from ReplacementPolicies import *
from Tags import *
+
+# Enum for cache clusivity, currently mostly inclusive or mostly
+# exclusive.
+class Clusivity(Enum): vals = ['mostly_incl', 'mostly_excl']
+
+
class BaseCache(MemObject):
type = 'BaseCache'
abstract = True
system = Param.System(Parent.any, "System we belong to")
-# Enum for cache clusivity, currently mostly inclusive or mostly
-# exclusive.
-class Clusivity(Enum): vals = ['mostly_incl', 'mostly_excl']
-
-class Cache(BaseCache):
- type = 'Cache'
- cxx_header = 'mem/cache/cache.hh'
+ # Determine if this cache sends out writebacks for clean lines, or
+ # simply clean evicts. In cases where a downstream cache is mostly
+ # exclusive with respect to this cache (acting as a victim cache),
+ # the clean writebacks are essential for performance. In general
+ # this should be set to True for anything but the last-level
+ # cache.
+ writeback_clean = Param.Bool(False, "Writeback clean lines")
# Control whether this cache should be mostly inclusive or mostly
# exclusive with respect to upstream caches. The behaviour on a
clusivity = Param.Clusivity('mostly_incl',
"Clusivity with upstream cache")
- # Determine if this cache sends out writebacks for clean lines, or
- # simply clean evicts. In cases where a downstream cache is mostly
- # exclusive with respect to this cache (acting as a victim cache),
- # the clean writebacks are essential for performance. In general
- # this should be set to True for anything but the last-level
- # cache.
- writeback_clean = Param.Bool(False, "Writeback clean lines")
+
+class Cache(BaseCache):
+ type = 'Cache'
+ cxx_header = 'mem/cache/cache.hh'
/*
- * Copyright (c) 2012-2013 ARM Limited
+ * Copyright (c) 2012-2013, 2018 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
+ * Nikos Nikoleris
*/
/**
#include "mem/cache/base.hh"
+#include "base/compiler.hh"
+#include "base/logging.hh"
#include "debug/Cache.hh"
-#include "debug/Drain.hh"
-#include "mem/cache/cache.hh"
+#include "debug/CachePort.hh"
+#include "debug/CacheVerbose.hh"
#include "mem/cache/mshr.hh"
-#include "mem/cache/tags/fa_lru.hh"
-#include "sim/full_system.hh"
+#include "mem/cache/prefetch/base.hh"
+#include "mem/cache/queue_entry.hh"
+#include "params/BaseCache.hh"
+#include "sim/core.hh"
+
+class BaseMasterPort;
+class BaseSlavePort;
using namespace std;
BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
: MemObject(p),
- cpuSidePort(nullptr), memSidePort(nullptr),
+ cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
+ memSidePort(p->name + ".mem_side", this, "MemSidePort"),
mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
+ tags(p->tags),
+ prefetcher(p->prefetcher),
+ prefetchOnAccess(p->prefetch_on_access),
+ writebackClean(p->writeback_clean),
+ tempBlockWriteback(nullptr),
+ writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
+ name(), false,
+ EventBase::Delayed_Writeback_Pri),
blkSize(blk_size),
lookupLatency(p->tag_latency),
dataLatency(p->data_latency),
responseLatency(p->response_latency),
numTarget(p->tgts_per_mshr),
forwardSnoops(true),
+ clusivity(p->clusivity),
isReadOnly(p->is_read_only),
blocked(0),
order(0),
// forward snoops is overridden in init() once we can query
// whether the connected master is actually snooping or not
+
+ tempBlock = new CacheBlk();
+ tempBlock->data = new uint8_t[blkSize];
+
+ tags->setCache(this);
+ if (prefetcher)
+ prefetcher->setCache(this);
+}
+
+BaseCache::~BaseCache()
+{
+ delete [] tempBlock->data;
+ delete tempBlock;
}
void
void
BaseCache::init()
{
- if (!cpuSidePort->isConnected() || !memSidePort->isConnected())
+ if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
fatal("Cache ports on %s are not connected\n", name());
- cpuSidePort->sendRangeChange();
- forwardSnoops = cpuSidePort->isSnooping();
+ cpuSidePort.sendRangeChange();
+ forwardSnoops = cpuSidePort.isSnooping();
}
BaseMasterPort &
BaseCache::getMasterPort(const std::string &if_name, PortID idx)
{
if (if_name == "mem_side") {
- return *memSidePort;
+ return memSidePort;
} else {
return MemObject::getMasterPort(if_name, idx);
}
BaseCache::getSlavePort(const std::string &if_name, PortID idx)
{
if (if_name == "cpu_side") {
- return *cpuSidePort;
+ return cpuSidePort;
} else {
return MemObject::getSlavePort(if_name, idx);
}
return false;
}
+void
+BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
+{
+ if (pkt->needsResponse()) {
+ pkt->makeTimingResponse();
+ // @todo: Make someone pay for this
+ pkt->headerDelay = pkt->payloadDelay = 0;
+
+ // In this case we are considering request_time that takes
+ // into account the delay of the xbar, if any, and just
+ // lat, neglecting responseLatency, modelling hit latency
+ // just as lookupLatency or or the value of lat overriden
+ // by access(), that calls accessBlock() function.
+ cpuSidePort.schedTimingResp(pkt, request_time, true);
+ } else {
+ DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
+ pkt->print());
+
+ // queue the packet for deletion, as the sending cache is
+ // still relying on it; if the block is found in access(),
+ // CleanEvict and Writeback messages will be deleted
+ // here as well
+ pendingDelete.reset(pkt);
+ }
+}
+
+void
+BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
+ Tick forward_time, Tick request_time)
+{
+ if (mshr) {
+ /// MSHR hit
+ /// @note writebacks will be checked in getNextMSHR()
+ /// for any conflicting requests to the same block
+
+ //@todo remove hw_pf here
+
+ // Coalesce unless it was a software prefetch (see above).
+ if (pkt) {
+ assert(!pkt->isWriteback());
+ // CleanEvicts corresponding to blocks which have
+ // outstanding requests in MSHRs are simply sunk here
+ if (pkt->cmd == MemCmd::CleanEvict) {
+ pendingDelete.reset(pkt);
+ } else if (pkt->cmd == MemCmd::WriteClean) {
+ // A WriteClean should never coalesce with any
+ // outstanding cache maintenance requests.
+
+ // We use forward_time here because there is an
+ // uncached memory write, forwarded to WriteBuffer.
+ allocateWriteBuffer(pkt, forward_time);
+ } else {
+ DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
+ pkt->print());
+
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
+
+ // We use forward_time here because it is the same
+ // considering new targets. We have multiple
+ // requests for the same address here. It
+ // specifies the latency to allocate an internal
+ // buffer and to schedule an event to the queued
+ // port and also takes into account the additional
+ // delay of the xbar.
+ mshr->allocateTarget(pkt, forward_time, order++,
+ allocOnFill(pkt->cmd));
+ if (mshr->getNumTargets() == numTarget) {
+ noTargetMSHR = mshr;
+ setBlocked(Blocked_NoTargets);
+ // need to be careful with this... if this mshr isn't
+ // ready yet (i.e. time > curTick()), we don't want to
+ // move it ahead of mshrs that are ready
+ // mshrQueue.moveToFront(mshr);
+ }
+ }
+ }
+ } else {
+ // no MSHR
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
+
+ if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
+ // We use forward_time here because there is an
+ // writeback or writeclean, forwarded to WriteBuffer.
+ allocateWriteBuffer(pkt, forward_time);
+ } else {
+ if (blk && blk->isValid()) {
+ // If we have a write miss to a valid block, we
+ // need to mark the block non-readable. Otherwise
+ // if we allow reads while there's an outstanding
+ // write miss, the read could return stale data
+ // out of the cache block... a more aggressive
+ // system could detect the overlap (if any) and
+ // forward data out of the MSHRs, but we don't do
+ // that yet. Note that we do need to leave the
+ // block valid so that it stays in the cache, in
+ // case we get an upgrade response (and hence no
+ // new data) when the write miss completes.
+ // As long as CPUs do proper store/load forwarding
+ // internally, and have a sufficiently weak memory
+ // model, this is probably unnecessary, but at some
+ // point it must have seemed like we needed it...
+ assert((pkt->needsWritable() && !blk->isWritable()) ||
+ pkt->req->isCacheMaintenance());
+ blk->status &= ~BlkReadable;
+ }
+ // Here we are using forward_time, modelling the latency of
+ // a miss (outbound) just as forwardLatency, neglecting the
+ // lookupLatency component.
+ allocateMissBuffer(pkt, forward_time);
+ }
+ }
+}
+
+void
+BaseCache::recvTimingReq(PacketPtr pkt)
+{
+ // anything that is merely forwarded pays for the forward latency and
+ // the delay provided by the crossbar
+ Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+
+ // We use lookupLatency here because it is used to specify the latency
+ // to access.
+ Cycles lat = lookupLatency;
+ CacheBlk *blk = nullptr;
+ bool satisfied = false;
+ {
+ PacketList writebacks;
+ // Note that lat is passed by reference here. The function
+ // access() calls accessBlock() which can modify lat value.
+ satisfied = access(pkt, blk, lat, writebacks);
+
+ // copy writebacks to write buffer here to ensure they logically
+ // proceed anything happening below
+ doWritebacks(writebacks, forward_time);
+ }
+
+ // Here we charge the headerDelay that takes into account the latencies
+ // of the bus, if the packet comes from it.
+ // The latency charged it is just lat that is the value of lookupLatency
+ // modified by access() function, or if not just lookupLatency.
+ // In case of a hit we are neglecting response latency.
+ // In case of a miss we are neglecting forward latency.
+ Tick request_time = clockEdge(lat) + pkt->headerDelay;
+ // Here we reset the timing of the packet.
+ pkt->headerDelay = pkt->payloadDelay = 0;
+ // track time of availability of next prefetch, if any
+ Tick next_pf_time = MaxTick;
+
+ if (satisfied) {
+ // if need to notify the prefetcher we have to do it before
+ // anything else as later handleTimingReqHit might turn the
+ // packet in a response
+ if (prefetcher &&
+ (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
+ if (blk)
+ blk->status &= ~BlkHWPrefetched;
+
+ // Don't notify on SWPrefetch
+ if (!pkt->cmd.isSWPrefetch()) {
+ assert(!pkt->req->isCacheMaintenance());
+ next_pf_time = prefetcher->notify(pkt);
+ }
+ }
+
+ handleTimingReqHit(pkt, blk, request_time);
+ } else {
+ handleTimingReqMiss(pkt, blk, forward_time, request_time);
+
+ // We should call the prefetcher reguardless if the request is
+ // satisfied or not, reguardless if the request is in the MSHR
+ // or not. The request could be a ReadReq hit, but still not
+ // satisfied (potentially because of a prior write to the same
+ // cache line. So, even when not satisfied, there is an MSHR
+ // already allocated for this, we need to let the prefetcher
+ // know about the request
+
+ // Don't notify prefetcher on SWPrefetch or cache maintenance
+ // operations
+ if (prefetcher && pkt &&
+ !pkt->cmd.isSWPrefetch() &&
+ !pkt->req->isCacheMaintenance()) {
+ next_pf_time = prefetcher->notify(pkt);
+ }
+ }
+
+ if (next_pf_time != MaxTick) {
+ schedMemSideSendEvent(next_pf_time);
+ }
+}
+
+void
+BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
+{
+ Tick completion_time = clockEdge(responseLatency) +
+ pkt->headerDelay + pkt->payloadDelay;
+
+ // Reset the bus additional time as it is now accounted for
+ pkt->headerDelay = pkt->payloadDelay = 0;
+
+ cpuSidePort.schedTimingResp(pkt, completion_time, true);
+}
+
+void
+BaseCache::recvTimingResp(PacketPtr pkt)
+{
+ assert(pkt->isResponse());
+
+ // all header delay should be paid for by the crossbar, unless
+ // this is a prefetch response from above
+ panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
+ "%s saw a non-zero packet delay\n", name());
+
+ const bool is_error = pkt->isError();
+
+ if (is_error) {
+ DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
+ pkt->print());
+ }
+
+ DPRINTF(Cache, "%s: Handling response %s\n", __func__,
+ pkt->print());
+
+ // if this is a write, we should be looking at an uncacheable
+ // write
+ if (pkt->isWrite()) {
+ assert(pkt->req->isUncacheable());
+ handleUncacheableWriteResp(pkt);
+ return;
+ }
+
+ // we have dealt with any (uncacheable) writes above, from here on
+ // we know we are dealing with an MSHR due to a miss or a prefetch
+ MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
+ assert(mshr);
+
+ if (mshr == noTargetMSHR) {
+ // we always clear at least one target
+ clearBlocked(Blocked_NoTargets);
+ noTargetMSHR = nullptr;
+ }
+
+ // Initial target is used just for stats
+ MSHR::Target *initial_tgt = mshr->getTarget();
+ int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
+ Tick miss_latency = curTick() - initial_tgt->recvTime;
+
+ if (pkt->req->isUncacheable()) {
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
+ miss_latency;
+ } else {
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
+ miss_latency;
+ }
+
+ PacketList writebacks;
+
+ bool is_fill = !mshr->isForward &&
+ (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
+
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
+
+ if (is_fill && !is_error) {
+ DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
+ pkt->getAddr());
+
+ blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
+ assert(blk != nullptr);
+ }
+
+ if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
+ // The block was marked not readable while there was a pending
+ // cache maintenance operation, restore its flag.
+ blk->status |= BlkReadable;
+ }
+
+ if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
+ // If at this point the referenced block is writable and the
+ // response is not a cache invalidate, we promote targets that
+ // were deferred as we couldn't guarrantee a writable copy
+ mshr->promoteWritable();
+ }
+
+ serviceMSHRTargets(mshr, pkt, blk, writebacks);
+
+ if (mshr->promoteDeferredTargets()) {
+ // avoid later read getting stale data while write miss is
+ // outstanding.. see comment in timingAccess()
+ if (blk) {
+ blk->status &= ~BlkReadable;
+ }
+ mshrQueue.markPending(mshr);
+ schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
+ } else {
+ // while we deallocate an mshr from the queue we still have to
+ // check the isFull condition before and after as we might
+ // have been using the reserved entries already
+ const bool was_full = mshrQueue.isFull();
+ mshrQueue.deallocate(mshr);
+ if (was_full && !mshrQueue.isFull()) {
+ clearBlocked(Blocked_NoMSHRs);
+ }
+
+ // Request the bus for a prefetch if this deallocation freed enough
+ // MSHRs for a prefetch to take place
+ if (prefetcher && mshrQueue.canPrefetch()) {
+ Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
+ clockEdge());
+ if (next_pf_time != MaxTick)
+ schedMemSideSendEvent(next_pf_time);
+ }
+ }
+
+ // if we used temp block, check to see if its valid and then clear it out
+ if (blk == tempBlock && tempBlock->isValid()) {
+ evictBlock(blk, writebacks);
+ }
+
+ const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+ // copy writebacks to write buffer
+ doWritebacks(writebacks, forward_time);
+
+ DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
+ delete pkt;
+}
+
+
+Tick
+BaseCache::recvAtomic(PacketPtr pkt)
+{
+ // We are in atomic mode so we pay just for lookupLatency here.
+ Cycles lat = lookupLatency;
+
+ // follow the same flow as in recvTimingReq, and check if a cache
+ // above us is responding
+ if (pkt->cacheResponding() && !pkt->isClean()) {
+ assert(!pkt->req->isCacheInvalidate());
+ DPRINTF(Cache, "Cache above responding to %s: not responding\n",
+ pkt->print());
+
+ // if a cache is responding, and it had the line in Owned
+ // rather than Modified state, we need to invalidate any
+ // copies that are not on the same path to memory
+ assert(pkt->needsWritable() && !pkt->responderHadWritable());
+ lat += ticksToCycles(memSidePort.sendAtomic(pkt));
+
+ return lat * clockPeriod();
+ }
+
+ // should assert here that there are no outstanding MSHRs or
+ // writebacks... that would mean that someone used an atomic
+ // access in timing mode
+
+ CacheBlk *blk = nullptr;
+ PacketList writebacks;
+ bool satisfied = access(pkt, blk, lat, writebacks);
+
+ if (pkt->isClean() && blk && blk->isDirty()) {
+ // A cache clean opearation is looking for a dirty
+ // block. If a dirty block is encountered a WriteClean
+ // will update any copies to the path to the memory
+ // until the point of reference.
+ DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
+ __func__, pkt->print(), blk->print());
+ PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
+ writebacks.push_back(wb_pkt);
+ pkt->setSatisfied();
+ }
+
+ // handle writebacks resulting from the access here to ensure they
+ // logically proceed anything happening below
+ doWritebacksAtomic(writebacks);
+ assert(writebacks.empty());
+
+ if (!satisfied) {
+ lat += handleAtomicReqMiss(pkt, blk, writebacks);
+ }
+
+ // Note that we don't invoke the prefetcher at all in atomic mode.
+ // It's not clear how to do it properly, particularly for
+ // prefetchers that aggressively generate prefetch candidates and
+ // rely on bandwidth contention to throttle them; these will tend
+ // to pollute the cache in atomic mode since there is no bandwidth
+ // contention. If we ever do want to enable prefetching in atomic
+ // mode, though, this is the place to do it... see timingAccess()
+ // for an example (though we'd want to issue the prefetch(es)
+ // immediately rather than calling requestMemSideBus() as we do
+ // there).
+
+ // do any writebacks resulting from the response handling
+ doWritebacksAtomic(writebacks);
+
+ // if we used temp block, check to see if its valid and if so
+ // clear it out, but only do so after the call to recvAtomic is
+ // finished so that any downstream observers (such as a snoop
+ // filter), first see the fill, and only then see the eviction
+ if (blk == tempBlock && tempBlock->isValid()) {
+ // the atomic CPU calls recvAtomic for fetch and load/store
+ // sequentuially, and we may already have a tempBlock
+ // writeback from the fetch that we have not yet sent
+ if (tempBlockWriteback) {
+ // if that is the case, write the prevoius one back, and
+ // do not schedule any new event
+ writebackTempBlockAtomic();
+ } else {
+ // the writeback/clean eviction happens after the call to
+ // recvAtomic has finished (but before any successive
+ // calls), so that the response handling from the fill is
+ // allowed to happen first
+ schedule(writebackTempBlockAtomicEvent, curTick());
+ }
+
+ tempBlockWriteback = evictBlock(blk);
+ }
+
+ if (pkt->needsResponse()) {
+ pkt->makeAtomicResponse();
+ }
+
+ return lat * clockPeriod();
+}
+
+void
+BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
+{
+ if (system->bypassCaches()) {
+ // Packets from the memory side are snoop request and
+ // shouldn't happen in bypass mode.
