use work.ppc_fx_insns.all;
entity execute1 is
- generic (
- SIM : boolean := false
+ generic (
+ SIM : boolean := false
);
- port (
- clk : in std_logic;
+ port (
+ clk : in std_logic;
- -- asynchronous
- flush_out : out std_ulogic;
+ -- asynchronous
+ flush_out : out std_ulogic;
- e_in : in Decode2ToExecute1Type;
+ e_in : in Decode2ToExecute1Type;
- -- asynchronous
- f_out : out Execute1ToFetch1Type;
+ -- asynchronous
+ f_out : out Execute1ToFetch1Type;
- e_out : out Execute1ToWritebackType;
+ e_out : out Execute1ToWritebackType;
- terminate_out : out std_ulogic
+ terminate_out : out std_ulogic
);
end entity execute1;
architecture behaviour of execute1 is
- type reg_type is record
- --f : Execute1ToFetch1Type;
- e : Execute1ToWritebackType;
- end record;
+ type reg_type is record
+ --f : Execute1ToFetch1Type;
+ e : Execute1ToWritebackType;
+ end record;
- signal r, rin : reg_type;
+ signal r, rin : reg_type;
- signal ctrl: ctrl_t := (carry => '0', others => (others => '0'));
- signal ctrl_tmp: ctrl_t := (carry => '0', others => (others => '0'));
+ signal ctrl: ctrl_t := (carry => '0', others => (others => '0'));
+ signal ctrl_tmp: ctrl_t := (carry => '0', others => (others => '0'));
- signal right_shift, rot_clear_left, rot_clear_right: std_ulogic;
- signal rotator_result: std_ulogic_vector(63 downto 0);
- signal rotator_carry: std_ulogic;
- signal logical_result: std_ulogic_vector(63 downto 0);
- signal countzero_result: std_ulogic_vector(63 downto 0);
+ signal right_shift, rot_clear_left, rot_clear_right: std_ulogic;
+ signal rotator_result: std_ulogic_vector(63 downto 0);
+ signal rotator_carry: std_ulogic;
+ signal logical_result: std_ulogic_vector(63 downto 0);
+ signal countzero_result: std_ulogic_vector(63 downto 0);
- function decode_input_carry (carry_sel : carry_in_t; ca_in : std_ulogic) return std_ulogic is
- begin
- case carry_sel is
- when ZERO =>
- return '0';
- when CA =>
- return ca_in;
- when ONE =>
- return '1';
- end case;
- end;
+ function decode_input_carry (carry_sel : carry_in_t; ca_in : std_ulogic) return std_ulogic is
+ begin
+ case carry_sel is
+ when ZERO =>
+ return '0';
+ when CA =>
+ return ca_in;
+ when ONE =>
+ return '1';
+ end case;
+ end;
begin
- rotator_0: entity work.rotator
- port map (
- rs => e_in.read_data3,
- ra => e_in.read_data1,
- shift => e_in.read_data2(6 downto 0),
- insn => e_in.insn,
- is_32bit => e_in.is_32bit,
- right_shift => right_shift,
- arith => e_in.is_signed,
- clear_left => rot_clear_left,
- clear_right => rot_clear_right,
- result => rotator_result,
- carry_out => rotator_carry
- );
+ rotator_0: entity work.rotator
+ port map (
+ rs => e_in.read_data3,
+ ra => e_in.read_data1,
+ shift => e_in.read_data2(6 downto 0),
+ insn => e_in.insn,
+ is_32bit => e_in.is_32bit,
+ right_shift => right_shift,
+ arith => e_in.is_signed,
+ clear_left => rot_clear_left,
+ clear_right => rot_clear_right,
+ result => rotator_result,
+ carry_out => rotator_carry
+ );
- logical_0: entity work.logical
- port map (
- rs => e_in.read_data3,
