We'll want to reuse this in our Vulkan extension.
Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Mark Janes <mark.a.janes@intel.com>
return true;
}
+
+/* Accumulate 32bits OA counters */
+static inline void
+accumulate_uint32(const uint32_t *report0,
+ const uint32_t *report1,
+ uint64_t *accumulator)
+{
+ *accumulator += (uint32_t)(*report1 - *report0);
+}
+
+/* Accumulate 40bits OA counters */
+static inline void
+accumulate_uint40(int a_index,
+ const uint32_t *report0,
+ const uint32_t *report1,
+ uint64_t *accumulator)
+{
+ const uint8_t *high_bytes0 = (uint8_t *)(report0 + 40);
+ const uint8_t *high_bytes1 = (uint8_t *)(report1 + 40);
+ uint64_t high0 = (uint64_t)(high_bytes0[a_index]) << 32;
+ uint64_t high1 = (uint64_t)(high_bytes1[a_index]) << 32;
+ uint64_t value0 = report0[a_index + 4] | high0;
+ uint64_t value1 = report1[a_index + 4] | high1;
+ uint64_t delta;
+
+ if (value0 > value1)
+ delta = (1ULL << 40) + value1 - value0;
+ else
+ delta = value1 - value0;
+
+ *accumulator += delta;
+}
+
+static void
+gen8_read_report_clock_ratios(const uint32_t *report,
+ uint64_t *slice_freq_hz,
+ uint64_t *unslice_freq_hz)
+{
+ /* The lower 16bits of the RPT_ID field of the OA reports contains a
+ * snapshot of the bits coming from the RP_FREQ_NORMAL register and is
+ * divided this way :
+ *
+ * RPT_ID[31:25]: RP_FREQ_NORMAL[20:14] (low squashed_slice_clock_frequency)
+ * RPT_ID[10:9]: RP_FREQ_NORMAL[22:21] (high squashed_slice_clock_frequency)
+ * RPT_ID[8:0]: RP_FREQ_NORMAL[31:23] (squashed_unslice_clock_frequency)
+ *
+ * RP_FREQ_NORMAL[31:23]: Software Unslice Ratio Request
+ * Multiple of 33.33MHz 2xclk (16 MHz 1xclk)
+ *
+ * RP_FREQ_NORMAL[22:14]: Software Slice Ratio Request
+ * Multiple of 33.33MHz 2xclk (16 MHz 1xclk)
+ */
+
+ uint32_t unslice_freq = report[0] & 0x1ff;
+ uint32_t slice_freq_low = (report[0] >> 25) & 0x7f;
+ uint32_t slice_freq_high = (report[0] >> 9) & 0x3;
+ uint32_t slice_freq = slice_freq_low | (slice_freq_high << 7);
+
+ *slice_freq_hz = slice_freq * 16666667ULL;
+ *unslice_freq_hz = unslice_freq * 16666667ULL;
+}
+
+void
+gen_perf_query_result_read_frequencies(struct gen_perf_query_result *result,
+ const struct gen_device_info *devinfo,
+ const uint32_t *start,
+ const uint32_t *end)
+{
+ /* Slice/Unslice frequency is only available in the OA reports when the
+ * "Disable OA reports due to clock ratio change" field in
+ * OA_DEBUG_REGISTER is set to 1. This is how the kernel programs this
+ * global register (see drivers/gpu/drm/i915/i915_perf.c)
+ *
+ * Documentation says this should be available on Gen9+ but experimentation
+ * shows that Gen8 reports similar values, so we enable it there too.