+ assert(from_cpu_side);
+
+ // The cache should be flushed if we are in cache bypass mode,
+ // so we don't need to check if we need to update anything.
+ memSidePort.sendFunctional(pkt);
+ return;
+ }
+
+ Addr blk_addr = pkt->getBlockAddr(blkSize);
+ bool is_secure = pkt->isSecure();
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
+ MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
+
+ pkt->pushLabel(name());
+
+ CacheBlkPrintWrapper cbpw(blk);
+
+ // Note that just because an L2/L3 has valid data doesn't mean an
+ // L1 doesn't have a more up-to-date modified copy that still
+ // needs to be found. As a result we always update the request if
+ // we have it, but only declare it satisfied if we are the owner.
+
+ // see if we have data at all (owned or otherwise)
+ bool have_data = blk && blk->isValid()
+ && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
+ blk->data);
+
+ // data we have is dirty if marked as such or if we have an
+ // in-service MSHR that is pending a modified line
+ bool have_dirty =
+ have_data && (blk->isDirty() ||
+ (mshr && mshr->inService && mshr->isPendingModified()));
+
+ bool done = have_dirty ||
+ cpuSidePort.checkFunctional(pkt) ||
+ mshrQueue.checkFunctional(pkt, blk_addr) ||
+ writeBuffer.checkFunctional(pkt, blk_addr) ||
+ memSidePort.checkFunctional(pkt);
+
+ DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
+ (blk && blk->isValid()) ? "valid " : "",
+ have_data ? "data " : "", done ? "done " : "");
+
+ // We're leaving the cache, so pop cache->name() label
+ pkt->popLabel();
+
+ if (done) {
+ pkt->makeResponse();
+ } else {
+ // if it came as a request from the CPU side then make sure it
+ // continues towards the memory side
+ if (from_cpu_side) {
+ memSidePort.sendFunctional(pkt);
+ } else if (cpuSidePort.isSnooping()) {
+ // if it came from the memory side, it must be a snoop request
+ // and we should only forward it if we are forwarding snoops
+ cpuSidePort.sendFunctionalSnoop(pkt);
+ }
+ }
+}
+
+
+void
+BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
+{
+ assert(pkt->isRequest());
+
+ uint64_t overwrite_val;
+ bool overwrite_mem;
+ uint64_t condition_val64;
+ uint32_t condition_val32;
+
+ int offset = pkt->getOffset(blkSize);
+ uint8_t *blk_data = blk->data + offset;
+
+ assert(sizeof(uint64_t) >= pkt->getSize());
+
+ overwrite_mem = true;
+ // keep a copy of our possible write value, and copy what is at the
+ // memory address into the packet
+ pkt->writeData((uint8_t *)&overwrite_val);
+ pkt->setData(blk_data);
+
+ if (pkt->req->isCondSwap()) {
+ if (pkt->getSize() == sizeof(uint64_t)) {
+ condition_val64 = pkt->req->getExtraData();
+ overwrite_mem = !std::memcmp(&condition_val64, blk_data,
+ sizeof(uint64_t));
+ } else if (pkt->getSize() == sizeof(uint32_t)) {
+ condition_val32 = (uint32_t)pkt->req->getExtraData();
+ overwrite_mem = !std::memcmp(&condition_val32, blk_data,
+ sizeof(uint32_t));
+ } else
+ panic("Invalid size for conditional read/write\n");
+ }
+
+ if (overwrite_mem) {
+ std::memcpy(blk_data, &overwrite_val, pkt->getSize());
+ blk->status |= BlkDirty;
+ }
+}
+
+QueueEntry*
+BaseCache::getNextQueueEntry()
+{
+ // Check both MSHR queue and write buffer for potential requests,
+ // note that null does not mean there is no request, it could
+ // simply be that it is not ready
+ MSHR *miss_mshr = mshrQueue.getNext();
+ WriteQueueEntry *wq_entry = writeBuffer.getNext();
+
+ // If we got a write buffer request ready, first priority is a
+ // full write buffer, otherwise we favour the miss requests
+ if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
+ // need to search MSHR queue for conflicting earlier miss.
+ MSHR *conflict_mshr =
+ mshrQueue.findPending(wq_entry->blkAddr,
+ wq_entry->isSecure);
+
+ if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
+ // Service misses in order until conflict is cleared.
+ return conflict_mshr;
+
+ // @todo Note that we ignore the ready time of the conflict here
+ }
+
+ // No conflicts; issue write
+ return wq_entry;
+ } else if (miss_mshr) {
+ // need to check for conflicting earlier writeback
+ WriteQueueEntry *conflict_mshr =
+ writeBuffer.findPending(miss_mshr->blkAddr,
+ miss_mshr->isSecure);
+ if (conflict_mshr) {
+ // not sure why we don't check order here... it was in the
+ // original code but commented out.
+
+ // The only way this happens is if we are
+ // doing a write and we didn't have permissions
+ // then subsequently saw a writeback (owned got evicted)
+ // We need to make sure to perform the writeback first
+ // To preserve the dirty data, then we can issue the write
+
+ // should we return wq_entry here instead? I.e. do we
+ // have to flush writes in order? I don't think so... not
+ // for Alpha anyway. Maybe for x86?
+ return conflict_mshr;
+
+ // @todo Note that we ignore the ready time of the conflict here
+ }
+
+ // No conflicts; issue read
+ return miss_mshr;
+ }
+
+ // fall through... no pending requests. Try a prefetch.
+ assert(!miss_mshr && !wq_entry);
+ if (prefetcher && mshrQueue.canPrefetch()) {
+ // If we have a miss queue slot, we can try a prefetch
+ PacketPtr pkt = prefetcher->getPacket();
+ if (pkt) {
+ Addr pf_addr = pkt->getBlockAddr(blkSize);
+ if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
+ !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
+ !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
+ // Update statistic on number of prefetches issued
+ // (hwpf_mshr_misses)
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
+
+ // allocate an MSHR and return it, note
+ // that we send the packet straight away, so do not
+ // schedule the send
+ return allocateMissBuffer(pkt, curTick(), false);
+ } else {
+ // free the request and packet
+ delete pkt->req;
+ delete pkt;
+ }
+ }
+ }
+
+ return nullptr;
+}
+
+void
+BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
+{
+ assert(pkt->isRequest());
+
+ assert(blk && blk->isValid());
+ // Occasionally this is not true... if we are a lower-level cache
+ // satisfying a string of Read and ReadEx requests from
+ // upper-level caches, a Read will mark the block as shared but we
+ // can satisfy a following ReadEx anyway since we can rely on the
+ // Read requester(s) to have buffered the ReadEx snoop and to
+ // invalidate their blocks after receiving them.
+ // assert(!pkt->needsWritable() || blk->isWritable());
+ assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
+
+ // Check RMW operations first since both isRead() and
+ // isWrite() will be true for them
+ if (pkt->cmd == MemCmd::SwapReq) {
+ cmpAndSwap(blk, pkt);
+ } else if (pkt->isWrite()) {
+ // we have the block in a writable state and can go ahead,
+ // note that the line may be also be considered writable in
+ // downstream caches along the path to memory, but always
+ // Exclusive, and never Modified
+ assert(blk->isWritable());
+ // Write or WriteLine at the first cache with block in writable state
+ if (blk->checkWrite(pkt)) {
+ pkt->writeDataToBlock(blk->data, blkSize);
+ }
+ // Always mark the line as dirty (and thus transition to the
+ // Modified state) even if we are a failed StoreCond so we
+ // supply data to any snoops that have appended themselves to
+ // this cache before knowing the store will fail.
+ blk->status |= BlkDirty;
+ DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
+ } else if (pkt->isRead()) {
+ if (pkt->isLLSC()) {
+ blk->trackLoadLocked(pkt);
+ }
+
+ // all read responses have a data payload
+ assert(pkt->hasRespData());
+ pkt->setDataFromBlock(blk->data, blkSize);
+ } else if (pkt->isUpgrade()) {
+ // sanity check
+ assert(!pkt->hasSharers());
+
+ if (blk->isDirty()) {
+ // we were in the Owned state, and a cache above us that
+ // has the line in Shared state needs to be made aware
+ // that the data it already has is in fact dirty
+ pkt->setCacheResponding();
+ blk->status &= ~BlkDirty;
+ }
+ } else {
+ assert(pkt->isInvalidate());
+ invalidateBlock(blk);
+ DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
+ pkt->print());
+ }
+}
+
+/////////////////////////////////////////////////////
+//
+// Access path: requests coming in from the CPU side
+//
+/////////////////////////////////////////////////////
+
+bool
+BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
+ PacketList &writebacks)
+{
+ // sanity check
+ assert(pkt->isRequest());
+
+ chatty_assert(!(isReadOnly && pkt->isWrite()),
+ "Should never see a write in a read-only cache %s\n",
+ name());
+
+ // Here lat is the value passed as parameter to accessBlock() function
+ // that can modify its value.
+ blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
+
+ DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
+ blk ? "hit " + blk->print() : "miss");
+
+ if (pkt->req->isCacheMaintenance()) {
+ // A cache maintenance operation is always forwarded to the
+ // memory below even if the block is found in dirty state.
+
+ // We defer any changes to the state of the block until we
+ // create and mark as in service the mshr for the downstream
+ // packet.
+ return false;
+ }
+
+ if (pkt->isEviction()) {
+ // We check for presence of block in above caches before issuing
+ // Writeback or CleanEvict to write buffer. Therefore the only
+ // possible cases can be of a CleanEvict packet coming from above
+ // encountering a Writeback generated in this cache peer cache and
+ // waiting in the write buffer. Cases of upper level peer caches
+ // generating CleanEvict and Writeback or simply CleanEvict and
+ // CleanEvict almost simultaneously will be caught by snoops sent out
+ // by crossbar.
+ WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
+ pkt->isSecure());
+ if (wb_entry) {
+ assert(wb_entry->getNumTargets() == 1);
+ PacketPtr wbPkt = wb_entry->getTarget()->pkt;
+ assert(wbPkt->isWriteback());
+
+ if (pkt->isCleanEviction()) {
+ // The CleanEvict and WritebackClean snoops into other
+ // peer caches of the same level while traversing the
+ // crossbar. If a copy of the block is found, the
+ // packet is deleted in the crossbar. Hence, none of
+ // the other upper level caches connected to this
+ // cache have the block, so we can clear the
+ // BLOCK_CACHED flag in the Writeback if set and
+ // discard the CleanEvict by returning true.
+ wbPkt->clearBlockCached();
+ return true;
+ } else {
+ assert(pkt->cmd == MemCmd::WritebackDirty);
+ // Dirty writeback from above trumps our clean
+ // writeback... discard here
+ // Note: markInService will remove entry from writeback buffer.
+ markInService(wb_entry);
+ delete wbPkt;
+ }
+ }
+ }
+
+ // Writeback handling is special case. We can write the block into
+ // the cache without having a writeable copy (or any copy at all).
+ if (pkt->isWriteback()) {
+ assert(blkSize == pkt->getSize());
+
+ // we could get a clean writeback while we are having
+ // outstanding accesses to a block, do the simple thing for
+ // now and drop the clean writeback so that we do not upset
+ // any ordering/decisions about ownership already taken
+ if (pkt->cmd == MemCmd::WritebackClean &&
+ mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
+ DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
+ "dropping\n", pkt->getAddr());
+ return true;
+ }
+
+ if (!blk) {
+ // need to do a replacement
+ blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
+ if (!blk) {
+ // no replaceable block available: give up, fwd to next level.
+ incMissCount(pkt);
+ return false;
+ }
+ tags->insertBlock(pkt, blk);
+
+ blk->status |= (BlkValid | BlkReadable);
+ }
+ // only mark the block dirty if we got a writeback command,
+ // and leave it as is for a clean writeback
+ if (pkt->cmd == MemCmd::WritebackDirty) {
+ // TODO: the coherent cache can assert(!blk->isDirty());
+ blk->status |= BlkDirty;
+ }
+ // if the packet does not have sharers, it is passing
+ // writable, and we got the writeback in Modified or Exclusive
+ // state, if not we are in the Owned or Shared state
+ if (!pkt->hasSharers()) {
+ blk->status |= BlkWritable;
+ }
+ // nothing else to do; writeback doesn't expect response
+ assert(!pkt->needsResponse());
+ pkt->writeDataToBlock(blk->data, blkSize);
+ DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
+ incHitCount(pkt);
+ // populate the time when the block will be ready to access.
+ blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
+ pkt->payloadDelay;
+ return true;
+ } else if (pkt->cmd == MemCmd::CleanEvict) {
+ if (blk) {
+ // Found the block in the tags, need to stop CleanEvict from
+ // propagating further down the hierarchy. Returning true will
+ // treat the CleanEvict like a satisfied write request and delete
+ // it.
+ return true;
+ }
+ // We didn't find the block here, propagate the CleanEvict further
+ // down the memory hierarchy. Returning false will treat the CleanEvict
+ // like a Writeback which could not find a replaceable block so has to
+ // go to next level.
+ return false;
+ } else if (pkt->cmd == MemCmd::WriteClean) {
+ // WriteClean handling is a special case. We can allocate a
+ // block directly if it doesn't exist and we can update the
+ // block immediately. The WriteClean transfers the ownership
+ // of the block as well.
+ assert(blkSize == pkt->getSize());
+
+ if (!blk) {
+ if (pkt->writeThrough()) {
+ // if this is a write through packet, we don't try to
+ // allocate if the block is not present
+ return false;
+ } else {
+ // a writeback that misses needs to allocate a new block
+ blk = allocateBlock(pkt->getAddr(), pkt->isSecure(),
+ writebacks);
+ if (!blk) {
+ // no replaceable block available: give up, fwd to
+ // next level.
+ incMissCount(pkt);
+ return false;
+ }
+ tags->insertBlock(pkt, blk);
+
+ blk->status |= (BlkValid | BlkReadable);
+ }
+ }
+
+ // at this point either this is a writeback or a write-through
+ // write clean operation and the block is already in this
+ // cache, we need to update the data and the block flags
+ assert(blk);
+ // TODO: the coherent cache can assert(!blk->isDirty());
+ if (!pkt->writeThrough()) {
+ blk->status |= BlkDirty;
+ }
+ // nothing else to do; writeback doesn't expect response
+ assert(!pkt->needsResponse());
+ pkt->writeDataToBlock(blk->data, blkSize);
+ DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
+
+ incHitCount(pkt);
+ // populate the time when the block will be ready to access.
+ blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
+ pkt->payloadDelay;
+ // if this a write-through packet it will be sent to cache
+ // below
+ return !pkt->writeThrough();
+ } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
+ blk->isReadable())) {
+ // OK to satisfy access
+ incHitCount(pkt);
+ satisfyRequest(pkt, blk);
+ maintainClusivity(pkt->fromCache(), blk);
+
+ return true;
+ }
+
+ // Can't satisfy access normally... either no block (blk == nullptr)
+ // or have block but need writable
+
+ incMissCount(pkt);
+
+ if (!blk && pkt->isLLSC() && pkt->isWrite()) {
+ // complete miss on store conditional... just give up now
+ pkt->req->setExtraData(0);
+ return true;
+ }
+
+ return false;
+}
+
+void
+BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
+{
+ if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
+ clusivity == Enums::mostly_excl) {
+ // if we have responded to a cache, and our block is still
+ // valid, but not dirty, and this cache is mostly exclusive
+ // with respect to the cache above, drop the block
+ invalidateBlock(blk);
+ }
+}
+
+CacheBlk*
+BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
+ bool allocate)
+{
+ assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
+ Addr addr = pkt->getAddr();
+ bool is_secure = pkt->isSecure();
+#if TRACING_ON
+ CacheBlk::State old_state = blk ? blk->status : 0;
+#endif
+
+ // When handling a fill, we should have no writes to this line.
+ assert(addr == pkt->getBlockAddr(blkSize));
+ assert(!writeBuffer.findMatch(addr, is_secure));
+
+ if (!blk) {
+ // better have read new data...
+ assert(pkt->hasData());
+
+ // only read responses and write-line requests have data;
+ // note that we don't write the data here for write-line - that
+ // happens in the subsequent call to satisfyRequest
+ assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
+
+ // need to do a replacement if allocating, otherwise we stick
+ // with the temporary storage
+ blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
+
+ if (!blk) {
+ // No replaceable block or a mostly exclusive
+ // cache... just use temporary storage to complete the
+ // current request and then get rid of it
+ assert(!tempBlock->isValid());
+ blk = tempBlock;
+ tempBlock->set = tags->extractSet(addr);
+ tempBlock->tag = tags->extractTag(addr);
+ DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
+ is_secure ? "s" : "ns");
+ } else {
+ tags->insertBlock(pkt, blk);
+ }
+
+ // we should never be overwriting a valid block
+ assert(!blk->isValid());
+ } else {
+ // existing block... probably an upgrade
+ assert(blk->tag == tags->extractTag(addr));
+ // either we're getting new data or the block should already be valid
+ assert(pkt->hasData() || blk->isValid());
+ // don't clear block status... if block is already dirty we
+ // don't want to lose that
+ }
+
+ if (is_secure)
+ blk->status |= BlkSecure;
+ blk->status |= BlkValid | BlkReadable;
+
+ // sanity check for whole-line writes, which should always be
+ // marked as writable as part of the fill, and then later marked
+ // dirty as part of satisfyRequest
+ if (pkt->cmd == MemCmd::WriteLineReq) {
+ assert(!pkt->hasSharers());
+ }
+
+ // here we deal with setting the appropriate state of the line,
+ // and we start by looking at the hasSharers flag, and ignore the
+ // cacheResponding flag (normally signalling dirty data) if the
+ // packet has sharers, thus the line is never allocated as Owned
+ // (dirty but not writable), and always ends up being either
+ // Shared, Exclusive or Modified, see Packet::setCacheResponding
+ // for more details
+ if (!pkt->hasSharers()) {
+ // we could get a writable line from memory (rather than a
+ // cache) even in a read-only cache, note that we set this bit
+ // even for a read-only cache, possibly revisit this decision
+ blk->status |= BlkWritable;
+
+ // check if we got this via cache-to-cache transfer (i.e., from a
+ // cache that had the block in Modified or Owned state)
+ if (pkt->cacheResponding()) {
+ // we got the block in Modified state, and invalidated the
+ // owners copy
+ blk->status |= BlkDirty;
+
+ chatty_assert(!isReadOnly, "Should never see dirty snoop response "
+ "in read-only cache %s\n", name());
+ }
+ }
+
+ DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
+ addr, is_secure ? "s" : "ns", old_state, blk->print());
+
+ // if we got new data, copy it in (checking for a read response
+ // and a response that has data is the same in the end)
+ if (pkt->isRead()) {
+ // sanity checks
+ assert(pkt->hasData());
+ assert(pkt->getSize() == blkSize);
+
+ pkt->writeDataToBlock(blk->data, blkSize);
+ }
+ // We pay for fillLatency here.
+ blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
+ pkt->payloadDelay;
+
+ return blk;
+}
+
+CacheBlk*
+BaseCache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
+{
+ // Find replacement victim
+ CacheBlk *blk = tags->findVictim(addr);
+
+ // It is valid to return nullptr if there is no victim
+ if (!blk)
+ return nullptr;
+
+ if (blk->isValid()) {
+ Addr repl_addr = tags->regenerateBlkAddr(blk);
+ MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
+ if (repl_mshr) {
+ // must be an outstanding upgrade or clean request
+ // on a block we're about to replace...
+ assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
+ repl_mshr->isCleaning());
+ // too hard to replace block with transient state
+ // allocation failed, block not inserted
+ return nullptr;
+ } else {
+ DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
+ "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
+ addr, is_secure ? "s" : "ns",
+ blk->isDirty() ? "writeback" : "clean");
+
+ if (blk->wasPrefetched()) {
+ unusedPrefetches++;
+ }
+ evictBlock(blk, writebacks);
+ replacements++;
+ }
+ }
+
+ return blk;
+}
+
+void
+BaseCache::invalidateBlock(CacheBlk *blk)
+{
+ if (blk != tempBlock)
+ tags->invalidate(blk);
+ blk->invalidate();
+}
+
+PacketPtr
+BaseCache::writebackBlk(CacheBlk *blk)
+{
+ chatty_assert(!isReadOnly || writebackClean,
+ "Writeback from read-only cache");
+ assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
+
+ writebacks[Request::wbMasterId]++;
+
+ Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
+ Request::wbMasterId);
+ if (blk->isSecure())
+ req->setFlags(Request::SECURE);
+
+ req->taskId(blk->task_id);
+
+ PacketPtr pkt =
+ new Packet(req, blk->isDirty() ?
+ MemCmd::WritebackDirty : MemCmd::WritebackClean);
+
+ DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
+ pkt->print(), blk->isWritable(), blk->isDirty());
+
+ if (blk->isWritable()) {
+ // not asserting shared means we pass the block in modified
+ // state, mark our own block non-writeable
+ blk->status &= ~BlkWritable;
+ } else {
+ // we are in the Owned state, tell the receiver
+ pkt->setHasSharers();
+ }
+
+ // make sure the block is not marked dirty
+ blk->status &= ~BlkDirty;
+
+ pkt->allocate();
+ pkt->setDataFromBlock(blk->data, blkSize);
+
+ return pkt;
+}
+
+PacketPtr
+BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
+{
+ Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
+ Request::wbMasterId);
+ if (blk->isSecure()) {
+ req->setFlags(Request::SECURE);
+ }
+ req->taskId(blk->task_id);
+
+ PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
+
+ if (dest) {
+ req->setFlags(dest);
+ pkt->setWriteThrough();
+ }
+
+ DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
+ blk->isWritable(), blk->isDirty());
+
+ if (blk->isWritable()) {
+ // not asserting shared means we pass the block in modified
+ // state, mark our own block non-writeable
+ blk->status &= ~BlkWritable;
+ } else {
+ // we are in the Owned state, tell the receiver
+ pkt->setHasSharers();
+ }
+
+ // make sure the block is not marked dirty
+ blk->status &= ~BlkDirty;
+
+ pkt->allocate();
+ pkt->setDataFromBlock(blk->data, blkSize);
+
+ return pkt;
+}
+
+
+void
+BaseCache::memWriteback()
+{
+ CacheBlkVisitorWrapper visitor(*this, &BaseCache::writebackVisitor);
+ tags->forEachBlk(visitor);
+}
+
+void
+BaseCache::memInvalidate()
+{
+ CacheBlkVisitorWrapper visitor(*this, &BaseCache::invalidateVisitor);
+ tags->forEachBlk(visitor);
+}
+
+bool
+BaseCache::isDirty() const
+{
+ CacheBlkIsDirtyVisitor visitor;
+ tags->forEachBlk(visitor);
+
+ return visitor.isDirty();
+}
+
+bool
+BaseCache::writebackVisitor(CacheBlk &blk)
+{
+ if (blk.isDirty()) {
+ assert(blk.isValid());
+
+ Request request(tags->regenerateBlkAddr(&blk),
+ blkSize, 0, Request::funcMasterId);
+ request.taskId(blk.task_id);
+ if (blk.isSecure()) {
+ request.setFlags(Request::SECURE);
+ }
+
+ Packet packet(&request, MemCmd::WriteReq);
+ packet.dataStatic(blk.data);
+
+ memSidePort.sendFunctional(&packet);
+
+ blk.status &= ~BlkDirty;
+ }
+
+ return true;
+}
+
+bool
+BaseCache::invalidateVisitor(CacheBlk &blk)
+{
+ if (blk.isDirty())
+ warn_once("Invalidating dirty cache lines. " \
+ "Expect things to break.\n");
+
+ if (blk.isValid()) {
+ assert(!blk.isDirty());
+ invalidateBlock(&blk);
+ }
+
+ return true;
+}
+
+Tick
+BaseCache::nextQueueReadyTime() const
+{
+ Tick nextReady = std::min(mshrQueue.nextReadyTime(),
+ writeBuffer.nextReadyTime());
+
+ // Don't signal prefetch ready time if no MSHRs available
+ // Will signal once enoguh MSHRs are deallocated
+ if (prefetcher && mshrQueue.canPrefetch()) {
+ nextReady = std::min(nextReady,
+ prefetcher->nextPrefetchReadyTime());
+ }
+
+ return nextReady;
+}
+
+
+bool
+BaseCache::sendMSHRQueuePacket(MSHR* mshr)
+{
+ assert(mshr);
+
+ // use request from 1st target
+ PacketPtr tgt_pkt = mshr->getTarget()->pkt;
+
+ DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
+
+ CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
+
+ // either a prefetch that is not present upstream, or a normal
+ // MSHR request, proceed to get the packet to send downstream
+ PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
+
+ mshr->isForward = (pkt == nullptr);
+
+ if (mshr->isForward) {
+ // not a cache block request, but a response is expected
+ // make copy of current packet to forward, keep current
+ // copy for response handling
+ pkt = new Packet(tgt_pkt, false, true);
+ assert(!pkt->isWrite());
+ }
+
+ // play it safe and append (rather than set) the sender state,
+ // as forwarded packets may already have existing state
+ pkt->pushSenderState(mshr);
+
+ if (pkt->isClean() && blk && blk->isDirty()) {
+ // A cache clean opearation is looking for a dirty block. Mark
+ // the packet so that the destination xbar can determine that
+ // there will be a follow-up write packet as well.
+ pkt->setSatisfied();
+ }
+
+ if (!memSidePort.sendTimingReq(pkt)) {
+ // we are awaiting a retry, but we
+ // delete the packet and will be creating a new packet
+ // when we get the opportunity
+ delete pkt;
+
+ // note that we have now masked any requestBus and
+ // schedSendEvent (we will wait for a retry before
+ // doing anything), and this is so even if we do not
+ // care about this packet and might override it before
+ // it gets retried
+ return true;
+ } else {
+ // As part of the call to sendTimingReq the packet is
+ // forwarded to all neighbouring caches (and any caches
+ // above them) as a snoop. Thus at this point we know if
+ // any of the neighbouring caches are responding, and if
+ // so, we know it is dirty, and we can determine if it is
+ // being passed as Modified, making our MSHR the ordering
+ // point
+ bool pending_modified_resp = !pkt->hasSharers() &&
+ pkt->cacheResponding();
+ markInService(mshr, pending_modified_resp);
+
+ if (pkt->isClean() && blk && blk->isDirty()) {
+ // A cache clean opearation is looking for a dirty
+ // block. If a dirty block is encountered a WriteClean
+ // will update any copies to the path to the memory
+ // until the point of reference.
+ DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
+ __func__, pkt->print(), blk->print());
+ PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
+ pkt->id);
+ PacketList writebacks;
+ writebacks.push_back(wb_pkt);
+ doWritebacks(writebacks, 0);
+ }
+
+ return false;
+ }
+}
+
+bool
+BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
+{
+ assert(wq_entry);
+
+ // always a single target for write queue entries
+ PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
+
+ DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
+
+ // forward as is, both for evictions and uncacheable writes
+ if (!memSidePort.sendTimingReq(tgt_pkt)) {
+ // note that we have now masked any requestBus and
+ // schedSendEvent (we will wait for a retry before
+ // doing anything), and this is so even if we do not
+ // care about this packet and might override it before
+ // it gets retried
+ return true;
+ } else {
+ markInService(wq_entry);
+ return false;
+ }
+}
+
+void
+BaseCache::serialize(CheckpointOut &cp) const
+{
+ bool dirty(isDirty());
+
+ if (dirty) {
+ warn("*** The cache still contains dirty data. ***\n");
+ warn(" Make sure to drain the system using the correct flags.\n");
+ warn(" This checkpoint will not restore correctly " \
+ "and dirty data in the cache will be lost!\n");
+ }
+
+ // Since we don't checkpoint the data in the cache, any dirty data
+ // will be lost when restoring from a checkpoint of a system that
+ // wasn't drained properly. Flag the checkpoint as invalid if the
+ // cache contains dirty data.
+ bool bad_checkpoint(dirty);
+ SERIALIZE_SCALAR(bad_checkpoint);
+}
+
+void
+BaseCache::unserialize(CheckpointIn &cp)
+{
+ bool bad_checkpoint;
+ UNSERIALIZE_SCALAR(bad_checkpoint);
+ if (bad_checkpoint) {
+ fatal("Restoring from checkpoints with dirty caches is not "
+ "supported in the classic memory system. Please remove any "
+ "caches or drain them properly before taking checkpoints.\n");
+ }
+}
+
void
BaseCache::regStats()
{
.desc("number of replacements")
;
}
+
+///////////////
+//
+// CpuSidePort
+//
+///////////////
+bool
+BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
+{
+ // Express snoop responses from master to slave, e.g., from L1 to L2
+ cache->recvTimingSnoopResp(pkt);
+ return true;
+}
+
+
+bool
+BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
+{
+ if (pkt->isExpressSnoop()) {
+ // always let express snoop packets through even if blocked
+ return true;
+ } else if (blocked || mustSendRetry) {
+ // either already committed to send a retry, or blocked
+ mustSendRetry = true;
+ return false;
+ }
+ mustSendRetry = false;
+ return true;
+}
+
+bool
+BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
+{
+ if (tryTiming(pkt)) {
+ cache->recvTimingReq(pkt);
+ return true;
+ }
+ return false;
+}
+
+Tick
+BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
+{
+ return cache->recvAtomic(pkt);
+}
+
+void
+BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
+{
+ // functional request
+ cache->functionalAccess(pkt, true);
+}
+
+AddrRangeList
+BaseCache::CpuSidePort::getAddrRanges() const
+{
+ return cache->getAddrRanges();
+}
+
+
+BaseCache::
+CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
+ const std::string &_label)
+ : CacheSlavePort(_name, _cache, _label), cache(_cache)
+{
+}
+
+///////////////
+//
+// MemSidePort
+//
+///////////////
+bool
+BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
+{
+ cache->recvTimingResp(pkt);
+ return true;
+}
+
+// Express snooping requests to memside port
+void
+BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
+{
+ // handle snooping requests
+ cache->recvTimingSnoopReq(pkt);
+}
+
+Tick
+BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
+{
+ return cache->recvAtomicSnoop(pkt);
+}
+
+void
+BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
+{
+ // functional snoop (note that in contrast to atomic we don't have
+ // a specific functionalSnoop method, as they have the same
+ // behaviour regardless)
+ cache->functionalAccess(pkt, false);
+}
+
+void
+BaseCache::CacheReqPacketQueue::sendDeferredPacket()
+{
+ // sanity check
+ assert(!waitingOnRetry);
+
+ // there should never be any deferred request packets in the
+ // queue, instead we resly on the cache to provide the packets
+ // from the MSHR queue or write queue
+ assert(deferredPacketReadyTime() == MaxTick);
+
+ // check for request packets (requests & writebacks)
+ QueueEntry* entry = cache.getNextQueueEntry();
+
+ if (!entry) {
+ // can happen if e.g. we attempt a writeback and fail, but
+ // before the retry, the writeback is eliminated because
+ // we snoop another cache's ReadEx.
+ } else {
+ // let our snoop responses go first if there are responses to
+ // the same addresses
+ if (checkConflictingSnoop(entry->blkAddr)) {
+ return;
+ }
+ waitingOnRetry = entry->sendPacket(cache);
+ }
+
+ // if we succeeded and are not waiting for a retry, schedule the
+ // next send considering when the next queue is ready, note that
+ // snoop responses have their own packet queue and thus schedule
+ // their own events
+ if (!waitingOnRetry) {
+ schedSendEvent(cache.nextQueueReadyTime());
+ }
+}
+
+BaseCache::MemSidePort::MemSidePort(const std::string &_name,
+ BaseCache *_cache,
+ const std::string &_label)
+ : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
+ _reqQueue(*_cache, *this, _snoopRespQueue, _label),
+ _snoopRespQueue(*_cache, *this, _label), cache(_cache)
+{
+}
/*
- * Copyright (c) 2012-2013, 2015-2016 ARM Limited
+ * Copyright (c) 2012-2013, 2015-2016, 2018 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* Authors: Erik Hallnor
* Steve Reinhardt
* Ron Dreslinski
+ * Andreas Hansson
+ * Nikos Nikoleris
*/
/**
#ifndef __MEM_CACHE_BASE_HH__
#define __MEM_CACHE_BASE_HH__
-#include <algorithm>
-#include <list>
+#include <cassert>
+#include <cstdint>
#include <string>
-#include <vector>
-#include "base/logging.hh"
+#include "base/addr_range.hh"
#include "base/statistics.hh"
#include "base/trace.hh"
#include "base/types.hh"
#include "debug/Cache.hh"
#include "debug/CachePort.hh"
+#include "enums/Clusivity.hh"
+#include "mem/cache/blk.hh"
#include "mem/cache/mshr_queue.hh"
+#include "mem/cache/tags/base.hh"
#include "mem/cache/write_queue.hh"
+#include "mem/cache/write_queue_entry.hh"
#include "mem/mem_object.hh"
#include "mem/packet.hh"
+#include "mem/packet_queue.hh"
#include "mem/qport.hh"
#include "mem/request.hh"
-#include "params/BaseCache.hh"
#include "sim/eventq.hh"
-#include "sim/full_system.hh"
+#include "sim/serialize.hh"
#include "sim/sim_exit.hh"
#include "sim/system.hh"
+class BaseMasterPort;
+class BasePrefetcher;
+class BaseSlavePort;
+class MSHR;
+class MasterPort;
+class QueueEntry;
+struct BaseCacheParams;
+
/**
* A basic cache interface. Implements some common functions for speed.
*/
virtual bool isSnooping() const { return true; }
};
+ /**
+ * Override the default behaviour of sendDeferredPacket to enable
+ * the memory-side cache port to also send requests based on the
+ * current MSHR status. This queue has a pointer to our specific
+ * cache implementation and is used by the MemSidePort.
+ */
+ class CacheReqPacketQueue : public ReqPacketQueue
+ {
+
+ protected:
+
+ BaseCache &cache;
+ SnoopRespPacketQueue &snoopRespQueue;
+
+ public:
+
+ CacheReqPacketQueue(BaseCache &cache, MasterPort &port,
+ SnoopRespPacketQueue &snoop_resp_queue,
+ const std::string &label) :
+ ReqPacketQueue(cache, port, label), cache(cache),
+ snoopRespQueue(snoop_resp_queue) { }
+
+ /**
+ * Override the normal sendDeferredPacket and do not only
+ * consider the transmit list (used for responses), but also
+ * requests.
+ */
+ virtual void sendDeferredPacket();
+
+ /**
+ * Check if there is a conflicting snoop response about to be
+ * send out, and if so simply stall any requests, and schedule
+ * a send event at the same time as the next snoop response is
+ * being sent out.
+ */
+ bool checkConflictingSnoop(Addr addr)
+ {
+ if (snoopRespQueue.hasAddr(addr)) {
+ DPRINTF(CachePort, "Waiting for snoop response to be "
+ "sent\n");
+ Tick when = snoopRespQueue.deferredPacketReadyTime();
+ schedSendEvent(when);
+ return true;
+ }
+ return false;
+ }
+ };
+
+
+ /**
+ * The memory-side port extends the base cache master port with
+ * access functions for functional, atomic and timing snoops.
+ */
+ class MemSidePort : public CacheMasterPort
+ {
+ private:
+
+ /** The cache-specific queue. */
+ CacheReqPacketQueue _reqQueue;
+
+ SnoopRespPacketQueue _snoopRespQueue;
+
+ // a pointer to our specific cache implementation
+ BaseCache *cache;
+
+ protected:
+
+ virtual void recvTimingSnoopReq(PacketPtr pkt);
+
+ virtual bool recvTimingResp(PacketPtr pkt);
+
+ virtual Tick recvAtomicSnoop(PacketPtr pkt);
+
+ virtual void recvFunctionalSnoop(PacketPtr pkt);
+
+ public:
+
+ MemSidePort(const std::string &_name, BaseCache *_cache,
+ const std::string &_label);
+ };
+
/**
* A cache slave port is used for the CPU-side port of the cache,
* and it is basically a simple timing port that uses a transmit
};
- CacheSlavePort *cpuSidePort;
- CacheMasterPort *memSidePort;
+ /**
+ * The CPU-side port extends the base cache slave port with access
+ * functions for functional, atomic and timing requests.
+ */
+ class CpuSidePort : public CacheSlavePort
+ {
+ private:
+
+ // a pointer to our specific cache implementation
+ BaseCache *cache;
+
+ protected:
+ virtual bool recvTimingSnoopResp(PacketPtr pkt) override;
+
+ virtual bool tryTiming(PacketPtr pkt) override;
+
+ virtual bool recvTimingReq(PacketPtr pkt) override;
+
+ virtual Tick recvAtomic(PacketPtr pkt) override;
+
+ virtual void recvFunctional(PacketPtr pkt) override;
+
+ virtual AddrRangeList getAddrRanges() const override;
+
+ public:
+
+ CpuSidePort(const std::string &_name, BaseCache *_cache,
+ const std::string &_label);
+
+ };
+
+ CpuSidePort cpuSidePort;
+ MemSidePort memSidePort;
protected:
/** Write/writeback buffer */
WriteQueue writeBuffer;
+ /** Tag and data Storage */
+ BaseTags *tags;
+
+ /** Prefetcher */
+ BasePrefetcher *prefetcher;
+
+ /**
+ * Notify the prefetcher on every access, not just misses.