- rb => e_in.read_data2,
- op => e_in.insn_type,
- invert_in => e_in.invert_a,
- invert_out => e_in.invert_out,
- result => logical_result
- );
+ logical_0: entity work.logical
+ port map (
+ rs => e_in.read_data3,
+ rb => e_in.read_data2,
+ op => e_in.insn_type,
+ invert_in => e_in.invert_a,
+ invert_out => e_in.invert_out,
+ result => logical_result
+ );
- countzero_0: entity work.zero_counter
- port map (
- rs => e_in.read_data3,
- count_right => e_in.insn(10),
- is_32bit => e_in.is_32bit,
- result => countzero_result
- );
+ countzero_0: entity work.zero_counter
+ port map (
+ rs => e_in.read_data3,
+ count_right => e_in.insn(10),
+ is_32bit => e_in.is_32bit,
+ result => countzero_result
+ );
- execute1_0: process(clk)
- begin
- if rising_edge(clk) then
- r <= rin;
- ctrl <= ctrl_tmp;
- end if;
- end process;
+ execute1_0: process(clk)
+ begin
+ if rising_edge(clk) then
+ r <= rin;
+ ctrl <= ctrl_tmp;
+ end if;
+ end process;
- execute1_1: process(all)
- variable v : reg_type;
- variable a_inv : std_ulogic_vector(63 downto 0);
- variable result : std_ulogic_vector(63 downto 0);
- variable newcrf : std_ulogic_vector(3 downto 0);
- variable result_with_carry : std_ulogic_vector(64 downto 0);
- variable result_en : integer;
- variable crnum : integer;
- variable scrnum : integer;
- variable lo, hi : integer;
- variable sh, mb, me : std_ulogic_vector(5 downto 0);
- variable sh32, mb32, me32 : std_ulogic_vector(4 downto 0);
- variable bo, bi : std_ulogic_vector(4 downto 0);
- variable bf, bfa : std_ulogic_vector(2 downto 0);
- variable l : std_ulogic;
- begin
- result := (others => '0');
- result_with_carry := (others => '0');
- result_en := 0;
- newcrf := (others => '0');
+ execute1_1: process(all)
+ variable v : reg_type;
+ variable a_inv : std_ulogic_vector(63 downto 0);
+ variable result : std_ulogic_vector(63 downto 0);
+ variable newcrf : std_ulogic_vector(3 downto 0);
+ variable result_with_carry : std_ulogic_vector(64 downto 0);
+ variable result_en : integer;
+ variable crnum : integer;
+ variable scrnum : integer;
+ variable lo, hi : integer;
+ variable sh, mb, me : std_ulogic_vector(5 downto 0);
+ variable sh32, mb32, me32 : std_ulogic_vector(4 downto 0);
+ variable bo, bi : std_ulogic_vector(4 downto 0);
+ variable bf, bfa : std_ulogic_vector(2 downto 0);
+ variable l : std_ulogic;
+ begin
+ result := (others => '0');
+ result_with_carry := (others => '0');
+ result_en := 0;
+ newcrf := (others => '0');
- v := r;
- v.e := Execute1ToWritebackInit;
- --v.f := Execute1ToFetch1TypeInit;
+ v := r;
+ v.e := Execute1ToWritebackInit;
+ --v.f := Execute1ToFetch1TypeInit;
- ctrl_tmp <= ctrl;
- -- FIXME: run at 512MHz not core freq
- ctrl_tmp.tb <= std_ulogic_vector(unsigned(ctrl.tb) + 1);
+ ctrl_tmp <= ctrl;
+ -- FIXME: run at 512MHz not core freq
+ ctrl_tmp.tb <= std_ulogic_vector(unsigned(ctrl.tb) + 1);
- terminate_out <= '0';
- f_out <= Execute1ToFetch1TypeInit;
+ terminate_out <= '0';
+ f_out <= Execute1ToFetch1TypeInit;
- -- rotator control signals