+ */
+ if (devinfo->gen < 8)
+ return;
+
+ gen8_read_report_clock_ratios(start,
+ &result->slice_frequency[0],
+ &result->unslice_frequency[0]);
+ gen8_read_report_clock_ratios(end,
+ &result->slice_frequency[1],
+ &result->unslice_frequency[1]);
+}
+
+void
+gen_perf_query_result_accumulate(struct gen_perf_query_result *result,
+ const struct gen_perf_query_info *query,
+ const uint32_t *start,
+ const uint32_t *end)
+{
+ int i, idx = 0;
+
+ result->hw_id = start[2];
+ result->reports_accumulated++;
+
+ switch (query->oa_format) {
+ case I915_OA_FORMAT_A32u40_A4u32_B8_C8:
+ accumulate_uint32(start + 1, end + 1, result->accumulator + idx++); /* timestamp */
+ accumulate_uint32(start + 3, end + 3, result->accumulator + idx++); /* clock */
+
+ /* 32x 40bit A counters... */
+ for (i = 0; i < 32; i++)
+ accumulate_uint40(i, start, end, result->accumulator + idx++);
+
+ /* 4x 32bit A counters... */
+ for (i = 0; i < 4; i++)
+ accumulate_uint32(start + 36 + i, end + 36 + i, result->accumulator + idx++);
+
+ /* 8x 32bit B counters + 8x 32bit C counters... */
+ for (i = 0; i < 16; i++)
+ accumulate_uint32(start + 48 + i, end + 48 + i, result->accumulator + idx++);
+ break;
+
+ case I915_OA_FORMAT_A45_B8_C8:
+ accumulate_uint32(start + 1, end + 1, result->accumulator); /* timestamp */
+
+ for (i = 0; i < 61; i++)
+ accumulate_uint32(start + 3 + i, end + 3 + i, result->accumulator + 1 + i);
+ break;
+
+ default:
+ unreachable("Can't accumulate OA counters in unknown format");
+ }
+
+}
+
+void
+gen_perf_query_result_clear(struct gen_perf_query_result *result)
+{
+ memset(result, 0, sizeof(*result));
+ result->hw_id = 0xffffffff; /* invalid */
+}
uint32_t denominator;
};
+/*
+ * The largest OA formats we can use include:
+ * For Haswell:
+ * 1 timestamp, 45 A counters, 8 B counters and 8 C counters.
+ * For Gen8+
+ * 1 timestamp, 1 clock, 36 A counters, 8 B counters and 8 C counters
+ */
+#define MAX_OA_REPORT_COUNTERS 62
+
+struct gen_perf_query_result {
+ /**
+ * Storage for the final accumulated OA counters.
+ */
+ uint64_t accumulator[MAX_OA_REPORT_COUNTERS];
+
+ /**
+ * Hw ID used by the context on which the query was running.
+ */
+ uint32_t hw_id;
+
+ /**
+ * Number of reports accumulated to produce the results.
+ */
+ uint32_t reports_accumulated;
+
+ /**
+ * Frequency in the slices of the GT at the begin and end of the
+ * query.
+ */
+ uint64_t slice_frequency[2];
+
+ /**
+ * Frequency in the unslice of the GT at the begin and end of the
+ * query.
