modrm, { Reg, Reg|AnyMem, 0} },
{"or", 2, 0x83, 1, 0, wl_Suf|Modrm, { Imm8S, WordReg|WordMem, 0} },
-{"or", 2, 0x0c, X, 0, bwl_Suf|W, { Imm, Acc, 0} },
-{"or", 2, 0x80, 1, 0, bwl_Suf|W|Modrm, { Imm, Reg|AnyMem, 0} },
+{"or", 2, 0x0c, X, 0, bwl_Suf|W, { EncImm, Acc, 0} },
+{"or", 2, 0x80, 1, 0, bwl_Suf|W|Modrm, { EncImm, Reg|AnyMem, 0} },
{"xor", 2, 0x30, X, 0, bwl_Suf|D|W|Modrm, { Reg, Reg|AnyMem, 0} },
{"xor", 2, 0x83, 6, 0, wl_Suf|Modrm, { Imm8S, WordReg|WordMem, 0} },
-{"xor", 2, 0x34, X, 0, bwl_Suf|W, { Imm, Acc, 0} },
-{"xor", 2, 0x80, 6, 0, bwl_Suf|W|Modrm, { Imm, Reg|AnyMem, 0} },
+{"xor", 2, 0x34, X, 0, bwl_Suf|W, { EncImm, Acc, 0} },
+{"xor", 2, 0x80, 6, 0, bwl_Suf|W|Modrm, { EncImm, Reg|AnyMem, 0} },
/* clr with 1 operand is really xor with 2 operands. */
{"clr", 1, 0x30, X, 0, bwl_Suf|W|Modrm|regKludge, { Reg, 0, 0 } },
{"adc", 2, 0x10, X, 0, bwl_Suf|D|W|Modrm, { Reg, Reg|AnyMem, 0} },
{"adc", 2, 0x83, 2, 0, wl_Suf|Modrm, { Imm8S, WordReg|WordMem, 0} },
-{"adc", 2, 0x14, X, 0, bwl_Suf|W, { Imm, Acc, 0} },
-{"adc", 2, 0x80, 2, 0, bwl_Suf|W|Modrm, { Imm, Reg|AnyMem, 0} },
+{"adc", 2, 0x14, X, 0, bwl_Suf|W, { EncImm, Acc, 0} },
+{"adc", 2, 0x80, 2, 0, bwl_Suf|W|Modrm, { EncImm, Reg|AnyMem, 0} },
{"neg", 1, 0xf6, 3, 0, bwl_Suf|W|Modrm, { Reg|AnyMem, 0, 0} },
{"not", 1, 0xf6, 2, 0, bwl_Suf|W|Modrm, { Reg|AnyMem, 0, 0} },
static const reg_entry i386_regtab[] = {
/* make %st first as we test for it */
- {"st", FloatReg|FloatAcc, 0},
+ {"st", FloatReg|FloatAcc, 0, 0},
/* 8 bit regs */
- {"al", Reg8|Acc, 0},
- {"cl", Reg8|ShiftCount, 1},
- {"dl", Reg8, 2},
- {"bl", Reg8, 3},
- {"ah", Reg8, 4},
- {"ch", Reg8, 5},
- {"dh", Reg8, 6},
- {"bh", Reg8, 7},
+ {"al", Reg8|Acc, 0, 0},
+ {"cl", Reg8|ShiftCount, 0, 1},
+ {"dl", Reg8, 0, 2},
+ {"bl", Reg8, 0, 3},
+ {"ah", Reg8, 0, 4},
+ {"ch", Reg8, 0, 5},
+ {"dh", Reg8, 0, 6},
+ {"bh", Reg8, 0, 7},
/* 16 bit regs */
- {"ax", Reg16|Acc, 0},
- {"cx", Reg16, 1},
- {"dx", Reg16|InOutPortReg, 2},
- {"bx", Reg16|BaseIndex, 3},
- {"sp", Reg16, 4},
- {"bp", Reg16|BaseIndex, 5},
- {"si", Reg16|BaseIndex, 6},
- {"di", Reg16|BaseIndex, 7},
+ {"ax", Reg16|Acc, 0, 0},
+ {"cx", Reg16, 0, 1},
+ {"dx", Reg16|InOutPortReg, 0, 2},
+ {"bx", Reg16|BaseIndex, 0, 3},
+ {"sp", Reg16, 0, 4},
+ {"bp", Reg16|BaseIndex, 0, 5},
+ {"si", Reg16|BaseIndex, 0, 6},
+ {"di", Reg16|BaseIndex, 0, 7},
/* 32 bit regs */
- {"eax", Reg32|BaseIndex|Acc, 0},
- {"ecx", Reg32|BaseIndex, 1},
- {"edx", Reg32|BaseIndex, 2},
- {"ebx", Reg32|BaseIndex, 3},
- {"esp", Reg32, 4},
- {"ebp", Reg32|BaseIndex, 5},
- {"esi", Reg32|BaseIndex, 6},
- {"edi", Reg32|BaseIndex, 7},
+ {"eax", Reg32|BaseIndex|Acc, 0, 0},
+ {"ecx", Reg32|BaseIndex, 0, 1},
+ {"edx", Reg32|BaseIndex, 0, 2},
+ {"ebx", Reg32|BaseIndex, 0, 3},
+ {"esp", Reg32, 0, 4},
+ {"ebp", Reg32|BaseIndex, 0, 5},
+ {"esi", Reg32|BaseIndex, 0, 6},
+ {"edi", Reg32|BaseIndex, 0, 7},
/* segment registers */
- {"es", SReg2, 0},
- {"cs", SReg2, 1},
- {"ss", SReg2, 2},
- {"ds", SReg2, 3},
- {"fs", SReg3, 4},
- {"gs", SReg3, 5},