+ */
+ const bool prefetchOnAccess;
+
+ /**
+ * Temporary cache block for occasional transitory use. We use
+ * the tempBlock to fill when allocation fails (e.g., when there
+ * is an outstanding request that accesses the victim block) or
+ * when we want to avoid allocation (e.g., exclusive caches)
+ */
+ CacheBlk *tempBlock;
+
+ /**
+ * Upstream caches need this packet until true is returned, so
+ * hold it for deletion until a subsequent call
+ */
+ std::unique_ptr<Packet> pendingDelete;
+
/**
* Mark a request as in service (sent downstream in the memory
* system), effectively making this MSHR the ordering point.
}
/**
- * Determine if we should allocate on a fill or not.
+ * Determine whether we should allocate on a fill or not. If this
+ * cache is mostly inclusive with regards to the upstream cache(s)
+ * we always allocate (for any non-forwarded and cacheable
+ * requests). In the case of a mostly exclusive cache, we allocate
+ * on fill if the packet did not come from a cache, thus if we:
+ * are dealing with a whole-line write (the latter behaves much
+ * like a writeback), the original target packet came from a
+ * non-caching source, or if we are performing a prefetch or LLSC.
+ *
+ * @param cmd Command of the incoming requesting packet
+ * @return Whether we should allocate on the fill
+ */
+ inline bool allocOnFill(MemCmd cmd) const
+ {
+ return clusivity == Enums::mostly_incl ||
+ cmd == MemCmd::WriteLineReq ||
+ cmd == MemCmd::ReadReq ||
+ cmd == MemCmd::WriteReq ||
+ cmd.isPrefetch() ||
+ cmd.isLLSC();
+ }
+
+ /**
+ * Does all the processing necessary to perform the provided request.
+ * @param pkt The memory request to perform.
+ * @param blk The cache block to be updated.
+ * @param lat The latency of the access.
+ * @param writebacks List for any writebacks that need to be performed.
+ * @return Boolean indicating whether the request was satisfied.
+ */
+ virtual bool access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
+ PacketList &writebacks);
+
+ /*
+ * Handle a timing request that hit in the cache
+ *
+ * @param ptk The request packet
+ * @param blk The referenced block
+ * @param request_time The tick at which the block lookup is compete
+ */
+ virtual void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk,
+ Tick request_time);
+
+ /*
+ * Handle a timing request that missed in the cache
+ *
+ * Implementation specific handling for different cache
+ * implementations
+ *
+ * @param ptk The request packet
+ * @param blk The referenced block
+ * @param forward_time The tick at which we can process dependent requests
+ * @param request_time The tick at which the block lookup is compete
+ */
+ virtual void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk,
+ Tick forward_time,
+ Tick request_time) = 0;
+
+ /*
+ * Handle a timing request that missed in the cache
+ *
+ * Common functionality across different cache implementations
+ *
+ * @param ptk The request packet
+ * @param blk The referenced block
+ * @param mshr Any existing mshr for the referenced cache block
+ * @param forward_time The tick at which we can process dependent requests
+ * @param request_time The tick at which the block lookup is compete
+ */
+ void handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
+ Tick forward_time, Tick request_time);
+
+ /**
+ * Performs the access specified by the request.
+ * @param pkt The request to perform.
+ */
+ virtual void recvTimingReq(PacketPtr pkt);
+
+ /**
+ * Handling the special case of uncacheable write responses to
+ * make recvTimingResp less cluttered.
+ */
+ void handleUncacheableWriteResp(PacketPtr pkt);
+
+ /**
+ * Service non-deferred MSHR targets using the received response
+ *
+ * Iterates through the list of targets that can be serviced with
+ * the current response. Any writebacks that need to performed
+ * must be appended to the writebacks parameter.
+ *
+ * @param mshr The MSHR that corresponds to the reponse
+ * @param pkt The response packet
+ * @param blk The reference block
+ * @param writebacks List of writebacks that need to be performed
+ */
+ virtual void serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt,
+ CacheBlk *blk, PacketList& writebacks) = 0;
+
+ /**
+ * Handles a response (cache line fill/write ack) from the bus.
+ * @param pkt The response packet
+ */
+ virtual void recvTimingResp(PacketPtr pkt);
+
+ /**
+ * Snoops bus transactions to maintain coherence.
+ * @param pkt The current bus transaction.
+ */
+ virtual void recvTimingSnoopReq(PacketPtr pkt) = 0;
+
+ /**
+ * Handle a snoop response.
+ * @param pkt Snoop response packet
+ */
+ virtual void recvTimingSnoopResp(PacketPtr pkt) = 0;
+
+ /**
+ * Handle a request in atomic mode that missed in this cache
+ *
+ * Creates a downstream request, sends it to the memory below and
+ * handles the response. As we are in atomic mode all operations
+ * are performed immediately.
+ *
+ * @param pkt The packet with the requests
+ * @param blk The referenced block
+ * @param writebacks A list with packets for any performed writebacks
+ * @return Cycles for handling the request
+ */
+ virtual Cycles handleAtomicReqMiss(PacketPtr pkt, CacheBlk *blk,
+ PacketList &writebacks) = 0;
+
+ /**
+ * Performs the access specified by the request.
+ * @param pkt The request to perform.
+ * @return The number of ticks required for the access.
+ */
+ virtual Tick recvAtomic(PacketPtr pkt);
+
+ /**
+ * Snoop for the provided request in the cache and return the estimated
+ * time taken.
+ * @param pkt The memory request to snoop
+ * @return The number of ticks required for the snoop.
+ */
+ virtual Tick recvAtomicSnoop(PacketPtr pkt) = 0;
+
+ /**
+ * Performs the access specified by the request.
+ *
+ * @param pkt The request to perform.
+ * @param fromCpuSide from the CPU side port or the memory side port
+ */
+ virtual void functionalAccess(PacketPtr pkt, bool from_cpu_side);
+
+ /**
+ * Handle doing the Compare and Swap function for SPARC.
+ */
+ void cmpAndSwap(CacheBlk *blk, PacketPtr pkt);
+
+ /**
+ * Return the next queue entry to service, either a pending miss
+ * from the MSHR queue, a buffered write from the write buffer, or
+ * something from the prefetcher. This function is responsible
+ * for prioritizing among those sources on the fly.
+ */
+ QueueEntry* getNextQueueEntry();
+
+ /**
+ * Insert writebacks into the write buffer
+ */
+ virtual void doWritebacks(PacketList& writebacks, Tick forward_time) = 0;
+
+ /**
+ * Send writebacks down the memory hierarchy in atomic mode
+ */
+ virtual void doWritebacksAtomic(PacketList& writebacks) = 0;
+
+ /**
+ * Create an appropriate downstream bus request packet.
+ *
+ * Creates a new packet with the request to be send to the memory
+ * below, or nullptr if the current request in cpu_pkt should just
+ * be forwarded on.
+ *
+ * @param cpu_pkt The miss packet that needs to be satisfied.
+ * @param blk The referenced block, can be nullptr.
+ * @param needs_writable Indicates that the block must be writable
+ * even if the request in cpu_pkt doesn't indicate that.
+ * @return A packet send to the memory below
+ */
+ virtual PacketPtr createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
+ bool needs_writable) const = 0;
+
+ /**
+ * Determine if clean lines should be written back or not. In
+ * cases where a downstream cache is mostly inclusive we likely
+ * want it to act as a victim cache also for lines that have not
+ * been modified. Hence, we cannot simply drop the line (or send a
+ * clean evict), but rather need to send the actual data.
+ */
+ const bool writebackClean;
+
+ /**
+ * Writebacks from the tempBlock, resulting on the response path
+ * in atomic mode, must happen after the call to recvAtomic has
+ * finished (for the right ordering of the packets). We therefore
+ * need to hold on to the packets, and have a method and an event
+ * to send them.
+ */
+ PacketPtr tempBlockWriteback;
+
+ /**
+ * Send the outstanding tempBlock writeback. To be called after
+ * recvAtomic finishes in cases where the block we filled is in
+ * fact the tempBlock, and now needs to be written back.
+ */
+ void writebackTempBlockAtomic() {
+ assert(tempBlockWriteback != nullptr);
+ PacketList writebacks{tempBlockWriteback};
+ doWritebacksAtomic(writebacks);
+ tempBlockWriteback = nullptr;
+ }
+
+ /**
+ * An event to writeback the tempBlock after recvAtomic
+ * finishes. To avoid other calls to recvAtomic getting in
+ * between, we create this event with a higher priority.
+ */
+ EventFunctionWrapper writebackTempBlockAtomicEvent;
+
+ /**
+ * Perform any necessary updates to the block and perform any data
+ * exchange between the packet and the block. The flags of the
+ * packet are also set accordingly.
+ *
+ * @param pkt Request packet from upstream that hit a block
+ * @param blk Cache block that the packet hit
+ * @param deferred_response Whether this request originally missed
+ * @param pending_downgrade Whether the writable flag is to be removed
+ */
+ virtual void satisfyRequest(PacketPtr pkt, CacheBlk *blk,
+ bool deferred_response = false,
+ bool pending_downgrade = false);
+
+ /**
+ * Maintain the clusivity of this cache by potentially
+ * invalidating a block. This method works in conjunction with
+ * satisfyRequest, but is separate to allow us to handle all MSHR
+ * targets before potentially dropping a block.
+ *
+ * @param from_cache Whether we have dealt with a packet from a cache
+ * @param blk The block that should potentially be dropped
+ */
+ void maintainClusivity(bool from_cache, CacheBlk *blk);
+
+ /**
+ * Handle a fill operation caused by a received packet.
+ *
+ * Populates a cache block and handles all outstanding requests for the
+ * satisfied fill request. This version takes two memory requests. One
+ * contains the fill data, the other is an optional target to satisfy.
+ * Note that the reason we return a list of writebacks rather than
+ * inserting them directly in the write buffer is that this function
+ * is called by both atomic and timing-mode accesses, and in atomic
+ * mode we don't mess with the write buffer (we just perform the
+ * writebacks atomically once the original request is complete).
+ *
+ * @param pkt The memory request with the fill data.
+ * @param blk The cache block if it already exists.
+ * @param writebacks List for any writebacks that need to be performed.
+ * @param allocate Whether to allocate a block or use the temp block
+ * @return Pointer to the new cache block.
+ */
+ CacheBlk *handleFill(PacketPtr pkt, CacheBlk *blk,
+ PacketList &writebacks, bool allocate);
+
+ /**
+ * Allocate a new block and perform any necessary writebacks
+ *
+ * Find a victim block and if necessary prepare writebacks for any
+ * existing data. May return nullptr if there are no replaceable
+ * blocks.
+ *
+ * @param addr Physical address of the new block
+ * @param is_secure Set if the block should be secure
+ * @param writebacks A list of writeback packets for the evicted blocks
+ * @return the allocated block
+ */
+ CacheBlk *allocateBlock(Addr addr, bool is_secure, PacketList &writebacks);
+ /**
+ * Evict a cache block.
+ *
+ * Performs a writeback if necesssary and invalidates the block
+ *
+ * @param blk Block to invalidate
+ * @return A packet with the writeback, can be nullptr
+ */
+ M5_NODISCARD virtual PacketPtr evictBlock(CacheBlk *blk) = 0;
+
+ /**
+ * Evict a cache block.
+ *
+ * Performs a writeback if necesssary and invalidates the block
+ *
+ * @param blk Block to invalidate
+ * @param writebacks Return a list of packets with writebacks
+ */
+ virtual void evictBlock(CacheBlk *blk, PacketList &writebacks) = 0;
+
+ /**
+ * Invalidate a cache block.
+ *
+ * @param blk Block to invalidate
+ */
+ void invalidateBlock(CacheBlk *blk);
+
+ /**
+ * Create a writeback request for the given block.
+ *
+ * @param blk The block to writeback.
+ * @return The writeback request for the block.
+ */
+ PacketPtr writebackBlk(CacheBlk *blk);
+
+ /**
+ * Create a writeclean request for the given block.
*
- * @param cmd Packet command being added as an MSHR target
+ * Creates a request that writes the block to the cache below
+ * without evicting the block from the current cache.
*
- * @return Whether we should allocate on a fill or not
+ * @param blk The block to write clean.
+ * @param dest The destination of the write clean operation.
+ * @param id Use the given packet id for the write clean operation.
+ * @return The generated write clean packet.
*/
- virtual bool allocOnFill(MemCmd cmd) const = 0;
+ PacketPtr writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id);
/**
* Write back dirty blocks in the cache using functional accesses.
*/
- virtual void memWriteback() override = 0;
+ virtual void memWriteback() override;
+
/**
* Invalidates all blocks in the cache.
*
* memory. Make sure to call functionalWriteback() first if you
* want the to write them to memory.
*/
- virtual void memInvalidate() override = 0;
+ virtual void memInvalidate() override;
+
/**
* Determine if there are any dirty blocks in the cache.
*
- * \return true if at least one block is dirty, false otherwise.
+ * @return true if at least one block is dirty, false otherwise.
*/
- virtual bool isDirty() const = 0;
+ bool isDirty() const;
/**
* Determine if an address is in the ranges covered by this
*/
bool inRange(Addr addr) const;
+ /**
+ * Find next request ready time from among possible sources.
+ */
+ Tick nextQueueReadyTime() const;
+
/** Block size of this cache */
const unsigned blkSize;
/** Do we forward snoops from mem side port through to cpu side port? */
bool forwardSnoops;
+ /**
+ * Clusivity with respect to the upstream cache, determining if we
+ * fill into both this cache and the cache above on a miss. Note
+ * that we currently do not support strict clusivity policies.
+ */
+ const Enums::Clusivity clusivity;
+
/**
* Is this cache read only, for example the instruction cache, or
* table-walker cache. A cache that is read only should never see
/**
* Register stats for this object.
*/
- virtual void regStats() override;
+ void regStats() override;
public:
BaseCache(const BaseCacheParams *p, unsigned blk_size);
- ~BaseCache() {}
+ ~BaseCache();
- virtual void init() override;
+ void init() override;
- virtual BaseMasterPort &getMasterPort(const std::string &if_name,
- PortID idx = InvalidPortID) override;
- virtual BaseSlavePort &getSlavePort(const std::string &if_name,
- PortID idx = InvalidPortID) override;
+ BaseMasterPort &getMasterPort(const std::string &if_name,
+ PortID idx = InvalidPortID) override;
+ BaseSlavePort &getSlavePort(const std::string &if_name,
+ PortID idx = InvalidPortID) override;
/**
* Query block size of a cache.
if (blocked == 0) {
blocked_causes[cause]++;
blockedCycle = curCycle();
- cpuSidePort->setBlocked();
+ cpuSidePort.setBlocked();
}
blocked |= flag;
DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked);
DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked);
if (blocked == 0) {
blocked_cycles[cause] += curCycle() - blockedCycle;
- cpuSidePort->clearBlocked();
+ cpuSidePort.clearBlocked();
}
}
*/
void schedMemSideSendEvent(Tick time)
{
- memSidePort->schedSendEvent(time);
+ memSidePort.schedSendEvent(time);
}
- virtual bool inCache(Addr addr, bool is_secure) const = 0;
+ bool inCache(Addr addr, bool is_secure) const {
+ return tags->findBlock(addr, is_secure);
+ }
- virtual bool inMissQueue(Addr addr, bool is_secure) const = 0;
+ bool inMissQueue(Addr addr, bool is_secure) const {
+ return mshrQueue.findMatch(addr, is_secure);
+ }
void incMissCount(PacketPtr pkt)
{
}
+ /**
+ * Cache block visitor that writes back dirty cache blocks using
+ * functional writes.
+ *
+ * @return Always returns true.
+ */
+ bool writebackVisitor(CacheBlk &blk);
+
+ /**
+ * Cache block visitor that invalidates all blocks in the cache.
+ *
+ * @warn Dirty cache lines will not be written back to memory.
+ *
+ * @return Always returns true.
+ */
+ bool invalidateVisitor(CacheBlk &blk);
+
+ /**
+ * Take an MSHR, turn it into a suitable downstream packet, and
+ * send it out. This construct allows a queue entry to choose a suitable
+ * approach based on its type.
+ *
+ * @param mshr The MSHR to turn into a packet and send
+ * @return True if the port is waiting for a retry
+ */
+ virtual bool sendMSHRQueuePacket(MSHR* mshr);
+
+ /**
+ * Similar to sendMSHR, but for a write-queue entry
+ * instead. Create the packet, and send it, and if successful also
+ * mark the entry in service.
+ *
+ * @param wq_entry The write-queue entry to turn into a packet and send
+ * @return True if the port is waiting for a retry
+ */
+ bool sendWriteQueuePacket(WriteQueueEntry* wq_entry);
+
+ /**
+ * Serialize the state of the caches
+ *
+ * We currently don't support checkpointing cache state, so this panics.
+ */
+ void serialize(CheckpointOut &cp) const override;
+ void unserialize(CheckpointIn &cp) override;
+
+};
+
+/**
+ * Wrap a method and present it as a cache block visitor.
+ *
+ * For example the forEachBlk method in the tag arrays expects a
+ * callable object/function as their parameter. This class wraps a
+ * method in an object and presents callable object that adheres to
+ * the cache block visitor protocol.
+ */
+class CacheBlkVisitorWrapper : public CacheBlkVisitor
+{
+ public:
+ typedef bool (BaseCache::*VisitorPtr)(CacheBlk &blk);
+
+ CacheBlkVisitorWrapper(BaseCache &_cache, VisitorPtr _visitor)
+ : cache(_cache), visitor(_visitor) {}
+
+ bool operator()(CacheBlk &blk) override {
+ return (cache.*visitor)(blk);
+ }
+
+ private:
+ BaseCache &cache;
+ VisitorPtr visitor;
+};
+
+/**
+ * Cache block visitor that determines if there are dirty blocks in a
+ * cache.
+ *
+ * Use with the forEachBlk method in the tag array to determine if the
+ * array contains dirty blocks.
+ */
+class CacheBlkIsDirtyVisitor : public CacheBlkVisitor
+{
+ public:
+ CacheBlkIsDirtyVisitor()
+ : _isDirty(false) {}
+
+ bool operator()(CacheBlk &blk) override {
+ if (blk.isDirty()) {
+ _isDirty = true;
+ return false;
+ } else {
+ return true;
+ }
+ }
+
+ /**
+ * Does the array contain a dirty line?
+ *
+ * @return true if yes, false otherwise.