+ */
+ uint64_t unslice_frequency[2];
+};
+
struct gen_perf_query_counter {
const char *name;
const char *desc;
gen_perf_query_info_add_stat_reg(query, reg, 1, 1, name, name);
}
-/* Accumulate 32bits OA counters */
-static inline void
-gen_perf_query_accumulate_uint32(const uint32_t *report0,
- const uint32_t *report1,
- uint64_t *accumulator)
-{
- *accumulator += (uint32_t)(*report1 - *report0);
-}
-
-/* Accumulate 40bits OA counters */
-static inline void
-gen_perf_query_accumulate_uint40(int a_index,
- const uint32_t *report0,
- const uint32_t *report1,
- uint64_t *accumulator)
-{
- const uint8_t *high_bytes0 = (uint8_t *)(report0 + 40);
- const uint8_t *high_bytes1 = (uint8_t *)(report1 + 40);
- uint64_t high0 = (uint64_t)(high_bytes0[a_index]) << 32;
- uint64_t high1 = (uint64_t)(high_bytes1[a_index]) << 32;
- uint64_t value0 = report0[a_index + 4] | high0;
- uint64_t value1 = report1[a_index + 4] | high1;
- uint64_t delta;
-
- if (value0 > value1)
- delta = (1ULL << 40) + value1 - value0;
- else
- delta = value1 - value0;
-
- *accumulator += delta;
-}
-
static inline struct gen_perf *
gen_perf_new(void *ctx, int (*ioctl_cb)(int, unsigned long, void *))
{
bool gen_perf_load_metric_id(struct gen_perf *perf, const char *guid,
uint64_t *metric_id);
+void gen_perf_query_result_read_frequencies(struct gen_perf_query_result *result,
+ const struct gen_device_info *devinfo,
+ const uint32_t *start,
+ const uint32_t *end);
+void gen_perf_query_result_accumulate(struct gen_perf_query_result *result,
+ const struct gen_perf_query_info *query,
+ const uint32_t *start,
+ const uint32_t *end);
+void gen_perf_query_result_clear(struct gen_perf_query_result *result);
+
+
#endif /* GEN_PERF_H */
reap_old_sample_buffers(brw);
}
-/**
- * Given pointers to starting and ending OA snapshots, add the deltas for each
- * counter to the results.
- */
-static void
-add_deltas(struct brw_context *brw,
- struct brw_perf_query_object *obj,
- const uint32_t *start,
- const uint32_t *end)
-{
- const struct gen_perf_query_info *query = obj->query;
- uint64_t *accumulator = obj->oa.accumulator;
- int idx = 0;
- int i;
-
- obj->oa.reports_accumulated++;
-
- switch (query->oa_format) {
- case I915_OA_FORMAT_A32u40_A4u32_B8_C8:
- gen_perf_query_accumulate_uint32(start + 1, end + 1, accumulator + idx++); /* timestamp */
- gen_perf_query_accumulate_uint32(start + 3, end + 3, accumulator + idx++); /* clock */
-
- /* 32x 40bit A counters... */
- for (i = 0; i < 32; i++)
- gen_perf_query_accumulate_uint40(i, start, end, accumulator + idx++);
-
- /* 4x 32bit A counters... */
- for (i = 0; i < 4; i++)
- gen_perf_query_accumulate_uint32(start + 36 + i, end + 36 + i,
- accumulator + idx++);
-
- /* 8x 32bit B counters + 8x 32bit C counters... */
- for (i = 0; i < 16; i++)
- gen_perf_query_accumulate_uint32(start + 48 + i, end + 48 + i,
- accumulator + idx++);
-
- break;
- case I915_OA_FORMAT_A45_B8_C8:
- gen_perf_query_accumulate_uint32(start + 1, end + 1, accumulator); /* timestamp */
-
- for (i = 0; i < 61; i++)
- gen_perf_query_accumulate_uint32(start + 3 + i, end + 3 + i, accumulator + 1 + i);
-
- break;
- default:
- unreachable("Can't accumulate OA counters in unknown format");
- }
-}
-
static bool
inc_n_oa_users(struct brw_context *brw)
{
goto error;
}
- obj->oa.hw_id = start[2];
-
/* See if we have any periodic reports to accumulate too... */
/* N.B. The oa.samples_head was set when the query began and
* of OA counters while any other context is acctive.