- right_shift <= '1' when e_in.insn_type = OP_SHR else '0';
- rot_clear_left <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCL else '0';
- rot_clear_right <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCR else '0';
+ -- rotator control signals
+ right_shift <= '1' when e_in.insn_type = OP_SHR else '0';
+ rot_clear_left <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCL else '0';
+ rot_clear_right <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCR else '0';
- if e_in.valid = '1' then
+ if e_in.valid = '1' then
- v.e.valid := '1';
- v.e.write_reg := e_in.write_reg;
- v.e.write_len := x"8";
- v.e.sign_extend := '0';
+ v.e.valid := '1';
+ v.e.write_reg := e_in.write_reg;
+ v.e.write_len := x"8";
+ v.e.sign_extend := '0';
- case_0: case e_in.insn_type is
+ case_0: case e_in.insn_type is
- when OP_ILLEGAL =>
- terminate_out <= '1';
- report "illegal";
- when OP_NOP =>
- -- Do nothing
- when OP_ADD =>
- if e_in.invert_a = '0' then
- a_inv := e_in.read_data1;
- else
- a_inv := not e_in.read_data1;
- end if;
- result_with_carry := ppc_adde(a_inv, e_in.read_data2, decode_input_carry(e_in.input_carry, ctrl.carry));
- result := result_with_carry(63 downto 0);
- if e_in.output_carry then
- ctrl_tmp.carry <= result_with_carry(64);
- end if;
- result_en := 1;
- when OP_AND | OP_OR | OP_XOR =>
- result := logical_result;
- result_en := 1;
- when OP_B =>
- f_out.redirect <= '1';
- if (insn_aa(e_in.insn)) then
- f_out.redirect_nia <= std_ulogic_vector(signed(e_in.read_data2));
- else
- f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(e_in.read_data2));
- end if;
- when OP_BC =>
- bo := insn_bo(e_in.insn);
- bi := insn_bi(e_in.insn);
- if bo(4-2) = '0' then
- ctrl_tmp.ctr <= std_ulogic_vector(unsigned(ctrl.ctr) - 1);
- end if;
- if ppc_bc_taken(bo, bi, e_in.cr, ctrl.ctr) = 1 then
- f_out.redirect <= '1';
- if (insn_aa(e_in.insn)) then
- f_out.redirect_nia <= std_ulogic_vector(signed(e_in.read_data2));
- else
- f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(e_in.read_data2));
- end if;
- end if;
- when OP_BCREG =>
- -- bits 10 and 6 distinguish between bclr, bcctr and bctar
- bo := insn_bo(e_in.insn);
- bi := insn_bi(e_in.insn);
- if bo(4-2) = '0' and e_in.insn(10) = '0' then
- ctrl_tmp.ctr <= std_ulogic_vector(unsigned(ctrl.ctr) - 1);
- end if;
- if ppc_bc_taken(bo, bi, e_in.cr, ctrl.ctr) = 1 then
- f_out.redirect <= '1';
- if e_in.insn(10) = '0' then
- f_out.redirect_nia <= ctrl.lr(63 downto 2) & "00";
- else
- f_out.redirect_nia <= ctrl.ctr(63 downto 2) & "00";
- end if;
- end if;
- when OP_CMPB =>
- result := ppc_cmpb(e_in.read_data3, e_in.read_data2);
- result_en := 1;
- when OP_CMP =>
- bf := insn_bf(e_in.insn);
- l := insn_l(e_in.insn);
- v.e.write_cr_enable := '1';
- crnum := to_integer(unsigned(bf));
- v.e.write_cr_mask := num_to_fxm(crnum);
- for i in 0 to 7 loop
- lo := i*4;
- hi := lo + 3;
- v.e.write_cr_data(hi downto lo) := ppc_cmp(l, e_in.read_data1, e_in.read_data2);
- end loop;
- when OP_CMPL =>
- bf := insn_bf(e_in.insn);
- l := insn_l(e_in.insn);
- v.e.write_cr_enable := '1';
