** foreach \f$ {c_0, ..., c_n} \in P \f$ do
** if \f$ invariant\_by\_permutations(\phi, {c_0, ..., c_n}) \f$ then
** T := \f$ select\_terms(\phi, {c_0, ..., c_n}) \f$
- ** cts := \f$ \empty \f$
+ ** cts := \f$ \emptyset \f$
** while T != \f$ \empty \wedge |cts| <= n \f$ do
** \f$ t := select\_most\_promising\_term(T, \phi) \f$
** \f$ T := T \setminus {t} \f$
** \brief Implementation of algorithm suggested by Deharbe, Fontaine,
** Merz, and Paleo, "Exploiting symmetry in SMT problems," CADE 2011
**
- ** Implementation of algorithm suggested by Deharbe, Fontaine,
- ** Merz, and Paleo, "Exploiting symmetry in SMT problems," CADE 2011.
+ ** Implementation of algorithm suggested by Deharbe, Fontaine, Merz,
+ ** and Paleo, "Exploiting symmetry in SMT problems," CADE 2011.
**
** From the paper:
**
** foreach \f$ {c_0, ..., c_n} \in P \f$ do
** if \f$ invariant\_by\_permutations(\phi, {c_0, ..., c_n}) \f$ then
** T := \f$ select\_terms(\phi, {c_0, ..., c_n}) \f$
- ** cts := \f$ \empty \f$
+ ** cts := \f$ \emptyset \f$
** while T != \f$ \empty \wedge |cts| <= n \f$ do
** \f$ t := select\_most\_promising\_term(T, \phi) \f$
** \f$ T := T \setminus {t} \f$