*/
if (devinfo->gen >= 8) {
- if (in_ctx && report[2] != obj->oa.hw_id) {
+ if (in_ctx && report[2] != obj->oa.result.hw_id) {
DBG("i915 perf: Switch AWAY (observed by ID change)\n");
in_ctx = false;
out_duration = 0;
- } else if (in_ctx == false && report[2] == obj->oa.hw_id) {
+ } else if (in_ctx == false && report[2] == obj->oa.result.hw_id) {
DBG("i915 perf: Switch TO\n");
in_ctx = true;
if (out_duration >= 1)
add = false;
} else if (in_ctx) {
- assert(report[2] == obj->oa.hw_id);
+ assert(report[2] == obj->oa.result.hw_id);
DBG("i915 perf: Continuation IN\n");
} else {
- assert(report[2] != obj->oa.hw_id);
+ assert(report[2] != obj->oa.result.hw_id);
DBG("i915 perf: Continuation OUT\n");
add = false;
out_duration++;
}
}
- if (add)
- add_deltas(brw, obj, last, report);
+ if (add) {
+ gen_perf_query_result_accumulate(&obj->oa.result, obj->query,
+ last, report);
+ }
last = report;
end:
- add_deltas(brw, obj, last, end);
+ gen_perf_query_result_accumulate(&obj->oa.result, obj->query,
+ last, end);
DBG("Marking %d accumulated - results gathered\n", o->Id);
*/
buf->refcount++;
- obj->oa.hw_id = 0xffffffff;
- memset(obj->oa.accumulator, 0, sizeof(obj->oa.accumulator));
+ gen_perf_query_result_clear(&obj->oa.result);
obj->oa.results_accumulated = false;
add_to_unaccumulated_query_list(brw, obj);
return false;
}
-static void
-gen8_read_report_clock_ratios(const uint32_t *report,
- uint64_t *slice_freq_hz,
- uint64_t *unslice_freq_hz)
-{
- /* The lower 16bits of the RPT_ID field of the OA reports contains a
- * snapshot of the bits coming from the RP_FREQ_NORMAL register and is
- * divided this way :
- *
- * RPT_ID[31:25]: RP_FREQ_NORMAL[20:14] (low squashed_slice_clock_frequency)
- * RPT_ID[10:9]: RP_FREQ_NORMAL[22:21] (high squashed_slice_clock_frequency)
- * RPT_ID[8:0]: RP_FREQ_NORMAL[31:23] (squashed_unslice_clock_frequency)
- *
- * RP_FREQ_NORMAL[31:23]: Software Unslice Ratio Request
- * Multiple of 33.33MHz 2xclk (16 MHz 1xclk)
- *
- * RP_FREQ_NORMAL[22:14]: Software Slice Ratio Request
- * Multiple of 33.33MHz 2xclk (16 MHz 1xclk)
- */
-
- uint32_t unslice_freq = report[0] & 0x1ff;
- uint32_t slice_freq_low = (report[0] >> 25) & 0x7f;
- uint32_t slice_freq_high = (report[0] >> 9) & 0x3;
- uint32_t slice_freq = slice_freq_low | (slice_freq_high << 7);
-
- *slice_freq_hz = slice_freq * 16666667ULL;
- *unslice_freq_hz = unslice_freq * 16666667ULL;
-}
-
static void
read_slice_unslice_frequencies(struct brw_context *brw,
struct brw_perf_query_object *obj)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
- uint32_t *begin_report, *end_report;
-
- /* Slice/Unslice frequency is only available in the OA reports when the
- * "Disable OA reports due to clock ratio change" field in
- * OA_DEBUG_REGISTER is set to 1. This is how the kernel programs this
- * global register (see drivers/gpu/drm/i915/i915_perf.c)
- *
- * Documentation says this should be available on Gen9+ but experimentation
- * shows that Gen8 reports similar values, so we enable it there too.