- crnum := to_integer(unsigned(bf));
- v.e.write_cr_mask := num_to_fxm(crnum);
- for i in 0 to 7 loop
- lo := i*4;
- hi := lo + 3;
- v.e.write_cr_data(hi downto lo) := ppc_cmpl(l, e_in.read_data1, e_in.read_data2);
- end loop;
- when OP_CNTZ =>
- result := countzero_result;
- result_en := 1;
- when OP_EXTS =>
- v.e.write_len := e_in.data_len;
- v.e.sign_extend := '1';
- result := e_in.read_data3;
- result_en := 1;
- when OP_ISEL =>
- crnum := to_integer(unsigned(insn_bc(e_in.insn)));
- if e_in.cr(31-crnum) = '1' then
- result := e_in.read_data1;
- else
- result := e_in.read_data2;
- end if;
- result_en := 1;
- when OP_MCRF =>
- bf := insn_bf(e_in.insn);
- bfa := insn_bfa(e_in.insn);
- v.e.write_cr_enable := '1';
- crnum := to_integer(unsigned(bf));
- scrnum := to_integer(unsigned(bfa));
- v.e.write_cr_mask := num_to_fxm(crnum);
- for i in 0 to 7 loop
- lo := (7-i)*4;
- hi := lo + 3;
- if i = scrnum then
- newcrf := e_in.cr(hi downto lo);
- end if;
- end loop;
- for i in 0 to 7 loop
- lo := i*4;
- hi := lo + 3;
- v.e.write_cr_data(hi downto lo) := newcrf;
- end loop;
- when OP_MFSPR =>
- if std_match(e_in.insn(20 downto 11), "0100100000") then
- result := ctrl.ctr;
- result_en := 1;
- elsif std_match(e_in.insn(20 downto 11), "0100000000") then
- result := ctrl.lr;
- result_en := 1;
- elsif std_match(e_in.insn(20 downto 11), "0110001000") then
- result := ctrl.tb;
- result_en := 1;
- end if;
- when OP_MFCR =>
- if e_in.insn(20) = '0' then
- -- mfcr
- result := x"00000000" & e_in.cr;
- else
- -- mfocrf
- crnum := fxm_to_num(insn_fxm(e_in.insn));
- result := (others => '0');
- for i in 0 to 7 loop
- lo := (7-i)*4;
- hi := lo + 3;
- if crnum = i then
- result(hi downto lo) := e_in.cr(hi downto lo);
- end if;
- end loop;
- end if;
- result_en := 1;
- when OP_MTCRF =>
- v.e.write_cr_enable := '1';
- if e_in.insn(20) = '0' then
- -- mtcrf
- v.e.write_cr_mask := insn_fxm(e_in.insn);
- else
- -- mtocrf: We require one hot priority encoding here
- crnum := fxm_to_num(insn_fxm(e_in.insn));
- v.e.write_cr_mask := num_to_fxm(crnum);
- end if;
- v.e.write_cr_data := e_in.read_data3(31 downto 0);
- when OP_MTSPR =>
- if std_match(e_in.insn(20 downto 11), "0100100000") then
- ctrl_tmp.ctr <= e_in.read_data3;
- elsif std_match(e_in.insn(20 downto 11), "0100000000") then
- ctrl_tmp.lr <= e_in.read_data3;
- end if;
- when OP_POPCNTB =>
- result := ppc_popcntb(e_in.read_data3);
- result_en := 1;
- when OP_POPCNTW =>
- result := ppc_popcntw(e_in.read_data3);
- result_en := 1;
- when OP_POPCNTD =>
- result := ppc_popcntd(e_in.read_data3);
- result_en := 1;
- when OP_PRTYD =>
- result := ppc_prtyd(e_in.read_data3);
- result_en := 1;
- when OP_PRTYW =>
- result := ppc_prtyw(e_in.read_data3);
- result_en := 1;
- when OP_RLC | OP_RLCL | OP_RLCR | OP_SHL | OP_SHR =>
- result := rotator_result;
- if e_in.output_carry = '1' then
- ctrl_tmp.carry <= rotator_carry;
- end if;
- result_en := 1;
- when OP_SIM_CONFIG =>
- -- bit 0 was used to select the microwatt console, which
- -- we no longer support.