+ */
+ bool isDirty() const { return _isDirty; };
+
+ private:
+ bool _isDirty;
};
#endif //__MEM_CACHE_BASE_HH__
#include "mem/cache/cache.hh"
+#include <cassert>
+
+#include "base/compiler.hh"
#include "base/logging.hh"
+#include "base/trace.hh"
#include "base/types.hh"
#include "debug/Cache.hh"
-#include "debug/CachePort.hh"
#include "debug/CacheTags.hh"
#include "debug/CacheVerbose.hh"
+#include "enums/Clusivity.hh"
#include "mem/cache/blk.hh"
#include "mem/cache/mshr.hh"
-#include "mem/cache/prefetch/base.hh"
-#include "sim/sim_exit.hh"
+#include "mem/cache/tags/base.hh"
+#include "mem/cache/write_queue_entry.hh"
+#include "mem/request.hh"
+#include "params/Cache.hh"
Cache::Cache(const CacheParams *p)
: BaseCache(p, p->system->cacheLineSize()),
- tags(p->tags),
- prefetcher(p->prefetcher),
- doFastWrites(true),
- prefetchOnAccess(p->prefetch_on_access),
- clusivity(p->clusivity),
- writebackClean(p->writeback_clean),
- tempBlockWriteback(nullptr),
- writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
- name(), false,
- EventBase::Delayed_Writeback_Pri)
-{
- tempBlock = new CacheBlk();
- tempBlock->data = new uint8_t[blkSize];
-
- cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
- "CpuSidePort");
- memSidePort = new MemSidePort(p->name + ".mem_side", this,
- "MemSidePort");
-
- tags->setCache(this);
- if (prefetcher)
- prefetcher->setCache(this);
-}
-
-Cache::~Cache()
-{
- delete [] tempBlock->data;
- delete tempBlock;
-
- delete cpuSidePort;
- delete memSidePort;
-}
-
-void
-Cache::regStats()
+ doFastWrites(true)
{
- BaseCache::regStats();
}
-void
-Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
-{
- assert(pkt->isRequest());
-
- uint64_t overwrite_val;
- bool overwrite_mem;
- uint64_t condition_val64;
- uint32_t condition_val32;
-
- int offset = tags->extractBlkOffset(pkt->getAddr());
- uint8_t *blk_data = blk->data + offset;
-
- assert(sizeof(uint64_t) >= pkt->getSize());
-
- overwrite_mem = true;
- // keep a copy of our possible write value, and copy what is at the
- // memory address into the packet
- pkt->writeData((uint8_t *)&overwrite_val);
- pkt->setData(blk_data);
-
- if (pkt->req->isCondSwap()) {
- if (pkt->getSize() == sizeof(uint64_t)) {
- condition_val64 = pkt->req->getExtraData();
- overwrite_mem = !std::memcmp(&condition_val64, blk_data,
- sizeof(uint64_t));
- } else if (pkt->getSize() == sizeof(uint32_t)) {
- condition_val32 = (uint32_t)pkt->req->getExtraData();
- overwrite_mem = !std::memcmp(&condition_val32, blk_data,
- sizeof(uint32_t));
- } else
- panic("Invalid size for conditional read/write\n");
- }
-
- if (overwrite_mem) {
- std::memcpy(blk_data, &overwrite_val, pkt->getSize());
- blk->status |= BlkDirty;
- }
-}
-
-
void
Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
bool deferred_response, bool pending_downgrade)
{
- assert(pkt->isRequest());
-
- assert(blk && blk->isValid());
- // Occasionally this is not true... if we are a lower-level cache
- // satisfying a string of Read and ReadEx requests from
- // upper-level caches, a Read will mark the block as shared but we
- // can satisfy a following ReadEx anyway since we can rely on the
- // Read requester(s) to have buffered the ReadEx snoop and to
- // invalidate their blocks after receiving them.
- // assert(!pkt->needsWritable() || blk->isWritable());
- assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
-
- // Check RMW operations first since both isRead() and
- // isWrite() will be true for them
- if (pkt->cmd == MemCmd::SwapReq) {
- cmpAndSwap(blk, pkt);
- } else if (pkt->isWrite()) {
- // we have the block in a writable state and can go ahead,
- // note that the line may be also be considered writable in
- // downstream caches along the path to memory, but always
- // Exclusive, and never Modified
- assert(blk->isWritable());
- // Write or WriteLine at the first cache with block in writable state
- if (blk->checkWrite(pkt)) {
- pkt->writeDataToBlock(blk->data, blkSize);
- }
- // Always mark the line as dirty (and thus transition to the
- // Modified state) even if we are a failed StoreCond so we
- // supply data to any snoops that have appended themselves to
- // this cache before knowing the store will fail.
- blk->status |= BlkDirty;
- DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
- } else if (pkt->isRead()) {
- if (pkt->isLLSC()) {
- blk->trackLoadLocked(pkt);
- }
-
- // all read responses have a data payload
- assert(pkt->hasRespData());
- pkt->setDataFromBlock(blk->data, blkSize);
+ BaseCache::satisfyRequest(pkt, blk);
+ if (pkt->isRead()) {
// determine if this read is from a (coherent) cache or not
if (pkt->fromCache()) {
assert(pkt->getSize() == blkSize);
pkt->setHasSharers();
}
}
- } else if (pkt->isUpgrade()) {
- // sanity check
- assert(!pkt->hasSharers());
-
- if (blk->isDirty()) {
- // we were in the Owned state, and a cache above us that
- // has the line in Shared state needs to be made aware
- // that the data it already has is in fact dirty
- pkt->setCacheResponding();
- blk->status &= ~BlkDirty;
- }
- } else {
- assert(pkt->isInvalidate());
- invalidateBlock(blk);
- DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
- pkt->print());
}
}
Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
PacketList &writebacks)
{
- // sanity check
- assert(pkt->isRequest());
- chatty_assert(!(isReadOnly && pkt->isWrite()),
- "Should never see a write in a read-only cache %s\n",
- name());
+ if (pkt->req->isUncacheable()) {
+ assert(pkt->isRequest());
- DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print());
+ chatty_assert(!(isReadOnly && pkt->isWrite()),
+ "Should never see a write in a read-only cache %s\n",
+ name());
- if (pkt->req->isUncacheable()) {
- DPRINTF(Cache, "uncacheable: %s\n", pkt->print());
+ DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
// flush and invalidate any existing block
CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
return false;
}
- // Here lat is the value passed as parameter to accessBlock() function
- // that can modify its value.
- blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
-
- DPRINTF(Cache, "%s %s\n", pkt->print(),
- blk ? "hit " + blk->print() : "miss");
-
- if (pkt->req->isCacheMaintenance()) {
- // A cache maintenance operation is always forwarded to the
- // memory below even if the block is found in dirty state.
-
- // We defer any changes to the state of the block until we
- // create and mark as in service the mshr for the downstream
- // packet.
- return false;
- }
-
- if (pkt->isEviction()) {
- // We check for presence of block in above caches before issuing
- // Writeback or CleanEvict to write buffer. Therefore the only
- // possible cases can be of a CleanEvict packet coming from above
- // encountering a Writeback generated in this cache peer cache and
- // waiting in the write buffer. Cases of upper level peer caches
- // generating CleanEvict and Writeback or simply CleanEvict and
- // CleanEvict almost simultaneously will be caught by snoops sent out
- // by crossbar.
- WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
- pkt->isSecure());
- if (wb_entry) {
- assert(wb_entry->getNumTargets() == 1);
- PacketPtr wbPkt = wb_entry->getTarget()->pkt;
- assert(wbPkt->isWriteback());
-
- if (pkt->isCleanEviction()) {
- // The CleanEvict and WritebackClean snoops into other
- // peer caches of the same level while traversing the
- // crossbar. If a copy of the block is found, the
- // packet is deleted in the crossbar. Hence, none of
- // the other upper level caches connected to this
- // cache have the block, so we can clear the
- // BLOCK_CACHED flag in the Writeback if set and
- // discard the CleanEvict by returning true.
- wbPkt->clearBlockCached();
- return true;
- } else {
- assert(pkt->cmd == MemCmd::WritebackDirty);
- // Dirty writeback from above trumps our clean
- // writeback... discard here
- // Note: markInService will remove entry from writeback buffer.
- markInService(wb_entry);
- delete wbPkt;
- }
- }
- }
-
- // Writeback handling is special case. We can write the block into
- // the cache without having a writeable copy (or any copy at all).
- if (pkt->isWriteback()) {
- assert(blkSize == pkt->getSize());
-
- // we could get a clean writeback while we are having
- // outstanding accesses to a block, do the simple thing for
- // now and drop the clean writeback so that we do not upset
- // any ordering/decisions about ownership already taken
- if (pkt->cmd == MemCmd::WritebackClean &&
- mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
- DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
- "dropping\n", pkt->getAddr());
- return true;
- }
-
- if (blk == nullptr) {
- // need to do a replacement
- blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
- if (blk == nullptr) {
- // no replaceable block available: give up, fwd to next level.
- incMissCount(pkt);
- return false;
- }
- tags->insertBlock(pkt, blk);
-
- blk->status |= (BlkValid | BlkReadable);
- }
- // only mark the block dirty if we got a writeback command,
- // and leave it as is for a clean writeback
- if (pkt->cmd == MemCmd::WritebackDirty) {
- assert(!blk->isDirty());
- blk->status |= BlkDirty;
- }
- // if the packet does not have sharers, it is passing
- // writable, and we got the writeback in Modified or Exclusive
- // state, if not we are in the Owned or Shared state
- if (!pkt->hasSharers()) {
- blk->status |= BlkWritable;
- }
- // nothing else to do; writeback doesn't expect response
- assert(!pkt->needsResponse());
- pkt->writeDataToBlock(blk->data, blkSize);
- DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
- incHitCount(pkt);
- // populate the time when the block will be ready to access.
- blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
- pkt->payloadDelay;
- return true;
- } else if (pkt->cmd == MemCmd::CleanEvict) {
- if (blk != nullptr) {
- // Found the block in the tags, need to stop CleanEvict from
- // propagating further down the hierarchy. Returning true will
- // treat the CleanEvict like a satisfied write request and delete
- // it.
- return true;
- }
- // We didn't find the block here, propagate the CleanEvict further
- // down the memory hierarchy. Returning false will treat the CleanEvict
- // like a Writeback which could not find a replaceable block so has to
- // go to next level.
- return false;
- } else if (pkt->cmd == MemCmd::WriteClean) {
- // WriteClean handling is a special case. We can allocate a
- // block directly if it doesn't exist and we can update the
- // block immediately. The WriteClean transfers the ownership
- // of the block as well.
- assert(blkSize == pkt->getSize());
-
- if (!blk) {
- if (pkt->writeThrough()) {
- // if this is a write through packet, we don't try to
- // allocate if the block is not present
- return false;
- } else {
- // a writeback that misses needs to allocate a new block
- blk = allocateBlock(pkt->getAddr(), pkt->isSecure(),
- writebacks);
- if (!blk) {
- // no replaceable block available: give up, fwd to
- // next level.
- incMissCount(pkt);
- return false;
- }
- tags->insertBlock(pkt, blk);
-
- blk->status |= (BlkValid | BlkReadable);
- }
- }
-
- // at this point either this is a writeback or a write-through
- // write clean operation and the block is already in this
- // cache, we need to update the data and the block flags
- assert(blk);
- assert(!blk->isDirty());
- if (!pkt->writeThrough()) {
- blk->status |= BlkDirty;
- }
- // nothing else to do; writeback doesn't expect response
- assert(!pkt->needsResponse());
- pkt->writeDataToBlock(blk->data, blkSize);
- DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
-
- incHitCount(pkt);
- // populate the time when the block will be ready to access.
- blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
- pkt->payloadDelay;
- // if this a write-through packet it will be sent to cache
- // below
- return !pkt->writeThrough();
- } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
- blk->isReadable())) {
- // OK to satisfy access
- incHitCount(pkt);
- satisfyRequest(pkt, blk);
- maintainClusivity(pkt->fromCache(), blk);
-
- return true;
- }
-
- // Can't satisfy access normally... either no block (blk == nullptr)
- // or have block but need writable
-
- incMissCount(pkt);
-
- if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
- // complete miss on store conditional... just give up now
- pkt->req->setExtraData(0);
- return true;
- }
-
- return false;
-}
-
-void
-Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
-{
- if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
- clusivity == Enums::mostly_excl) {
- // if we have responded to a cache, and our block is still
- // valid, but not dirty, and this cache is mostly exclusive
- // with respect to the cache above, drop the block
- invalidateBlock(blk);
- }
+ return BaseCache::access(pkt, blk, lat, writebacks);
}
void
// below. We can discard CleanEvicts because cached
// copies exist above. Atomic mode isCachedAbove
// modifies packet to set BLOCK_CACHED flag
- memSidePort->sendAtomic(wbPkt);
+ memSidePort.sendAtomic(wbPkt);
}
} else {
// If the block is not cached above, send packet below. Both
// CleanEvict and Writeback with BLOCK_CACHED flag cleared will
// reset the bit corresponding to this address in the snoop filter
// below.
- memSidePort->sendAtomic(wbPkt);
+ memSidePort.sendAtomic(wbPkt);
}
writebacks.pop_front();
// In case of CleanEvicts, the packet destructor will delete the
Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
// Reset the timing of the packet.
pkt->headerDelay = pkt->payloadDelay = 0;
- memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
+ memSidePort.schedTimingSnoopResp(pkt, snoop_resp_time);
}
void
// lookup
assert(!pkt->req->isUncacheable());
- if (pkt->needsResponse()) {
- pkt->makeTimingResponse();
- // @todo: Make someone pay for this
- pkt->headerDelay = pkt->payloadDelay = 0;
-
- // In this case we are considering request_time that takes
- // into account the delay of the xbar, if any, and just
- // lat, neglecting responseLatency, modelling hit latency
- // just as lookupLatency or or the value of lat overriden
- // by access(), that calls accessBlock() function.
- cpuSidePort->schedTimingResp(pkt, request_time, true);
- } else {
- DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
- pkt->print());
-
- // queue the packet for deletion, as the sending cache is
- // still relying on it; if the block is found in access(),
- // CleanEvict and Writeback messages will be deleted
- // here as well
- pendingDelete.reset(pkt);
- }
+ BaseCache::handleTimingReqHit(pkt, blk, request_time);
}
void
Cache::handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, Tick forward_time,
Tick request_time)
{
+ if (pkt->req->isUncacheable()) {
+ // ignore any existing MSHR if we are dealing with an
+ // uncacheable request
+
+ // should have flushed and have no valid block
+ assert(!blk || !blk->isValid());
+
+ mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
+
+ if (pkt->isWrite()) {
+ allocateWriteBuffer(pkt, forward_time);
+ } else {
+ assert(pkt->isRead());
+
+ // uncacheable accesses always allocate a new MSHR
+
+ // Here we are using forward_time, modelling the latency of
+ // a miss (outbound) just as forwardLatency, neglecting the
+ // lookupLatency component.
+ allocateMissBuffer(pkt, forward_time);
+ }
+
+ return;
+ }
+
Addr blk_addr = pkt->getBlockAddr(blkSize);
- // ignore any existing MSHR if we are dealing with an
- // uncacheable request
- MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
- mshrQueue.findMatch(blk_addr, pkt->isSecure());
+ MSHR *mshr = mshrQueue.findMatch(blk_addr, pkt->isSecure());
// Software prefetch handling:
// To keep the core from waiting on data it won't look at
// request_time is used here, taking into account lat and the delay
// charged if the packet comes from the xbar.
- cpuSidePort->schedTimingResp(pkt, request_time, true);
+ cpuSidePort.schedTimingResp(pkt, request_time, true);
// If an outstanding request is in progress (we found an
// MSHR) this is set to null
pkt = pf;
}
- if (mshr) {
- /// MSHR hit
- /// @note writebacks will be checked in getNextMSHR()
- /// for any conflicting requests to the same block
-
- //@todo remove hw_pf here
-
- // Coalesce unless it was a software prefetch (see above).
- if (pkt) {
- assert(!pkt->isWriteback());
- // CleanEvicts corresponding to blocks which have
- // outstanding requests in MSHRs are simply sunk here
- if (pkt->cmd == MemCmd::CleanEvict) {
- pendingDelete.reset(pkt);
- } else if (pkt->cmd == MemCmd::WriteClean) {
- // A WriteClean should never coalesce with any
- // outstanding cache maintenance requests.
-
- // We use forward_time here because there is an
- // uncached memory write, forwarded to WriteBuffer.
- allocateWriteBuffer(pkt, forward_time);
- } else {
- DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
- pkt->print());
-
- assert(pkt->req->masterId() < system->maxMasters());
- mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
-
- // uncacheable accesses always allocate a new
- // MSHR, and cacheable accesses ignore any
- // uncacheable MSHRs, thus we should never have
- // targets addded if originally allocated
- // uncacheable
- assert(!mshr->isUncacheable());
-
- // We use forward_time here because it is the same
- // considering new targets. We have multiple
- // requests for the same address here. It
- // specifies the latency to allocate an internal
- // buffer and to schedule an event to the queued
- // port and also takes into account the additional
- // delay of the xbar.
- mshr->allocateTarget(pkt, forward_time, order++,
- allocOnFill(pkt->cmd));
- if (mshr->getNumTargets() == numTarget) {
- noTargetMSHR = mshr;
- setBlocked(Blocked_NoTargets);
- // need to be careful with this... if this mshr isn't
- // ready yet (i.e. time > curTick()), we don't want to
- // move it ahead of mshrs that are ready
- // mshrQueue.moveToFront(mshr);
- }
- }
- }
- } else {
- // no MSHR
- assert(pkt->req->masterId() < system->maxMasters());
- if (pkt->req->isUncacheable()) {
- mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
- } else {
- mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
- }
-
- if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
- (pkt->req->isUncacheable() && pkt->isWrite())) {
- // We use forward_time here because there is an
- // uncached memory write, forwarded to WriteBuffer.
- allocateWriteBuffer(pkt, forward_time);
- } else {
- if (blk && blk->isValid()) {
- // should have flushed and have no valid block
- assert(!pkt->req->isUncacheable());
-
- // If we have a write miss to a valid block, we
- // need to mark the block non-readable. Otherwise
- // if we allow reads while there's an outstanding
- // write miss, the read could return stale data
- // out of the cache block... a more aggressive
- // system could detect the overlap (if any) and
- // forward data out of the MSHRs, but we don't do
- // that yet. Note that we do need to leave the
- // block valid so that it stays in the cache, in
- // case we get an upgrade response (and hence no
- // new data) when the write miss completes.
- // As long as CPUs do proper store/load forwarding
- // internally, and have a sufficiently weak memory
- // model, this is probably unnecessary, but at some
- // point it must have seemed like we needed it...
- assert((pkt->needsWritable() && !blk->isWritable()) ||
- pkt->req->isCacheMaintenance());
- blk->status &= ~BlkReadable;
- }
- // Here we are using forward_time, modelling the latency of
- // a miss (outbound) just as forwardLatency, neglecting the
- // lookupLatency component.