- */
- if (devinfo->gen < 8)
- return;
-
- begin_report = obj->oa.map;
- end_report = obj->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
+ uint32_t *begin_report = obj->oa.map, *end_report = obj->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
- gen8_read_report_clock_ratios(begin_report,
- &obj->oa.slice_frequency[0],
- &obj->oa.unslice_frequency[0]);
- gen8_read_report_clock_ratios(end_report,
- &obj->oa.slice_frequency[1],
- &obj->oa.unslice_frequency[1]);
+ gen_perf_query_result_read_frequencies(&obj->oa.result,
+ devinfo, begin_report, end_report);
}
static void
switch (counter->data_type) {
case GEN_PERF_COUNTER_DATA_TYPE_UINT64:
out_uint64 = (uint64_t *)(data + counter->offset);
- *out_uint64 = counter->oa_counter_read_uint64(perf, query,
- obj->oa.accumulator);
+ *out_uint64 =
+ counter->oa_counter_read_uint64(perf, query,
+ obj->oa.result.accumulator);
break;
case GEN_PERF_COUNTER_DATA_TYPE_FLOAT:
out_float = (float *)(data + counter->offset);
- *out_float = counter->oa_counter_read_float(perf, query,
- obj->oa.accumulator);
+ *out_float =
+ counter->oa_counter_read_float(perf, query,
+ obj->oa.result.accumulator);
break;
default:
/* So far we aren't using uint32, double or bool32... */
#include "brw_context.h"
+#include "perf/gen_perf.h"
+
struct gen_perf_query_info;
/*
#define STATS_BO_END_OFFSET_BYTES (STATS_BO_SIZE / 2)
#define MAX_STAT_COUNTERS (STATS_BO_END_OFFSET_BYTES / 8)
-/*
- * The largest OA formats we can use include:
- * For Haswell:
- * 1 timestamp, 45 A counters, 8 B counters and 8 C counters.
- * For Gen8+
- * 1 timestamp, 1 clock, 36 A counters, 8 B counters and 8 C counters
- */
-#define MAX_OA_REPORT_COUNTERS 62
-
/**
* i965 representation of a performance query object.
*
*/
struct exec_node *samples_head;
- /**
- * Storage for the final accumulated OA counters.
- */
- uint64_t accumulator[MAX_OA_REPORT_COUNTERS];
-
- /**
- * Hw ID used by the context on which the query was running.
- */
- uint32_t hw_id;
-
/**
* false while in the unaccumulated_elements list, and set to
* true when the final, end MI_RPC snapshot has been
*/
bool results_accumulated;
- /**
- * Number of reports accumulated to produce the results.
- */
- uint32_t reports_accumulated;
-
/**
* Frequency of the GT at begin and end of the query.
*/
uint64_t gt_frequency[2];
/**
- * Frequency in the slices of the GT at the begin and end of the
- * query.
- */
- uint64_t slice_frequency[2];
-
- /**
- * Frequency in the unslice of the GT at the begin and end of the
- * query.
+ * Accumulated OA results between begin and end of the query.
*/
- uint64_t unslice_frequency[2];
+ struct gen_perf_query_result result;
} oa;
struct {
uint8_t *data)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
+ const struct gen_perf_query_result *result = &obj->oa.result;
switch (devinfo->gen) {
case 7: {
assert(devinfo->is_haswell);
for (int i = 0; i < ARRAY_SIZE(mdapi_data->ACounters); i++)
- mdapi_data->ACounters[i] = obj->oa.accumulator[1 + i];
+ mdapi_data->ACounters[i] = result->accumulator[1 + i];
for (int i = 0; i < ARRAY_SIZE(mdapi_data->NOACounters); i++) {
mdapi_data->NOACounters[i] =
- obj->oa.accumulator[1 + ARRAY_SIZE(mdapi_data->ACounters) + i];
+ result->accumulator[1 + ARRAY_SIZE(mdapi_data->ACounters) + i];