+ {"es", SReg2, 0, 0},
+ {"cs", SReg2, 0, 1},
+ {"ss", SReg2, 0, 2},
+ {"ds", SReg2, 0, 3},
+ {"fs", SReg3, 0, 4},
+ {"gs", SReg3, 0, 5},
/* control registers */
- {"cr0", Control, 0},
- {"cr1", Control, 1},
- {"cr2", Control, 2},
- {"cr3", Control, 3},
- {"cr4", Control, 4},
- {"cr5", Control, 5},
- {"cr6", Control, 6},
- {"cr7", Control, 7},
+ {"cr0", Control, 0, 0},
+ {"cr1", Control, 0, 1},
+ {"cr2", Control, 0, 2},
+ {"cr3", Control, 0, 3},
+ {"cr4", Control, 0, 4},
+ {"cr5", Control, 0, 5},
+ {"cr6", Control, 0, 6},
+ {"cr7", Control, 0, 7},
/* debug registers */
- {"db0", Debug, 0},
- {"db1", Debug, 1},
- {"db2", Debug, 2},
- {"db3", Debug, 3},
- {"db4", Debug, 4},
- {"db5", Debug, 5},
- {"db6", Debug, 6},
- {"db7", Debug, 7},
- {"dr0", Debug, 0},
- {"dr1", Debug, 1},
- {"dr2", Debug, 2},
- {"dr3", Debug, 3},
- {"dr4", Debug, 4},
- {"dr5", Debug, 5},
- {"dr6", Debug, 6},
- {"dr7", Debug, 7},
+ {"db0", Debug, 0, 0},
+ {"db1", Debug, 0, 1},
+ {"db2", Debug, 0, 2},
+ {"db3", Debug, 0, 3},
+ {"db4", Debug, 0, 4},
+ {"db5", Debug, 0, 5},
+ {"db6", Debug, 0, 6},
+ {"db7", Debug, 0, 7},
+ {"dr0", Debug, 0, 0},
+ {"dr1", Debug, 0, 1},
+ {"dr2", Debug, 0, 2},
+ {"dr3", Debug, 0, 3},
+ {"dr4", Debug, 0, 4},
+ {"dr5", Debug, 0, 5},
+ {"dr6", Debug, 0, 6},
+ {"dr7", Debug, 0, 7},
/* test registers */
- {"tr0", Test, 0},
- {"tr1", Test, 1},
- {"tr2", Test, 2},
- {"tr3", Test, 3},
- {"tr4", Test, 4},
- {"tr5", Test, 5},
- {"tr6", Test, 6},
- {"tr7", Test, 7},
+ {"tr0", Test, 0, 0},
+ {"tr1", Test, 0, 1},
+ {"tr2", Test, 0, 2},
+ {"tr3", Test, 0, 3},
+ {"tr4", Test, 0, 4},
+ {"tr5", Test, 0, 5},
+ {"tr6", Test, 0, 6},
+ {"tr7", Test, 0, 7},
/* mmx and simd registers */
- {"mm0", RegMMX, 0},
- {"mm1", RegMMX, 1},
- {"mm2", RegMMX, 2},
- {"mm3", RegMMX, 3},
- {"mm4", RegMMX, 4},
- {"mm5", RegMMX, 5},
- {"mm6", RegMMX, 6},
- {"mm7", RegMMX, 7},
- {"xmm0", RegXMM, 0},
- {"xmm1", RegXMM, 1},
- {"xmm2", RegXMM, 2},
- {"xmm3", RegXMM, 3},
- {"xmm4", RegXMM, 4},
- {"xmm5", RegXMM, 5},
- {"xmm6", RegXMM, 6},
- {"xmm7", RegXMM, 7}
+ {"mm0", RegMMX, 0, 0},
+ {"mm1", RegMMX, 0, 1},
+ {"mm2", RegMMX, 0, 2},
+ {"mm3", RegMMX, 0, 3},
+ {"mm4", RegMMX, 0, 4},
+ {"mm5", RegMMX, 0, 5},
+ {"mm6", RegMMX, 0, 6},
+ {"mm7", RegMMX, 0, 7},
+ {"xmm0", RegXMM, 0, 0},
+ {"xmm1", RegXMM, 0, 1},
+ {"xmm2", RegXMM, 0, 2},
+ {"xmm3", RegXMM, 0, 3},
+ {"xmm4", RegXMM, 0, 4},
+ {"xmm5", RegXMM, 0, 5},
+ {"xmm6", RegXMM, 0, 6},
+ {"xmm7", RegXMM, 0, 7}
};
static const reg_entry i386_float_regtab[] = {
- {"st(0)", FloatReg|FloatAcc, 0},
- {"st(1)", FloatReg, 1},
- {"st(2)", FloatReg, 2},
- {"st(3)", FloatReg, 3},
- {"st(4)", FloatReg, 4},
- {"st(5)", FloatReg, 5},
- {"st(6)", FloatReg, 6},
- {"st(7)", FloatReg, 7}
+ {"st(0)", FloatReg|FloatAcc, 0, 0},
+ {"st(1)", FloatReg, 0, 1},
+ {"st(2)", FloatReg, 0, 2},
+ {"st(3)", FloatReg, 0, 3},
+ {"st(4)", FloatReg, 0, 4},
+ {"st(5)", FloatReg, 0, 5},
+ {"st(6)", FloatReg, 0, 6},
+ {"st(7)", FloatReg, 0, 7}
};
#define MAX_REG_NAME_SIZE 8 /* for parsing register names from input */