- allocateMissBuffer(pkt, forward_time);
- }
- }
+ BaseCache::handleTimingReqMiss(pkt, mshr, blk, forward_time, request_time);
}
void
// Just forward the packet if caches are disabled.
if (system->bypassCaches()) {
// @todo This should really enqueue the packet rather
- bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
+ bool M5_VAR_USED success = memSidePort.sendTimingReq(pkt);
assert(success);
return;
}
promoteWholeLineWrites(pkt);
- // Cache maintenance operations have to visit all the caches down
- // to the specified xbar (PoC, PoU, etc.). Even if a cache above
- // is responding we forward the packet to the memory below rather
- // than creating an express snoop.
if (pkt->cacheResponding()) {
// a cache above us (but not where the packet came from) is
// responding to the request, in other words it has the line
// this express snoop travels towards the memory, and at
// every crossbar it is snooped upwards thus reaching
// every cache in the system
- bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
+ bool M5_VAR_USED success = memSidePort.sendTimingReq(snoop_pkt);
// express snoops always succeed
assert(success);
return;
}
- // anything that is merely forwarded pays for the forward latency and
- // the delay provided by the crossbar
- Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
-
- // We use lookupLatency here because it is used to specify the latency
- // to access.
- Cycles lat = lookupLatency;
- CacheBlk *blk = nullptr;
- bool satisfied = false;
- {
- PacketList writebacks;
- // Note that lat is passed by reference here. The function
- // access() calls accessBlock() which can modify lat value.
- satisfied = access(pkt, blk, lat, writebacks);
-
- // copy writebacks to write buffer here to ensure they logically
- // proceed anything happening below
- doWritebacks(writebacks, forward_time);
- }
-
- // Here we charge the headerDelay that takes into account the latencies
- // of the bus, if the packet comes from it.
- // The latency charged it is just lat that is the value of lookupLatency
- // modified by access() function, or if not just lookupLatency.
- // In case of a hit we are neglecting response latency.
- // In case of a miss we are neglecting forward latency.
- Tick request_time = clockEdge(lat) + pkt->headerDelay;
- // Here we reset the timing of the packet.
- pkt->headerDelay = pkt->payloadDelay = 0;
-
- // track time of availability of next prefetch, if any
- Tick next_pf_time = MaxTick;
-
- if (satisfied) {
- // if need to notify the prefetcher we need to do it anything
- // else, handleTimingReqHit might turn the packet into a
- // response
- if (prefetcher &&
- (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
- if (blk)
- blk->status &= ~BlkHWPrefetched;
-
- // Don't notify on SWPrefetch
- if (!pkt->cmd.isSWPrefetch()) {
- assert(!pkt->req->isCacheMaintenance());
- next_pf_time = prefetcher->notify(pkt);
- }
- }
-
- handleTimingReqHit(pkt, blk, request_time);
- } else {
- handleTimingReqMiss(pkt, blk, forward_time, request_time);
-
- // We should call the prefetcher reguardless if the request is
- // satisfied or not, reguardless if the request is in the MSHR
- // or not. The request could be a ReadReq hit, but still not
- // satisfied (potentially because of a prior write to the same
- // cache line. So, even when not satisfied, there is an MSHR
- // already allocated for this, we need to let the prefetcher
- // know about the request
- if (prefetcher && pkt &&
- !pkt->cmd.isSWPrefetch() &&
- !pkt->req->isCacheMaintenance()) {
- next_pf_time = prefetcher->notify(pkt);
- }
- }
-
- if (next_pf_time != MaxTick)
- schedMemSideSendEvent(next_pf_time);
+ BaseCache::recvTimingReq(pkt);
}
PacketPtr
// the cache, i.e. any evictions and writes
if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
(pkt->req->isUncacheable() && pkt->isWrite())) {
- Cycles latency = ticksToCycles(memSidePort->sendAtomic(pkt));
+ Cycles latency = ticksToCycles(memSidePort.sendAtomic(pkt));
// at this point, if the request was an uncacheable write
// request, it has been satisfied by a memory below and the
CacheBlk::State old_state = blk ? blk->status : 0;
#endif
- Cycles latency = ticksToCycles(memSidePort->sendAtomic(bus_pkt));
+ Cycles latency = ticksToCycles(memSidePort.sendAtomic(bus_pkt));
bool is_invalidate = bus_pkt->isInvalidate();
Tick
Cache::recvAtomic(PacketPtr pkt)
{
- // We are in atomic mode so we pay just for lookupLatency here.
- Cycles lat = lookupLatency;
-
// Forward the request if the system is in cache bypass mode.
if (system->bypassCaches())
- return ticksToCycles(memSidePort->sendAtomic(pkt));
+ return ticksToCycles(memSidePort.sendAtomic(pkt));
promoteWholeLineWrites(pkt);
- // follow the same flow as in recvTimingReq, and check if a cache
- // above us is responding
- if (pkt->cacheResponding() && !pkt->isClean()) {
- assert(!pkt->req->isCacheInvalidate());
- DPRINTF(Cache, "Cache above responding to %s: not responding\n",
- pkt->print());
-
- // if a cache is responding, and it had the line in Owned
- // rather than Modified state, we need to invalidate any
- // copies that are not on the same path to memory
- assert(pkt->needsWritable() && !pkt->responderHadWritable());
- lat += ticksToCycles(memSidePort->sendAtomic(pkt));
-
- return lat * clockPeriod();
- }
-
- // should assert here that there are no outstanding MSHRs or
- // writebacks... that would mean that someone used an atomic
- // access in timing mode
-
- CacheBlk *blk = nullptr;
- PacketList writebacks;
- bool satisfied = access(pkt, blk, lat, writebacks);
-
- if (pkt->isClean() && blk && blk->isDirty()) {
- // A cache clean opearation is looking for a dirty
- // block. If a dirty block is encountered a WriteClean
- // will update any copies to the path to the memory
- // until the point of reference.
- DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
- __func__, pkt->print(), blk->print());
- PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
- writebacks.push_back(wb_pkt);
- pkt->setSatisfied();
- }
-
- // handle writebacks resulting from the access here to ensure they
- // logically proceed anything happening below
- doWritebacksAtomic(writebacks);
- assert(writebacks.empty());
-
- if (!satisfied) {
- lat += handleAtomicReqMiss(pkt, blk, writebacks);
- }
-
- // Note that we don't invoke the prefetcher at all in atomic mode.
- // It's not clear how to do it properly, particularly for
- // prefetchers that aggressively generate prefetch candidates and
- // rely on bandwidth contention to throttle them; these will tend
- // to pollute the cache in atomic mode since there is no bandwidth
- // contention. If we ever do want to enable prefetching in atomic
- // mode, though, this is the place to do it... see timingAccess()
- // for an example (though we'd want to issue the prefetch(es)
- // immediately rather than calling requestMemSideBus() as we do
- // there).
-
- // do any writebacks resulting from the response handling
- doWritebacksAtomic(writebacks);
-
- // if we used temp block, check to see if its valid and if so
- // clear it out, but only do so after the call to recvAtomic is
- // finished so that any downstream observers (such as a snoop
- // filter), first see the fill, and only then see the eviction
- if (blk == tempBlock && tempBlock->isValid()) {
- // the atomic CPU calls recvAtomic for fetch and load/store
- // sequentuially, and we may already have a tempBlock
- // writeback from the fetch that we have not yet sent
- if (tempBlockWriteback) {
- // if that is the case, write the prevoius one back, and
- // do not schedule any new event
- writebackTempBlockAtomic();
- } else {
- // the writeback/clean eviction happens after the call to
- // recvAtomic has finished (but before any successive
- // calls), so that the response handling from the fill is
- // allowed to happen first
- schedule(writebackTempBlockAtomicEvent, curTick());
- }
-
- tempBlockWriteback = evictBlock(blk);
- }
-
- if (pkt->needsResponse()) {
- pkt->makeAtomicResponse();
- }
-
- return lat * clockPeriod();
-}
-
-
-void
-Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
-{
- if (system->bypassCaches()) {
- // Packets from the memory side are snoop request and
- // shouldn't happen in bypass mode.
- assert(fromCpuSide);
-
- // The cache should be flushed if we are in cache bypass mode,
- // so we don't need to check if we need to update anything.
- memSidePort->sendFunctional(pkt);
- return;
- }
-
- Addr blk_addr = pkt->getBlockAddr(blkSize);
- bool is_secure = pkt->isSecure();
- CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
- MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
-
- pkt->pushLabel(name());
-
- CacheBlkPrintWrapper cbpw(blk);
-
- // Note that just because an L2/L3 has valid data doesn't mean an
- // L1 doesn't have a more up-to-date modified copy that still
- // needs to be found. As a result we always update the request if
- // we have it, but only declare it satisfied if we are the owner.
-
- // see if we have data at all (owned or otherwise)
- bool have_data = blk && blk->isValid()
- && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
- blk->data);
-
- // data we have is dirty if marked as such or if we have an
- // in-service MSHR that is pending a modified line
- bool have_dirty =
- have_data && (blk->isDirty() ||
- (mshr && mshr->inService && mshr->isPendingModified()));
-
- bool done = have_dirty
- || cpuSidePort->checkFunctional(pkt)
- || mshrQueue.checkFunctional(pkt, blk_addr)
- || writeBuffer.checkFunctional(pkt, blk_addr)
- || memSidePort->checkFunctional(pkt);
-
- DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
- (blk && blk->isValid()) ? "valid " : "",
- have_data ? "data " : "", done ? "done " : "");
-
- // We're leaving the cache, so pop cache->name() label
- pkt->popLabel();
-
- if (done) {
- pkt->makeResponse();
- } else {
- // if it came as a request from the CPU side then make sure it
- // continues towards the memory side
- if (fromCpuSide) {
- memSidePort->sendFunctional(pkt);
- } else if (cpuSidePort->isSnooping()) {
- // if it came from the memory side, it must be a snoop request
- // and we should only forward it if we are forwarding snoops
- cpuSidePort->sendFunctionalSnoop(pkt);
- }
- }
+ return BaseCache::recvAtomic(pkt);
}
/////////////////////////////////////////////////////
-void
-Cache::handleUncacheableWriteResp(PacketPtr pkt)
-{
- Tick completion_time = clockEdge(responseLatency) +
- pkt->headerDelay + pkt->payloadDelay;
-
- // Reset the bus additional time as it is now accounted for
- pkt->headerDelay = pkt->payloadDelay = 0;
-
- cpuSidePort->schedTimingResp(pkt, completion_time, true);
-}
-
void
Cache::serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, CacheBlk *blk,
PacketList &writebacks)
}
// Reset the bus additional time as it is now accounted for
tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
- cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
+ cpuSidePort.schedTimingResp(tgt_pkt, completion_time, true);
break;
case MSHR::Target::FromPrefetcher:
}
}
-void
-Cache::recvTimingResp(PacketPtr pkt)
-{
- assert(pkt->isResponse());
-
- // all header delay should be paid for by the crossbar, unless
- // this is a prefetch response from above
- panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
- "%s saw a non-zero packet delay\n", name());
-
- const bool is_error = pkt->isError();
-
- if (is_error) {
- DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
- pkt->print());
- }
-
- DPRINTF(Cache, "%s: Handling response %s\n", __func__,
- pkt->print());
-
- // if this is a write, we should be looking at an uncacheable
- // write
- if (pkt->isWrite()) {
- assert(pkt->req->isUncacheable());
- handleUncacheableWriteResp(pkt);
- return;
- }
-
- // we have dealt with any (uncacheable) writes above, from here on
- // we know we are dealing with an MSHR due to a miss or a prefetch
- MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
- assert(mshr);
-
- if (mshr == noTargetMSHR) {
- // we always clear at least one target
- clearBlocked(Blocked_NoTargets);
- noTargetMSHR = nullptr;
- }
-
- // Initial target is used just for stats
- MSHR::Target *initial_tgt = mshr->getTarget();
- int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
- Tick miss_latency = curTick() - initial_tgt->recvTime;
-
- if (pkt->req->isUncacheable()) {
- assert(pkt->req->masterId() < system->maxMasters());
- mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
- miss_latency;
- } else {
- assert(pkt->req->masterId() < system->maxMasters());
- mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
- miss_latency;
- }
-
- PacketList writebacks;
-
- bool is_fill = !mshr->isForward &&
- (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
-
- CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
-
- if (is_fill && !is_error) {
- DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
- pkt->getAddr());
-
- blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
- assert(blk != nullptr);
- }
-
- if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
- // The block was marked not readable while there was a pending
- // cache maintenance operation, restore its flag.
- blk->status |= BlkReadable;
- }
-
- if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
- // If at this point the referenced block is writable and the
- // response is not a cache invalidate, we promote targets that
- // were deferred as we couldn't guarrantee a writable copy
- mshr->promoteWritable();
- }
-
- serviceMSHRTargets(mshr, pkt, blk, writebacks);
-
- if (mshr->promoteDeferredTargets()) {
- // avoid later read getting stale data while write miss is
- // outstanding.. see comment in timingAccess()
- if (blk) {
- blk->status &= ~BlkReadable;
- }
- mshrQueue.markPending(mshr);
- schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
- } else {
- // while we deallocate an mshr from the queue we still have to
- // check the isFull condition before and after as we might
- // have been using the reserved entries already
- const bool was_full = mshrQueue.isFull();
- mshrQueue.deallocate(mshr);
- if (was_full && !mshrQueue.isFull()) {
- clearBlocked(Blocked_NoMSHRs);
- }
-
- // Request the bus for a prefetch if this deallocation freed enough
- // MSHRs for a prefetch to take place
- if (prefetcher && mshrQueue.canPrefetch()) {
- Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
- clockEdge());
- if (next_pf_time != MaxTick)
- schedMemSideSendEvent(next_pf_time);
- }
- }
-
- // if we used temp block, check to see if its valid and then clear it out
- if (blk == tempBlock && tempBlock->isValid()) {
- evictBlock(blk, writebacks);
- }
-
- const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
- // copy writebacks to write buffer
- doWritebacks(writebacks, forward_time);
-
- DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
- delete pkt;
-}
-
PacketPtr
Cache::evictBlock(CacheBlk *blk)
{
}
}
-PacketPtr
-Cache::writebackBlk(CacheBlk *blk)
-{
- chatty_assert(!isReadOnly || writebackClean,
- "Writeback from read-only cache");
- assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
-
- writebacks[Request::wbMasterId]++;
-
- Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
- Request::wbMasterId);
- if (blk->isSecure())
- req->setFlags(Request::SECURE);
-
- req->taskId(blk->task_id);
-
- PacketPtr pkt =
- new Packet(req, blk->isDirty() ?
- MemCmd::WritebackDirty : MemCmd::WritebackClean);
-
- DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
- pkt->print(), blk->isWritable(), blk->isDirty());
-
- if (blk->isWritable()) {
- // not asserting shared means we pass the block in modified
- // state, mark our own block non-writeable
- blk->status &= ~BlkWritable;
- } else {
- // we are in the Owned state, tell the receiver
- pkt->setHasSharers();
- }
-
- // make sure the block is not marked dirty
- blk->status &= ~BlkDirty;
-
- pkt->allocate();
- pkt->setDataFromBlock(blk->data, blkSize);
-
- return pkt;
-}
-
-PacketPtr
-Cache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
-{
- Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
- Request::wbMasterId);
- if (blk->isSecure()) {
- req->setFlags(Request::SECURE);
- }
- req->taskId(blk->task_id);
-
- PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
-
- if (dest) {
- req->setFlags(dest);
- pkt->setWriteThrough();
- }
-
- DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
- blk->isWritable(), blk->isDirty());
-
- if (blk->isWritable()) {
- // not asserting shared means we pass the block in modified
- // state, mark our own block non-writeable
- blk->status &= ~BlkWritable;
- } else {
- // we are in the Owned state, tell the receiver
- pkt->setHasSharers();
- }
-
- // make sure the block is not marked dirty
- blk->status &= ~BlkDirty;
-
- pkt->allocate();
- pkt->setDataFromBlock(blk->data, blkSize);
-
- return pkt;
-}
-
-
PacketPtr
Cache::cleanEvictBlk(CacheBlk *blk)
{
return pkt;
}
-void
-Cache::memWriteback()
-{
- CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
- tags->forEachBlk(visitor);
-}
-
-void
-Cache::memInvalidate()
-{
- CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
- tags->forEachBlk(visitor);
-}
-
-bool
-Cache::isDirty() const
-{
- CacheBlkIsDirtyVisitor visitor;
- tags->forEachBlk(visitor);
-
- return visitor.isDirty();
-}
-
-bool
-Cache::writebackVisitor(CacheBlk &blk)
-{
- if (blk.isDirty()) {
- assert(blk.isValid());
-
- Request request(tags->regenerateBlkAddr(&blk), blkSize, 0,
- Request::funcMasterId);
- request.taskId(blk.task_id);
- if (blk.isSecure()) {
- request.setFlags(Request::SECURE);
- }
-
- Packet packet(&request, MemCmd::WriteReq);
- packet.dataStatic(blk.data);
-
- memSidePort->sendFunctional(&packet);
-
- blk.status &= ~BlkDirty;
- }
-
- return true;
-}
-
-bool
-Cache::invalidateVisitor(CacheBlk &blk)
-{
-
- if (blk.isDirty())
- warn_once("Invalidating dirty cache lines. Expect things to break.\n");
-
- if (blk.isValid()) {
- assert(!blk.isDirty());
- invalidateBlock(&blk);
- }
-
- return true;
-}
-
-CacheBlk*
-Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
-{
- // Find replacement victim
- CacheBlk *blk = tags->findVictim(addr);
-
- // It is valid to return nullptr if there is no victim
- if (!blk)
- return nullptr;
-
- if (blk->isValid()) {
- Addr repl_addr = tags->regenerateBlkAddr(blk);
- MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
- if (repl_mshr) {
- // must be an outstanding upgrade or clean request
- // on a block we're about to replace...
- assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
- repl_mshr->isCleaning());
- // too hard to replace block with transient state
- // allocation failed, block not inserted
- return nullptr;
- } else {
- DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
- "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
- addr, is_secure ? "s" : "ns",
- blk->isDirty() ? "writeback" : "clean");
-
- if (blk->wasPrefetched()) {
- unusedPrefetches++;
- }
- evictBlock(blk, writebacks);
- replacements++;
- }
- }
-
- return blk;
-}
-
-void
-Cache::invalidateBlock(CacheBlk *blk)
-{
- if (blk != tempBlock)
- tags->invalidate(blk);
- blk->invalidate();
-}
-
-// Note that the reason we return a list of writebacks rather than
-// inserting them directly in the write buffer is that this function
-// is called by both atomic and timing-mode accesses, and in atomic
-// mode we don't mess with the write buffer (we just perform the
-// writebacks atomically once the original request is complete).
-CacheBlk*
-Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
- bool allocate)
-{
- assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
- Addr addr = pkt->getAddr();
- bool is_secure = pkt->isSecure();
-#if TRACING_ON
- CacheBlk::State old_state = blk ? blk->status : 0;
-#endif
-
- // When handling a fill, we should have no writes to this line.