- if SIM = true then
- result := x"0000000000000000";
- else
- result := x"0000000000000000";
- end if;
- result_en := 1;
+ when OP_ILLEGAL =>
+ terminate_out <= '1';
+ report "illegal";
+ when OP_NOP =>
+ -- Do nothing
+ when OP_ADD =>
+ if e_in.invert_a = '0' then
+ a_inv := e_in.read_data1;
+ else
+ a_inv := not e_in.read_data1;
+ end if;
+ result_with_carry := ppc_adde(a_inv, e_in.read_data2, decode_input_carry(e_in.input_carry, ctrl.carry));
+ result := result_with_carry(63 downto 0);
+ if e_in.output_carry then
+ ctrl_tmp.carry <= result_with_carry(64);
+ end if;
+ result_en := 1;
+ when OP_AND | OP_OR | OP_XOR =>
+ result := logical_result;
+ result_en := 1;
+ when OP_B =>
+ f_out.redirect <= '1';
+ if (insn_aa(e_in.insn)) then
+ f_out.redirect_nia <= std_ulogic_vector(signed(e_in.read_data2));
+ else
+ f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(e_in.read_data2));
+ end if;
+ when OP_BC =>
+ bo := insn_bo(e_in.insn);
+ bi := insn_bi(e_in.insn);
+ if bo(4-2) = '0' then
+ ctrl_tmp.ctr <= std_ulogic_vector(unsigned(ctrl.ctr) - 1);
+ end if;
+ if ppc_bc_taken(bo, bi, e_in.cr, ctrl.ctr) = 1 then
+ f_out.redirect <= '1';
+ if (insn_aa(e_in.insn)) then
+ f_out.redirect_nia <= std_ulogic_vector(signed(e_in.read_data2));
+ else
+ f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(e_in.read_data2));
+ end if;
+ end if;
+ when OP_BCREG =>
+ -- bits 10 and 6 distinguish between bclr, bcctr and bctar
+ bo := insn_bo(e_in.insn);
+ bi := insn_bi(e_in.insn);
+ if bo(4-2) = '0' and e_in.insn(10) = '0' then
+ ctrl_tmp.ctr <= std_ulogic_vector(unsigned(ctrl.ctr) - 1);
+ end if;
+ if ppc_bc_taken(bo, bi, e_in.cr, ctrl.ctr) = 1 then
+ f_out.redirect <= '1';
+ if e_in.insn(10) = '0' then
+ f_out.redirect_nia <= ctrl.lr(63 downto 2) & "00";
+ else
+ f_out.redirect_nia <= ctrl.ctr(63 downto 2) & "00";
+ end if;
+ end if;
+ when OP_CMPB =>
+ result := ppc_cmpb(e_in.read_data3, e_in.read_data2);
+ result_en := 1;
+ when OP_CMP =>
+ bf := insn_bf(e_in.insn);
+ l := insn_l(e_in.insn);
+ v.e.write_cr_enable := '1';
+ crnum := to_integer(unsigned(bf));
+ v.e.write_cr_mask := num_to_fxm(crnum);
+ for i in 0 to 7 loop
+ lo := i*4;
+ hi := lo + 3;
+ v.e.write_cr_data(hi downto lo) := ppc_cmp(l, e_in.read_data1, e_in.read_data2);
+ end loop;
+ when OP_CMPL =>
+ bf := insn_bf(e_in.insn);
+ l := insn_l(e_in.insn);
+ v.e.write_cr_enable := '1';
+ crnum := to_integer(unsigned(bf));
+ v.e.write_cr_mask := num_to_fxm(crnum);
+ for i in 0 to 7 loop
+ lo := i*4;
+ hi := lo + 3;
+ v.e.write_cr_data(hi downto lo) := ppc_cmpl(l, e_in.read_data1, e_in.read_data2);
+ end loop;
+ when OP_CNTZ =>
+ result := countzero_result;
+ result_en := 1;
+ when OP_EXTS =>
+ v.e.write_len := e_in.data_len;
+ v.e.sign_extend := '1';
+ result := e_in.read_data3;
+ result_en := 1;
+ when OP_ISEL =>
+ crnum := to_integer(unsigned(insn_bc(e_in.insn)));
+ if e_in.cr(31-crnum) = '1' then
+ result := e_in.read_data1;
+ else
+ result := e_in.read_data2;
+ end if;
+ result_en := 1;
+ when OP_MCRF =>
+ bf := insn_bf(e_in.insn);
+ bfa := insn_bfa(e_in.insn);
+ v.e.write_cr_enable := '1';
+ crnum := to_integer(unsigned(bf));
+ scrnum := to_integer(unsigned(bfa));
+ v.e.write_cr_mask := num_to_fxm(crnum);
+ for i in 0 to 7 loop
+ lo := (7-i)*4;
+ hi := lo + 3;
+ if i = scrnum then