}
- mdapi_data->ReportsCount = obj->oa.reports_accumulated;
- mdapi_data->TotalTime = brw_timebase_scale(brw, obj->oa.accumulator[0]);
+ mdapi_data->ReportsCount = result->reports_accumulated;
+ mdapi_data->TotalTime = brw_timebase_scale(brw, result->accumulator[0]);
mdapi_data->CoreFrequency = obj->oa.gt_frequency[1];
mdapi_data->CoreFrequencyChanged = obj->oa.gt_frequency[0] != obj->oa.gt_frequency[1];
return sizeof(*mdapi_data);
return 0;
for (int i = 0; i < ARRAY_SIZE(mdapi_data->OaCntr); i++)
- mdapi_data->OaCntr[i] = obj->oa.accumulator[2 + i];
+ mdapi_data->OaCntr[i] = result->accumulator[2 + i];
for (int i = 0; i < ARRAY_SIZE(mdapi_data->NoaCntr); i++) {
mdapi_data->NoaCntr[i] =
- obj->oa.accumulator[2 + ARRAY_SIZE(mdapi_data->OaCntr) + i];
+ result->accumulator[2 + ARRAY_SIZE(mdapi_data->OaCntr) + i];
}
- mdapi_data->ReportId = obj->oa.hw_id;
- mdapi_data->ReportsCount = obj->oa.reports_accumulated;
- mdapi_data->TotalTime = brw_timebase_scale(brw, obj->oa.accumulator[0]);
- mdapi_data->GPUTicks = obj->oa.accumulator[1];
+ mdapi_data->ReportId = result->hw_id;
+ mdapi_data->ReportsCount = result->reports_accumulated;
+ mdapi_data->TotalTime = brw_timebase_scale(brw, result->accumulator[0]);
+ mdapi_data->GPUTicks = result->accumulator[1];
mdapi_data->CoreFrequency = obj->oa.gt_frequency[1];
mdapi_data->CoreFrequencyChanged = obj->oa.gt_frequency[0] != obj->oa.gt_frequency[1];
- mdapi_data->SliceFrequency = (obj->oa.slice_frequency[0] + obj->oa.slice_frequency[1]) / 2ULL;
- mdapi_data->UnsliceFrequency = (obj->oa.unslice_frequency[0] + obj->oa.unslice_frequency[1]) / 2ULL;
+ mdapi_data->SliceFrequency = (result->slice_frequency[0] + result->slice_frequency[1]) / 2ULL;
+ mdapi_data->UnsliceFrequency = (result->unslice_frequency[0] + result->unslice_frequency[1]) / 2ULL;
return sizeof(*mdapi_data);
}
return 0;
for (int i = 0; i < ARRAY_SIZE(mdapi_data->OaCntr); i++)
- mdapi_data->OaCntr[i] = obj->oa.accumulator[2 + i];
+ mdapi_data->OaCntr[i] = result->accumulator[2 + i];
for (int i = 0; i < ARRAY_SIZE(mdapi_data->NoaCntr); i++) {
mdapi_data->NoaCntr[i] =
- obj->oa.accumulator[2 + ARRAY_SIZE(mdapi_data->OaCntr) + i];
+ result->accumulator[2 + ARRAY_SIZE(mdapi_data->OaCntr) + i];
}
- mdapi_data->ReportId = obj->oa.hw_id;
- mdapi_data->ReportsCount = obj->oa.reports_accumulated;
- mdapi_data->TotalTime = brw_timebase_scale(brw, obj->oa.accumulator[0]);
- mdapi_data->GPUTicks = obj->oa.accumulator[1];
+ mdapi_data->ReportId = result->hw_id;
+ mdapi_data->ReportsCount = result->reports_accumulated;
+ mdapi_data->TotalTime = brw_timebase_scale(brw, result->accumulator[0]);
+ mdapi_data->GPUTicks = result->accumulator[1];
mdapi_data->CoreFrequency = obj->oa.gt_frequency[1];
mdapi_data->CoreFrequencyChanged = obj->oa.gt_frequency[0] != obj->oa.gt_frequency[1];
- mdapi_data->SliceFrequency = (obj->oa.slice_frequency[0] + obj->oa.slice_frequency[1]) / 2ULL;
- mdapi_data->UnsliceFrequency = (obj->oa.unslice_frequency[0] + obj->oa.unslice_frequency[1]) / 2ULL;
+ mdapi_data->SliceFrequency = (result->slice_frequency[0] + result->slice_frequency[1]) / 2ULL;
+ mdapi_data->UnsliceFrequency = (result->unslice_frequency[0] + result->unslice_frequency[1]) / 2ULL;
return sizeof(*mdapi_data);
}