- assert(addr == pkt->getBlockAddr(blkSize));
- assert(!writeBuffer.findMatch(addr, is_secure));
-
- if (blk == nullptr) {
- // better have read new data...
- assert(pkt->hasData());
-
- // only read responses and write-line requests have data;
- // note that we don't write the data here for write-line - that
- // happens in the subsequent call to satisfyRequest
- assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
-
- // need to do a replacement if allocating, otherwise we stick
- // with the temporary storage
- blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
-
- if (blk == nullptr) {
- // No replaceable block or a mostly exclusive
- // cache... just use temporary storage to complete the
- // current request and then get rid of it
- assert(!tempBlock->isValid());
- blk = tempBlock;
- tempBlock->set = tags->extractSet(addr);
- tempBlock->tag = tags->extractTag(addr);
- if (is_secure) {
- tempBlock->status |= BlkSecure;
- }
- DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
- is_secure ? "s" : "ns");
- } else {
- tags->insertBlock(pkt, blk);
- }
-
- // we should never be overwriting a valid block
- assert(!blk->isValid());
- } else {
- // existing block... probably an upgrade
- assert(blk->tag == tags->extractTag(addr));
- // either we're getting new data or the block should already be valid
- assert(pkt->hasData() || blk->isValid());
- // don't clear block status... if block is already dirty we
- // don't want to lose that
- }
-
- if (is_secure)
- blk->status |= BlkSecure;
- blk->status |= BlkValid | BlkReadable;
-
- // sanity check for whole-line writes, which should always be
- // marked as writable as part of the fill, and then later marked
- // dirty as part of satisfyRequest
- if (pkt->cmd == MemCmd::WriteLineReq) {
- assert(!pkt->hasSharers());
- }
-
- // here we deal with setting the appropriate state of the line,
- // and we start by looking at the hasSharers flag, and ignore the
- // cacheResponding flag (normally signalling dirty data) if the
- // packet has sharers, thus the line is never allocated as Owned
- // (dirty but not writable), and always ends up being either
- // Shared, Exclusive or Modified, see Packet::setCacheResponding
- // for more details
- if (!pkt->hasSharers()) {
- // we could get a writable line from memory (rather than a
- // cache) even in a read-only cache, note that we set this bit
- // even for a read-only cache, possibly revisit this decision
- blk->status |= BlkWritable;
-
- // check if we got this via cache-to-cache transfer (i.e., from a
- // cache that had the block in Modified or Owned state)
- if (pkt->cacheResponding()) {
- // we got the block in Modified state, and invalidated the
- // owners copy
- blk->status |= BlkDirty;
-
- chatty_assert(!isReadOnly, "Should never see dirty snoop response "
- "in read-only cache %s\n", name());
- }
- }
-
- DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
- addr, is_secure ? "s" : "ns", old_state, blk->print());
-
- // if we got new data, copy it in (checking for a read response
- // and a response that has data is the same in the end)
- if (pkt->isRead()) {
- // sanity checks
- assert(pkt->hasData());
- assert(pkt->getSize() == blkSize);
-
- pkt->writeDataToBlock(blk->data, blkSize);
- }
- // We pay for fillLatency here.
- blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
- pkt->payloadDelay;
-
- return blk;
-}
-
/////////////////////////////////////////////////////
//
pkt->headerDelay = pkt->payloadDelay = 0;
DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
pkt->print(), forward_time);
- memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
+ memSidePort.schedTimingSnoopResp(pkt, forward_time, true);
}
uint32_t
// the snoop packet does not need to wait any additional
// time
snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
- cpuSidePort->sendTimingSnoopReq(&snoopPkt);
+ cpuSidePort.sendTimingSnoopReq(&snoopPkt);
// add the header delay (including crossbar and snoop
// delays) of the upward snoop to the snoop delay for this
pkt->setSatisfied();
}
} else {
- cpuSidePort->sendAtomicSnoop(pkt);
+ cpuSidePort.sendAtomicSnoop(pkt);
if (!alreadyResponded && pkt->cacheResponding()) {
// cache-to-cache response from some upper cache:
// forward response to original requester
lookupLatency * clockPeriod());
}
-bool
-Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
-{
- // Express snoop responses from master to slave, e.g., from L1 to L2
- cache->recvTimingSnoopResp(pkt);
- return true;
-}
-
Tick
Cache::recvAtomicSnoop(PacketPtr pkt)
{
return snoop_delay + lookupLatency * clockPeriod();
}
-
-QueueEntry*
-Cache::getNextQueueEntry()
-{
- // Check both MSHR queue and write buffer for potential requests,
- // note that null does not mean there is no request, it could
- // simply be that it is not ready
- MSHR *miss_mshr = mshrQueue.getNext();
- WriteQueueEntry *wq_entry = writeBuffer.getNext();
-
- // If we got a write buffer request ready, first priority is a
- // full write buffer, otherwise we favour the miss requests
- if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
- // need to search MSHR queue for conflicting earlier miss.
- MSHR *conflict_mshr =
- mshrQueue.findPending(wq_entry->blkAddr,
- wq_entry->isSecure);
-
- if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
- // Service misses in order until conflict is cleared.
- return conflict_mshr;
-
- // @todo Note that we ignore the ready time of the conflict here
- }
-
- // No conflicts; issue write
- return wq_entry;
- } else if (miss_mshr) {
- // need to check for conflicting earlier writeback
- WriteQueueEntry *conflict_mshr =
- writeBuffer.findPending(miss_mshr->blkAddr,
- miss_mshr->isSecure);
- if (conflict_mshr) {
- // not sure why we don't check order here... it was in the
- // original code but commented out.
-
- // The only way this happens is if we are
- // doing a write and we didn't have permissions
- // then subsequently saw a writeback (owned got evicted)
- // We need to make sure to perform the writeback first
- // To preserve the dirty data, then we can issue the write
-
- // should we return wq_entry here instead? I.e. do we
- // have to flush writes in order? I don't think so... not
- // for Alpha anyway. Maybe for x86?
- return conflict_mshr;
-
- // @todo Note that we ignore the ready time of the conflict here
- }
-
- // No conflicts; issue read
- return miss_mshr;
- }
-
- // fall through... no pending requests. Try a prefetch.
- assert(!miss_mshr && !wq_entry);
- if (prefetcher && mshrQueue.canPrefetch()) {
- // If we have a miss queue slot, we can try a prefetch
- PacketPtr pkt = prefetcher->getPacket();
- if (pkt) {
- Addr pf_addr = pkt->getBlockAddr(blkSize);
- if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
- !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
- !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
- // Update statistic on number of prefetches issued
- // (hwpf_mshr_misses)
- assert(pkt->req->masterId() < system->maxMasters());
- mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
-
- // allocate an MSHR and return it, note
- // that we send the packet straight away, so do not
- // schedule the send
- return allocateMissBuffer(pkt, curTick(), false);
- } else {
- // free the request and packet
- delete pkt->req;
- delete pkt;
- }
- }
- }
-
- return nullptr;
-}
-
bool
-Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
+Cache::isCachedAbove(PacketPtr pkt, bool is_timing)
{
if (!forwardSnoops)
return false;
// generate a snoop response.
assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
snoop_pkt.senderState = nullptr;
- cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
+ cpuSidePort.sendTimingSnoopReq(&snoop_pkt);
// Writeback/CleanEvict snoops do not generate a snoop response.
assert(!(snoop_pkt.cacheResponding()));
return snoop_pkt.isBlockCached();
} else {
- cpuSidePort->sendAtomicSnoop(pkt);
+ cpuSidePort.sendAtomicSnoop(pkt);
return pkt->isBlockCached();
}
}
-Tick
-Cache::nextQueueReadyTime() const
-{
- Tick nextReady = std::min(mshrQueue.nextReadyTime(),
- writeBuffer.nextReadyTime());
-
- // Don't signal prefetch ready time if no MSHRs available
- // Will signal once enoguh MSHRs are deallocated
- if (prefetcher && mshrQueue.canPrefetch()) {
- nextReady = std::min(nextReady,
- prefetcher->nextPrefetchReadyTime());
- }
-
- return nextReady;
-}
-
bool
Cache::sendMSHRQueuePacket(MSHR* mshr)
{
// use request from 1st target
PacketPtr tgt_pkt = mshr->getTarget()->pkt;
- DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
-
- CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
-
if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
+ DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
+
// we should never have hardware prefetches to allocated
// blocks
- assert(blk == nullptr);
+ assert(!tags->findBlock(mshr->blkAddr, mshr->isSecure));
// We need to check the caches above us to verify that
// they don't have a copy of this block in the dirty state
// normal response, hence it needs the MSHR as its sender
// state
snoop_pkt.senderState = mshr;
- cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
+ cpuSidePort.sendTimingSnoopReq(&snoop_pkt);
// Check to see if the prefetch was squashed by an upper cache (to
// prevent us from grabbing the line) or if a Check to see if a
}
}
- // either a prefetch that is not present upstream, or a normal
- // MSHR request, proceed to get the packet to send downstream
- PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
-
- mshr->isForward = (pkt == nullptr);
-
- if (mshr->isForward) {
- // not a cache block request, but a response is expected
- // make copy of current packet to forward, keep current
- // copy for response handling
- pkt = new Packet(tgt_pkt, false, true);
- assert(!pkt->isWrite());
- }
-
- // play it safe and append (rather than set) the sender state,
- // as forwarded packets may already have existing state
- pkt->pushSenderState(mshr);
-
- if (pkt->isClean() && blk && blk->isDirty()) {
- // A cache clean opearation is looking for a dirty block. Mark
- // the packet so that the destination xbar can determine that
- // there will be a follow-up write packet as well.
- pkt->setSatisfied();
- }
-
- if (!memSidePort->sendTimingReq(pkt)) {
- // we are awaiting a retry, but we
- // delete the packet and will be creating a new packet
- // when we get the opportunity
- delete pkt;
-
- // note that we have now masked any requestBus and
- // schedSendEvent (we will wait for a retry before
- // doing anything), and this is so even if we do not
- // care about this packet and might override it before
- // it gets retried
- return true;
- } else {
- // As part of the call to sendTimingReq the packet is
- // forwarded to all neighbouring caches (and any caches
- // above them) as a snoop. Thus at this point we know if
- // any of the neighbouring caches are responding, and if
- // so, we know it is dirty, and we can determine if it is
- // being passed as Modified, making our MSHR the ordering
- // point
- bool pending_modified_resp = !pkt->hasSharers() &&
- pkt->cacheResponding();
- markInService(mshr, pending_modified_resp);
- if (pkt->isClean() && blk && blk->isDirty()) {
- // A cache clean opearation is looking for a dirty
- // block. If a dirty block is encountered a WriteClean
- // will update any copies to the path to the memory
- // until the point of reference.
- DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
- __func__, pkt->print(), blk->print());
- PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
- pkt->id);
- PacketList writebacks;
- writebacks.push_back(wb_pkt);
- doWritebacks(writebacks, 0);
- }
-
- return false;
- }
-}
-
-bool
-Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
-{
- assert(wq_entry);
-
- // always a single target for write queue entries
- PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
-
- DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
-
- // forward as is, both for evictions and uncacheable writes
- if (!memSidePort->sendTimingReq(tgt_pkt)) {
- // note that we have now masked any requestBus and
- // schedSendEvent (we will wait for a retry before
- // doing anything), and this is so even if we do not
- // care about this packet and might override it before
- // it gets retried
- return true;
- } else {
- markInService(wq_entry);
- return false;
- }
-}
-
-void
-Cache::serialize(CheckpointOut &cp) const
-{
- bool dirty(isDirty());
-
- if (dirty) {
- warn("*** The cache still contains dirty data. ***\n");
- warn(" Make sure to drain the system using the correct flags.\n");
- warn(" This checkpoint will not restore correctly and dirty data "
- " in the cache will be lost!\n");
- }
-
- // Since we don't checkpoint the data in the cache, any dirty data
- // will be lost when restoring from a checkpoint of a system that
- // wasn't drained properly. Flag the checkpoint as invalid if the
- // cache contains dirty data.
- bool bad_checkpoint(dirty);
- SERIALIZE_SCALAR(bad_checkpoint);
-}
-
-void
-Cache::unserialize(CheckpointIn &cp)
-{
- bool bad_checkpoint;
- UNSERIALIZE_SCALAR(bad_checkpoint);
- if (bad_checkpoint) {
- fatal("Restoring from checkpoints with dirty caches is not supported "
- "in the classic memory system. Please remove any caches or "
- " drain them properly before taking checkpoints.\n");
- }
-}
-
-///////////////
-//
-// CpuSidePort
-//
-///////////////
-
-AddrRangeList
-Cache::CpuSidePort::getAddrRanges() const
-{
- return cache->getAddrRanges();
-}
-
-bool
-Cache::CpuSidePort::tryTiming(PacketPtr pkt)
-{
- assert(!cache->system->bypassCaches());
-
- // always let express snoop packets through if even if blocked
- if (pkt->isExpressSnoop()) {
- return true;
- } else if (isBlocked() || mustSendRetry) {
- // either already committed to send a retry, or blocked
- mustSendRetry = true;
- return false;
- }
- mustSendRetry = false;
- return true;
-}
-
-bool
-Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
-{
- assert(!cache->system->bypassCaches());
-
- // always let express snoop packets through if even if blocked
- if (pkt->isExpressSnoop() || tryTiming(pkt)) {
- cache->recvTimingReq(pkt);
- return true;
- }
- return false;
-}
-
-Tick
-Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
-{
- return cache->recvAtomic(pkt);
-}
-
-void
-Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
-{
- // functional request
- cache->functionalAccess(pkt, true);
-}
-
-Cache::
-CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
- const std::string &_label)
- : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
-{
+ return BaseCache::sendMSHRQueuePacket(mshr);
}
Cache*
return new Cache(this);
}
-///////////////
-//
-// MemSidePort
-//
-///////////////
-
-bool
-Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
-{
- cache->recvTimingResp(pkt);
- return true;
-}
-
-// Express snooping requests to memside port
-void
-Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
-{
- // handle snooping requests
- cache->recvTimingSnoopReq(pkt);
-}
-
-Tick
-Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
-{
- return cache->recvAtomicSnoop(pkt);
-}
-
-void
-Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
-{
- // functional snoop (note that in contrast to atomic we don't have
- // a specific functionalSnoop method, as they have the same
- // behaviour regardless)
- cache->functionalAccess(pkt, false);
-}
-
-void
-Cache::CacheReqPacketQueue::sendDeferredPacket()
-{
- // sanity check
- assert(!waitingOnRetry);
-
- // there should never be any deferred request packets in the
- // queue, instead we resly on the cache to provide the packets
- // from the MSHR queue or write queue
- assert(deferredPacketReadyTime() == MaxTick);
-
- // check for request packets (requests & writebacks)
- QueueEntry* entry = cache.getNextQueueEntry();
-
- if (!entry) {
- // can happen if e.g. we attempt a writeback and fail, but
- // before the retry, the writeback is eliminated because
- // we snoop another cache's ReadEx.
- } else {
- // let our snoop responses go first if there are responses to
- // the same addresses
- if (checkConflictingSnoop(entry->blkAddr)) {
- return;
- }
- waitingOnRetry = entry->sendPacket(cache);
- }
-
- // if we succeeded and are not waiting for a retry, schedule the
- // next send considering when the next queue is ready, note that
- // snoop responses have their own packet queue and thus schedule
- // their own events
- if (!waitingOnRetry) {
- schedSendEvent(cache.nextQueueReadyTime());
- }
-}
-
-Cache::
-MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
- const std::string &_label)
- : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
- _reqQueue(*_cache, *this, _snoopRespQueue, _label),
- _snoopRespQueue(*_cache, *this, _label), cache(_cache)
-{
-}
/**
* @file
- * Describes a cache based on template policies.
+ * Describes a cache
*/
#ifndef __MEM_CACHE_CACHE_HH__
#define __MEM_CACHE_CACHE_HH__
+#include <cstdint>
#include <unordered_set>
-#include "base/logging.hh" // fatal, panic, and warn
-#include "enums/Clusivity.hh"
+#include "base/types.hh"
#include "mem/cache/base.hh"
-#include "mem/cache/blk.hh"
-#include "mem/cache/mshr.hh"
-#include "mem/cache/tags/base.hh"
-#include "params/Cache.hh"
-#include "sim/eventq.hh"
+#include "mem/packet.hh"
-//Forward decleration
-class BasePrefetcher;
+class CacheBlk;
+struct CacheParams;
+class MSHR;
/**
- * A template-policy based cache. The behavior of the cache can be altered by
- * supplying different template policies. TagStore handles all tag and data
- * storage @sa TagStore, \ref gem5MemorySystem "gem5 Memory System"
+ * A coherent cache that can be arranged in flexible topologies.
*/
class Cache : public BaseCache
{
protected:
-
- /**
- * The CPU-side port extends the base cache slave port with access
- * functions for functional, atomic and timing requests.
- */
- class CpuSidePort : public CacheSlavePort
- {
- private:
-
- // a pointer to our specific cache implementation
- Cache *cache;
-
- protected:
-
- virtual bool recvTimingSnoopResp(PacketPtr pkt);
-
- virtual bool tryTiming(PacketPtr pkt);
-
- virtual bool recvTimingReq(PacketPtr pkt);
-
- virtual Tick recvAtomic(PacketPtr pkt);
-
- virtual void recvFunctional(PacketPtr pkt);
-
- virtual AddrRangeList getAddrRanges() const;
-
- public:
-
- CpuSidePort(const std::string &_name, Cache *_cache,
- const std::string &_label);
-
- };
-
- /**
- * Override the default behaviour of sendDeferredPacket to enable
- * the memory-side cache port to also send requests based on the
- * current MSHR status. This queue has a pointer to our specific
- * cache implementation and is used by the MemSidePort.
- */
- class CacheReqPacketQueue : public ReqPacketQueue
- {
-
- protected:
-
- Cache &cache;
- SnoopRespPacketQueue &snoopRespQueue;
-
- public:
-
- CacheReqPacketQueue(Cache &cache, MasterPort &port,
- SnoopRespPacketQueue &snoop_resp_queue,
- const std::string &label) :
- ReqPacketQueue(cache, port, label), cache(cache),
- snoopRespQueue(snoop_resp_queue) { }
-
- /**
- * Override the normal sendDeferredPacket and do not only
- * consider the transmit list (used for responses), but also
- * requests.
- */
- virtual void sendDeferredPacket();
-
- /**
- * Check if there is a conflicting snoop response about to be
- * send out, and if so simply stall any requests, and schedule
- * a send event at the same time as the next snoop response is
- * being sent out.