+ newcrf := e_in.cr(hi downto lo);
+ end if;
+ end loop;
+ for i in 0 to 7 loop
+ lo := i*4;
+ hi := lo + 3;
+ v.e.write_cr_data(hi downto lo) := newcrf;
+ end loop;
+ when OP_MFSPR =>
+ if std_match(e_in.insn(20 downto 11), "0100100000") then
+ result := ctrl.ctr;
+ result_en := 1;
+ elsif std_match(e_in.insn(20 downto 11), "0100000000") then
+ result := ctrl.lr;
+ result_en := 1;
+ elsif std_match(e_in.insn(20 downto 11), "0110001000") then
+ result := ctrl.tb;
+ result_en := 1;
+ end if;
+ when OP_MFCR =>
+ if e_in.insn(20) = '0' then
+ -- mfcr
+ result := x"00000000" & e_in.cr;
+ else
+ -- mfocrf
+ crnum := fxm_to_num(insn_fxm(e_in.insn));
+ result := (others => '0');
+ for i in 0 to 7 loop
+ lo := (7-i)*4;
+ hi := lo + 3;
+ if crnum = i then
+ result(hi downto lo) := e_in.cr(hi downto lo);
+ end if;
+ end loop;
+ end if;
+ result_en := 1;
+ when OP_MTCRF =>
+ v.e.write_cr_enable := '1';
+ if e_in.insn(20) = '0' then
+ -- mtcrf
+ v.e.write_cr_mask := insn_fxm(e_in.insn);
+ else
+ -- mtocrf: We require one hot priority encoding here
+ crnum := fxm_to_num(insn_fxm(e_in.insn));
+ v.e.write_cr_mask := num_to_fxm(crnum);
+ end if;
+ v.e.write_cr_data := e_in.read_data3(31 downto 0);
+ when OP_MTSPR =>
+ if std_match(e_in.insn(20 downto 11), "0100100000") then
+ ctrl_tmp.ctr <= e_in.read_data3;
+ elsif std_match(e_in.insn(20 downto 11), "0100000000") then
+ ctrl_tmp.lr <= e_in.read_data3;
+ end if;
+ when OP_POPCNTB =>
+ result := ppc_popcntb(e_in.read_data3);
+ result_en := 1;
+ when OP_POPCNTW =>
+ result := ppc_popcntw(e_in.read_data3);
+ result_en := 1;
+ when OP_POPCNTD =>
+ result := ppc_popcntd(e_in.read_data3);
+ result_en := 1;
+ when OP_PRTYD =>
+ result := ppc_prtyd(e_in.read_data3);
+ result_en := 1;
+ when OP_PRTYW =>
+ result := ppc_prtyw(e_in.read_data3);
+ result_en := 1;
+ when OP_RLC | OP_RLCL | OP_RLCR | OP_SHL | OP_SHR =>
+ result := rotator_result;
+ if e_in.output_carry = '1' then
+ ctrl_tmp.carry <= rotator_carry;
+ end if;
+ result_en := 1;
+ when OP_SIM_CONFIG =>
+ -- bit 0 was used to select the microwatt console, which
+ -- we no longer support.
+ if SIM = true then
+ result := x"0000000000000000";
+ else
+ result := x"0000000000000000";
+ end if;
+ result_en := 1;
- when OP_TDI =>
- -- Keep our test cases happy for now, ignore trap instructions
- report "OP_TDI FIXME";
+ when OP_TDI =>
+ -- Keep our test cases happy for now, ignore trap instructions
+ report "OP_TDI FIXME";
- when others =>
- terminate_out <= '1';
- report "illegal";
- end case;
+ when others =>
+ terminate_out <= '1';
+ report "illegal";
+ end case;
- if e_in.lr = '1' then
- ctrl_tmp.lr <= std_ulogic_vector(unsigned(e_in.nia) + 4);
- end if;
+ if e_in.lr = '1' then
+ ctrl_tmp.lr <= std_ulogic_vector(unsigned(e_in.nia) + 4);
+ end if;
- if result_en = 1 then
- v.e.write_data := result;
- v.e.write_enable := '1';
- v.e.rc := e_in.rc;
- end if;
- end if;
+ if result_en = 1 then
+ v.e.write_data := result;
+ v.e.write_enable := '1';
+ v.e.rc := e_in.rc;
+ end if;
+ end if;
- -- Update registers
- rin <= v;
+ -- Update registers
+ rin <= v;
- -- update outputs
- --f_out <= r.f;
- e_out <= r.e;
- flush_out <= f_out.redirect;
- end process;
+ -- update outputs
+ --f_out <= r.f;
+ e_out <= r.e;
+ flush_out <= f_out.redirect;
+ end process;
end architecture behaviour;