- */
- bool checkConflictingSnoop(Addr addr)
- {
- if (snoopRespQueue.hasAddr(addr)) {
- DPRINTF(CachePort, "Waiting for snoop response to be "
- "sent\n");
- Tick when = snoopRespQueue.deferredPacketReadyTime();
- schedSendEvent(when);
- return true;
- }
- return false;
- }
- };
-
- /**
- * The memory-side port extends the base cache master port with
- * access functions for functional, atomic and timing snoops.
- */
- class MemSidePort : public CacheMasterPort
- {
- private:
-
- /** The cache-specific queue. */
- CacheReqPacketQueue _reqQueue;
-
- SnoopRespPacketQueue _snoopRespQueue;
-
- // a pointer to our specific cache implementation
- Cache *cache;
-
- protected:
-
- virtual void recvTimingSnoopReq(PacketPtr pkt);
-
- virtual bool recvTimingResp(PacketPtr pkt);
-
- virtual Tick recvAtomicSnoop(PacketPtr pkt);
-
- virtual void recvFunctionalSnoop(PacketPtr pkt);
-
- public:
-
- MemSidePort(const std::string &_name, Cache *_cache,
- const std::string &_label);
- };
-
- /** Tag and data Storage */
- BaseTags *tags;
-
- /** Prefetcher */
- BasePrefetcher *prefetcher;
-
- /** Temporary cache block for occasional transitory use */
- CacheBlk *tempBlock;
-
/**
* This cache should allocate a block on a line-sized write miss.
*/
const bool doFastWrites;
- /**
- * Turn line-sized writes into WriteInvalidate transactions.
- */
- void promoteWholeLineWrites(PacketPtr pkt);
-
- /**
- * Notify the prefetcher on every access, not just misses.
- */
- const bool prefetchOnAccess;
-
- /**
- * Clusivity with respect to the upstream cache, determining if we
- * fill into both this cache and the cache above on a miss. Note
- * that we currently do not support strict clusivity policies.
- */
- const Enums::Clusivity clusivity;
-
- /**
- * Determine if clean lines should be written back or not. In
- * cases where a downstream cache is mostly inclusive we likely
- * want it to act as a victim cache also for lines that have not
- * been modified. Hence, we cannot simply drop the line (or send a
- * clean evict), but rather need to send the actual data.
- */
- const bool writebackClean;
-
- /**
- * Upstream caches need this packet until true is returned, so
- * hold it for deletion until a subsequent call
- */
- std::unique_ptr<Packet> pendingDelete;
-
- /**
- * Writebacks from the tempBlock, resulting on the response path
- * in atomic mode, must happen after the call to recvAtomic has
- * finished (for the right ordering of the packets). We therefore
- * need to hold on to the packets, and have a method and an event
- * to send them.
- */
- PacketPtr tempBlockWriteback;
-
- /**
- * Send the outstanding tempBlock writeback. To be called after
- * recvAtomic finishes in cases where the block we filled is in
- * fact the tempBlock, and now needs to be written back.
- */
- void writebackTempBlockAtomic() {
- assert(tempBlockWriteback != nullptr);
- PacketList writebacks{tempBlockWriteback};
- doWritebacksAtomic(writebacks);
- tempBlockWriteback = nullptr;
- }
-
- /**
- * An event to writeback the tempBlock after recvAtomic
- * finishes. To avoid other calls to recvAtomic getting in
- * between, we create this event with a higher priority.
- */
- EventFunctionWrapper writebackTempBlockAtomicEvent;
-
/**
* Store the outstanding requests that we are expecting snoop
* responses from so we can determine which snoop responses we
*/
std::unordered_set<RequestPtr> outstandingSnoop;
+ protected:
/**
- * Does all the processing necessary to perform the provided request.
- * @param pkt The memory request to perform.
- * @param blk The cache block to be updated.
- * @param lat The latency of the access.
- * @param writebacks List for any writebacks that need to be performed.
- * @return Boolean indicating whether the request was satisfied.
- */
- bool access(PacketPtr pkt, CacheBlk *&blk,
- Cycles &lat, PacketList &writebacks);
-
- /**
- *Handle doing the Compare and Swap function for SPARC.
- */
- void cmpAndSwap(CacheBlk *blk, PacketPtr pkt);
-
- /**
- * Find a block frame for new block at address addr targeting the
- * given security space, assuming that the block is not currently
- * in the cache. Append writebacks if any to provided packet
- * list. Return free block frame. May return nullptr if there are
- * no replaceable blocks at the moment.
- */
- CacheBlk *allocateBlock(Addr addr, bool is_secure, PacketList &writebacks);
-
- /**
- * Invalidate a cache block.
- *
- * @param blk Block to invalidate
- */
- void invalidateBlock(CacheBlk *blk);
-
- /**
- * Maintain the clusivity of this cache by potentially
- * invalidating a block. This method works in conjunction with
- * satisfyRequest, but is separate to allow us to handle all MSHR
- * targets before potentially dropping a block.
- *
- * @param from_cache Whether we have dealt with a packet from a cache
- * @param blk The block that should potentially be dropped
- */
- void maintainClusivity(bool from_cache, CacheBlk *blk);
-
- /**
- * Populates a cache block and handles all outstanding requests for the
- * satisfied fill request. This version takes two memory requests. One
- * contains the fill data, the other is an optional target to satisfy.
- * @param pkt The memory request with the fill data.
- * @param blk The cache block if it already exists.
- * @param writebacks List for any writebacks that need to be performed.
- * @param allocate Whether to allocate a block or use the temp block
- * @return Pointer to the new cache block.
- */
- CacheBlk *handleFill(PacketPtr pkt, CacheBlk *blk,
- PacketList &writebacks, bool allocate);
-
- /**
- * Determine whether we should allocate on a fill or not. If this
- * cache is mostly inclusive with regards to the upstream cache(s)
- * we always allocate (for any non-forwarded and cacheable
- * requests). In the case of a mostly exclusive cache, we allocate
- * on fill if the packet did not come from a cache, thus if we:
- * are dealing with a whole-line write (the latter behaves much
- * like a writeback), the original target packet came from a
- * non-caching source, or if we are performing a prefetch or LLSC.
- *
- * @param cmd Command of the incoming requesting packet
- * @return Whether we should allocate on the fill
+ * Turn line-sized writes into WriteInvalidate transactions.
*/
- inline bool allocOnFill(MemCmd cmd) const override
- {
- return clusivity == Enums::mostly_incl ||
- cmd == MemCmd::WriteLineReq ||
- cmd == MemCmd::ReadReq ||
- cmd == MemCmd::WriteReq ||
- cmd.isPrefetch() ||
- cmd.isLLSC();
- }
+ void promoteWholeLineWrites(PacketPtr pkt);
- /*
- * Handle a timing request that hit in the cache
- *
- * @param ptk The request packet
- * @param blk The referenced block
- * @param request_time The tick at which the block lookup is compete
- */
- void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time);
+ bool access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
+ PacketList &writebacks) override;
- /*
- * Handle a timing request that missed in the cache
- *
- * @param ptk The request packet
- * @param blk The referenced block
- * @param forward_time The tick at which we can process dependent requests
- * @param request_time The tick at which the block lookup is compete
- */
- void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, Tick forward_time,
- Tick request_time);
+ void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk,
+ Tick request_time) override;
- /**
- * Performs the access specified by the request.
- * @param pkt The request to perform.
- */
- void recvTimingReq(PacketPtr pkt);
+ void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk,
+ Tick forward_time,
+ Tick request_time) override;
- /**
- * Insert writebacks into the write buffer
- */
- void doWritebacks(PacketList& writebacks, Tick forward_time);
+ void recvTimingReq(PacketPtr pkt) override;
- /**
- * Send writebacks down the memory hierarchy in atomic mode
- */
- void doWritebacksAtomic(PacketList& writebacks);
+ void doWritebacks(PacketList& writebacks, Tick forward_time) override;
- /**
- * Handling the special case of uncacheable write responses to
- * make recvTimingResp less cluttered.
- */
- void handleUncacheableWriteResp(PacketPtr pkt);
+ void doWritebacksAtomic(PacketList& writebacks) override;
- /**
- * Service non-deferred MSHR targets using the received response
- *
- * Iterates through the list of targets that can be serviced with
- * the current response. Any writebacks that need to performed
- * must be appended to the writebacks parameter.
- *
- * @param mshr The MSHR that corresponds to the reponse
- * @param pkt The response packet
- * @param blk The reference block
- * @param writebacks List of writebacks that need to be performed
- */
void serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, CacheBlk *blk,
- PacketList& writebacks);
+ PacketList& writebacks) override;
- /**
- * Handles a response (cache line fill/write ack) from the bus.
- * @param pkt The response packet
- */
- void recvTimingResp(PacketPtr pkt);
-
- /**
- * Snoops bus transactions to maintain coherence.
- * @param pkt The current bus transaction.
- */
- void recvTimingSnoopReq(PacketPtr pkt);
-
- /**
- * Handle a snoop response.
- * @param pkt Snoop response packet
- */
- void recvTimingSnoopResp(PacketPtr pkt);
+ void recvTimingSnoopReq(PacketPtr pkt) override;
+ void recvTimingSnoopResp(PacketPtr pkt) override;
- /**
- * Handle a request in atomic mode that missed in this cache
- *
- * Creates a downstream request, sends it to the memory below and
- * handles the response. As we are in atomic mode all operations
- * are performed immediately.
- *
- * @param pkt The packet with the requests
- * @param blk The referenced block
- * @parma writebacks A list with packets for any performed writebacks
- * @return Cycles for handling the request
- */
Cycles handleAtomicReqMiss(PacketPtr pkt, CacheBlk *blk,
- PacketList &writebacks);
-
- /**
- * Performs the access specified by the request.
- * @param pkt The request to perform.
- * @return The number of ticks required for the access.
- */
- Tick recvAtomic(PacketPtr pkt);
+ PacketList &writebacks) override;
- /**
- * Snoop for the provided request in the cache and return the estimated
- * time taken.
- * @param pkt The memory request to snoop
- * @return The number of ticks required for the snoop.
- */
- Tick recvAtomicSnoop(PacketPtr pkt);
+ Tick recvAtomic(PacketPtr pkt) override;
- /**
- * Performs the access specified by the request.
- * @param pkt The request to perform.
- * @param fromCpuSide from the CPU side port or the memory side port
- */
- void functionalAccess(PacketPtr pkt, bool fromCpuSide);
+ Tick recvAtomicSnoop(PacketPtr pkt) override;
- /**
- * Perform any necessary updates to the block and perform any data
- * exchange between the packet and the block. The flags of the
- * packet are also set accordingly.
- *
- * @param pkt Request packet from upstream that hit a block
- * @param blk Cache block that the packet hit
- * @param deferred_response Whether this hit is to block that
- * originally missed
- * @param pending_downgrade Whether the writable flag is to be removed
- *
- * @return True if the block is to be invalidated
- */
void satisfyRequest(PacketPtr pkt, CacheBlk *blk,
bool deferred_response = false,
- bool pending_downgrade = false);
+ bool pending_downgrade = false) override;
void doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
bool already_copied, bool pending_inval);
uint32_t handleSnoop(PacketPtr pkt, CacheBlk *blk,
bool is_timing, bool is_deferred, bool pending_inval);
- /**
- * Evict a cache block.
- *
- * Performs a writeback if necesssary and invalidates the block
- *
- * @param blk Block to invalidate
- * @return A packet with the writeback, can be nullptr
- */
- M5_NODISCARD virtual PacketPtr evictBlock(CacheBlk *blk);
+ M5_NODISCARD PacketPtr evictBlock(CacheBlk *blk) override;
- /**
- * Evict a cache block.
- *
- * Performs a writeback if necesssary and invalidates the block
- *
- * @param blk Block to invalidate
- * @param writebacks Return a list of packets with writebacks
- */
- virtual void evictBlock(CacheBlk *blk, PacketList &writebacks);
-
- /**
- * Create a writeback request for the given block.
- * @param blk The block to writeback.
- * @return The writeback request for the block.
- */
- PacketPtr writebackBlk(CacheBlk *blk);
-
- /**
- * Create a writeclean request for the given block.
- * @param blk The block to write clean
- * @param dest The destination of this clean operation
- * @return The write clean packet for the block.
- */
- PacketPtr writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id);
+ void evictBlock(CacheBlk *blk, PacketList &writebacks) override;
/**
* Create a CleanEvict request for the given block.
+ *
* @param blk The block to evict.
* @return The CleanEvict request for the block.
*/
PacketPtr cleanEvictBlk(CacheBlk *blk);
-
- void memWriteback() override;
- void memInvalidate() override;
- bool isDirty() const override;
-
- /**
- * Cache block visitor that writes back dirty cache blocks using
- * functional writes.
- *
- * \return Always returns true.
- */
- bool writebackVisitor(CacheBlk &blk);
- /**
- * Cache block visitor that invalidates all blocks in the cache.
- *
- * @warn Dirty cache lines will not be written back to memory.
- *
- * \return Always returns true.
- */
- bool invalidateVisitor(CacheBlk &blk);
-
- /**
- * Create an appropriate downstream bus request packet for the
- * given parameters.
- * @param cpu_pkt The miss that needs to be satisfied.
- * @param blk The block currently in the cache corresponding to
- * cpu_pkt (nullptr if none).
- * @param needsWritable Indicates that the block must be writable
- * even if the request in cpu_pkt doesn't indicate that.
- * @return A new Packet containing the request, or nullptr if the
- * current request in cpu_pkt should just be forwarded on.
- */
PacketPtr createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
- bool needsWritable) const;
-
- /**
- * Return the next queue entry to service, either a pending miss
- * from the MSHR queue, a buffered write from the write buffer, or
- * something from the prefetcher. This function is responsible
- * for prioritizing among those sources on the fly.
- */
- QueueEntry* getNextQueueEntry();
+ bool needsWritable) const override;
/**
* Send up a snoop request and find cached copies. If cached copies are
* found, set the BLOCK_CACHED flag in pkt.
*/
- bool isCachedAbove(PacketPtr pkt, bool is_timing = true) const;
-
- /**
- * Return whether there are any outstanding misses.
- */
- bool outstandingMisses() const
- {
- return !mshrQueue.isEmpty();
- }
-
- CacheBlk *findBlock(Addr addr, bool is_secure) const {
- return tags->findBlock(addr, is_secure);
- }
-
- bool inCache(Addr addr, bool is_secure) const override {
- return (tags->findBlock(addr, is_secure) != 0);
- }
-
- bool inMissQueue(Addr addr, bool is_secure) const override {
- return (mshrQueue.findMatch(addr, is_secure) != 0);
- }
-
- /**
- * Find next request ready time from among possible sources.
- */
- Tick nextQueueReadyTime() const;
+ bool isCachedAbove(PacketPtr pkt, bool is_timing = true);
public:
/** Instantiates a basic cache object. */
Cache(const CacheParams *p);
- /** Non-default destructor is needed to deallocate memory. */
- virtual ~Cache();
-
- void regStats() override;
-
/**
* Take an MSHR, turn it into a suitable downstream packet, and
* send it out. This construct allows a queue entry to choose a suitable
* @param mshr The MSHR to turn into a packet and send
* @return True if the port is waiting for a retry
*/
- bool sendMSHRQueuePacket(MSHR* mshr);
-
- /**
- * Similar to sendMSHR, but for a write-queue entry
- * instead. Create the packet, and send it, and if successful also
- * mark the entry in service.
- *
- * @param wq_entry The write-queue entry to turn into a packet and send
- * @return True if the port is waiting for a retry
- */
- bool sendWriteQueuePacket(WriteQueueEntry* wq_entry);
-
- /** serialize the state of the caches
- * We currently don't support checkpointing cache state, so this panics.
- */
- void serialize(CheckpointOut &cp) const override;
- void unserialize(CheckpointIn &cp) override;
-};
-
-/**
- * Wrap a method and present it as a cache block visitor.
- *
- * For example the forEachBlk method in the tag arrays expects a
- * callable object/function as their parameter. This class wraps a
- * method in an object and presents callable object that adheres to
- * the cache block visitor protocol.
- */
-class CacheBlkVisitorWrapper : public CacheBlkVisitor
-{
- public:
- typedef bool (Cache::*VisitorPtr)(CacheBlk &blk);
-
- CacheBlkVisitorWrapper(Cache &_cache, VisitorPtr _visitor)
- : cache(_cache), visitor(_visitor) {}
-
- bool operator()(CacheBlk &blk) override {
- return (cache.*visitor)(blk);
- }
-
- private:
- Cache &cache;
- VisitorPtr visitor;
-};
-
-/**
- * Cache block visitor that determines if there are dirty blocks in a
- * cache.
- *
- * Use with the forEachBlk method in the tag array to determine if the
- * array contains dirty blocks.
- */
-class CacheBlkIsDirtyVisitor : public CacheBlkVisitor
-{
- public:
- CacheBlkIsDirtyVisitor()
- : _isDirty(false) {}
-
- bool operator()(CacheBlk &blk) override {
- if (blk.isDirty()) {
- _isDirty = true;
- return false;
- } else {
- return true;
- }
- }
-
- /**
- * Does the array contain a dirty line?
- *
- * \return true if yes, false otherwise.
- */
- bool isDirty() const { return _isDirty; };
-
- private:
- bool _isDirty;
+ bool sendMSHRQueuePacket(MSHR* mshr) override;
};
#endif // __MEM_CACHE_CACHE_HH__
}
bool
-MSHR::sendPacket(Cache &cache)
+MSHR::sendPacket(BaseCache &cache)
{
return cache.sendMSHRQueuePacket(this);
}
#include "base/printable.hh"
#include "mem/cache/queue_entry.hh"
-class Cache;
+class BaseCache;
/**
* Miss Status and handling Register. This class keeps all the information
assert(inService); return postDowngrade;
}
- bool sendPacket(Cache &cache);
+ bool sendPacket(BaseCache &cache);
bool allocOnFill() const {
return targets.allocOnFill;
#include "mem/packet.hh"
-class Cache;
+class BaseCache;
/**
* A queue entry base class, to be used by both the MSHRs and
* Send this queue entry as a downstream packet, with the exact
* behaviour depending on the specific entry type.
*/
- virtual bool sendPacket(Cache &cache) = 0;
+ virtual bool sendPacket(BaseCache &cache) = 0;
};
}
bool
-WriteQueueEntry::sendPacket(Cache &cache)
+WriteQueueEntry::sendPacket(BaseCache &cache)
{
return cache.sendWriteQueuePacket(this);
}
#include "base/printable.hh"
#include "mem/cache/queue_entry.hh"
-class Cache;
+class BaseCache;
/**
* Write queue entry
/** WriteQueueEntry list iterator. */
typedef List::iterator Iterator;
- bool sendPacket(Cache &cache);
+ bool sendPacket(BaseCache &cache);
private: