*
*/
-`ifndef SRL_ONLY
-`endif
+ module \$__SHREG_ (input C, input D, input E, output Q);
+ parameter DEPTH = 0;
+ parameter [DEPTH-1:0] INIT = 0;
+ parameter CLKPOL = 1;
+ parameter ENPOL = 2;
+
+ \$__XILINX_SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(DEPTH-1), .E(E), .Q(Q));
+ endmodule
+
+ module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO);
+ parameter DEPTH = 0;
+ parameter [DEPTH-1:0] INIT = 0;
+ parameter CLKPOL = 1;
+ parameter ENPOL = 2;
+
+ // shregmap's INIT parameter shifts out LSB first;
+ // however Xilinx expects MSB first
+ function [DEPTH-1:0] brev;
+ input [DEPTH-1:0] din;
+ integer i;
+ begin
+ for (i = 0; i < DEPTH; i=i+1)
+ brev[i] = din[DEPTH-1-i];
+ end
+ endfunction
+ localparam [DEPTH-1:0] INIT_R = brev(INIT);
+
+ parameter _TECHMAP_CONSTMSK_L_ = 0;
+ parameter _TECHMAP_CONSTVAL_L_ = 0;
+
+ wire CE;
+ generate
+ if (ENPOL == 0)
+ assign CE = ~E;
+ else if (ENPOL == 1)
+ assign CE = E;
+ else
+ assign CE = 1'b1;
+ if (DEPTH == 1) begin
+ if (CLKPOL)
+ FDRE #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
+ else
+ FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
+ end else
+ if (DEPTH <= 16) begin
+ SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q));
+ end else
+ if (DEPTH > 17 && DEPTH <= 32) begin
+ SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q));
+ end else
+ if (DEPTH > 33 && DEPTH <= 64) begin
+ wire T0, T1, T2;
+ SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
+ \$__XILINX_SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2));
+ if (&_TECHMAP_CONSTMSK_L_)
+ assign Q = T2;
+ else
+ MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5]));
+ end else
+ if (DEPTH > 65 && DEPTH <= 96) begin
+ wire T0, T1, T2, T3, T4, T5, T6;
+ SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
+ SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
+ \$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4));
+ if (&_TECHMAP_CONSTMSK_L_)
+ assign Q = T4;
+ else begin
+ MUXF7 fpga_mux_0 (.O(T5), .I0(T0), .I1(T2), .S(L[5]));
+ MUXF7 fpga_mux_1 (.O(T6), .I0(T4), .I1(1'b0 /* unused */), .S(L[5]));
+ MUXF8 fpga_mux_2 (.O(Q), .I0(T5), .I1(T6), .S(L[6]));
+ end
+ end else
+ if (DEPTH > 97 && DEPTH < 128) begin
+ wire T0, T1, T2, T3, T4, T5, T6, T7, T8;
+ SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
+ SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
+ SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
+ \$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6));
+ if (&_TECHMAP_CONSTMSK_L_)
+ assign Q = T6;
+ else begin
+ MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5]));
+ MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5]));
+ MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6]));
+ end
+ end
+ else if (DEPTH == 128) begin
+ wire T0, T1, T2, T3, T4, T5, T6;
+ SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
+ SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
+ SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
+ SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO));
+ if (&_TECHMAP_CONSTMSK_L_)
+ assign Q = T6;
+ else begin
+ wire T7, T8;
+ MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5]));
+ MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5]));
+ MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6]));
+ end
+ end
+ else if (DEPTH <= 129 && ~&_TECHMAP_CONSTMSK_L_) begin
+ // Handle cases where fixed-length depth is
+ // just 1 over a convenient value
+ \$__XILINX_SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q));
+ end
+ else begin
+ localparam lower_clog2 = $clog2((DEPTH+1)/2);
+ localparam lower_depth = 2 ** lower_clog2;
+ wire T0, T1, T2, T3;
+ if (&_TECHMAP_CONSTMSK_L_) begin
+ \$__XILINX_SHREG_ #(.DEPTH(lower_depth), .INIT(INIT[DEPTH-1:DEPTH-lower_depth]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .L(lower_depth-1), .E(E), .Q(T0));
+ \$__XILINX_SHREG_ #(.DEPTH(DEPTH-lower_depth), .INIT(INIT[DEPTH-lower_depth-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T0), .L(DEPTH-lower_depth-1), .E(E), .Q(Q), .SO(T3));
+ end
+ else begin
+ \$__XILINX_SHREG_ #(.DEPTH(lower_depth), .INIT(INIT[DEPTH-1:DEPTH-lower_depth]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .L(L[lower_clog2-1:0]), .E(E), .Q(T0), .SO(T1));
+ \$__XILINX_SHREG_ #(.DEPTH(DEPTH-lower_depth), .INIT(INIT[DEPTH-lower_depth-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L[lower_clog2-1:0]), .E(E), .Q(T2), .SO(T3));
+ assign Q = L[lower_clog2] ? T2 : T0;
+ end
+ if (DEPTH == 2 * lower_depth)
+ assign SO = T3;
+ end
+ endgenerate
+ endmodule
+
+module \$shiftx (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
+ parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;
+
+ generate
+ genvar i, j;
+ if (B_SIGNED) begin
+ if (_TECHMAP_CONSTMSK_B_[B_WIDTH-1] && _TECHMAP_CONSTVAL_B_[B_WIDTH-1] == 1'b0)
+ // Optimisation to remove B_SIGNED if sign bit of B is constant-0
+ \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(0), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH-1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B[B_WIDTH-2:0]), .Y(Y));
+ else
+ wire _TECHMAP_FAIL_ = 1;
+ end
+ else if (Y_WIDTH > 1) begin
+ wire [$clog2(A_WIDTH/Y_WIDTH)-1:0] B_bitty = B/Y_WIDTH;
+ for (i = 0; i < Y_WIDTH; i++) begin
+ wire [A_WIDTH/Y_WIDTH-1:0] A_i;
+ for (j = 0; j < A_WIDTH/Y_WIDTH; j++)
+ assign A_i[j] = A[j*Y_WIDTH+i];
+ \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH/Y_WIDTH), .B_WIDTH($clog2(A_WIDTH/Y_WIDTH)), .Y_WIDTH(1)) bitblast (.A(A_i), .B(B_bitty), .Y(Y[i]));
+ end
+ end
+ else if (B_WIDTH < 3) begin
+ wire _TECHMAP_FAIL_ = 1;
+ end
+ else if (B_WIDTH == 3) begin
+ localparam a_width0 = 2 ** 2;
+ localparam a_widthN = A_WIDTH - a_width0;
+ wire T0, T1;
+ \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_width0), .B_WIDTH(2), .Y_WIDTH(Y_WIDTH)) fpga_shiftx (.A(A[a_width0-1:0]), .B(B[2-1:0]), .Y(T0));
+ \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_widthN), .B_WIDTH($clog2(a_widthN)), .Y_WIDTH(Y_WIDTH)) fpga_shiftx_last (.A(A[A_WIDTH-1:a_width0]), .B(B[$clog2(a_widthN)-1:0]), .Y(T1));
+ MUXF7 fpga_mux (.I0(T0), .I1(T1), .S(B[B_WIDTH-1]), .O(Y));
+ end
+ else if (B_WIDTH == 4) begin
+ localparam a_width0 = 2 ** 2;
+ localparam num_mux8 = A_WIDTH / a_width0;
+ localparam a_widthN = A_WIDTH - num_mux8*a_width0;
+ wire [4-1:0] T;
+ wire T0, T1;
+ for (i = 0; i < 4; i++)
+ if (i < num_mux8)
+ \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_width0), .B_WIDTH(2), .Y_WIDTH(Y_WIDTH)) fpga_shiftx (.A(A[i*a_width0+:a_width0]), .B(B[2-1:0]), .Y(T[i]));
+ else if (i == num_mux8 && a_widthN > 0)
+ \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_widthN), .B_WIDTH($clog2(a_widthN)), .Y_WIDTH(Y_WIDTH)) fpga_shiftx_last (.A(A[A_WIDTH-1:i*a_width0]), .B(B[$clog2(a_widthN)-1:0]), .Y(T[i]));
+ else
+ assign T[i] = 1'bx;
+ MUXF7 fpga_mux_0 (.I0(T[0]), .I1(T[1]), .S(B[2]), .O(T0));
+ MUXF7 fpga_mux_1 (.I0(T[2]), .I1(T[3]), .S(B[2]), .O(T1));
+ MUXF8 fpga_mux_2 (.I0(T0), .I1(T1), .S(B[3]), .O(Y));
+ end
+ else begin
+ localparam a_width0 = 2 ** 4;
+ localparam num_mux16 = A_WIDTH / a_width0;
+ localparam a_widthN = A_WIDTH - num_mux16*a_width0;
+ wire [(2**(B_WIDTH-4))-1:0] T;
+ for (i = 0; i < 2 ** (B_WIDTH-4); i++)
+ if (i < num_mux16)
+ \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_width0), .B_WIDTH(4), .Y_WIDTH(Y_WIDTH)) fpga_shiftx (.A(A[i*a_width0+:a_width0]), .B(B[4-1:0]), .Y(T[i]));
+ else if (i == num_mux16 && a_widthN > 0) begin
+ \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_widthN), .B_WIDTH($clog2(a_widthN)), .Y_WIDTH(Y_WIDTH)) fpga_shiftx_last (.A(A[A_WIDTH-1:i*a_width0]), .B(B[$clog2(a_widthN)-1:0]), .Y(T[i]));
+ end
+ else
+ assign T[i] = 1'bx;
+ \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(2**(B_WIDTH-4)), .B_WIDTH(B_WIDTH-4), .Y_WIDTH(Y_WIDTH)) fpga_shiftx (.A(T), .B(B[B_WIDTH-1:4]), .Y(Y));
+ end
+ endgenerate
+endmodule
log(" opt -fast\n");
log("\n");
log(" map_cells:\n");
+ log(" simplemap t:$dff t:$dffe (without '-nosrl' only)\n");
+ log(" pmux2shiftx (without '-nosrl' only)\n");
+ log(" opt_expr -mux_undef (without '-nosrl' only)\n");
+ log(" shregmap -tech xilinx -minlen 3 (without '-nosrl' only)\n");
log(" techmap -map +/xilinx/cells_map.v\n");
- log(" opt -fast\n");
+ log(" clean\n");
log("\n");
log(" map_luts:\n");
- log(" techmap -map +/techmap.v\n");
+ log(" opt -full\n");
+ log(" techmap -map +/techmap.v -D _NO_POS_SR -map +/xilinx/ff_map.v\n");
log(" abc -luts 2:2,3,6:5,10,20 [-dff]\n");
log(" clean\n");
- log(" techmap -map +/xilinx/lut_map.v -map +/xilinx/ff_map.v\n");
+ log(" shregmap -minlen 3 -init -params -enpol any_or_none (without '-nosrl' only)\n");
+ log(" techmap -map +/xilinx/lut_map.v -map +/xilinx/ff_map.v -map +/xilinx/cells_map.v");
log(" dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff FDPE Q INIT -ff FDSE Q INIT \\\n");
log(" -ff FDRE_1 Q INIT -ff FDCE_1 Q INIT -ff FDPE_1 Q INIT -ff FDSE_1 Q INIT\n");
- log(" clean\n");
log("\n");
log(" check:\n");
log(" hierarchy -check\n");
nodram = true;
continue;
}
+ if (args[argidx] == "-nosrl") {
+ nosrl = true;
++ continue;
++ }
+ if (args[argidx] == "-abc9") {
+ abc = "abc9";
continue;
}
break;
if (check_label(active, run_from, run_to, "map_luts"))
{
Pass::call(design, "opt -full");
- Pass::call(design, "abc -luts 2:2,3,6:5,10,20" + string(retime ? " -dff" : ""));
+ Pass::call(design, "techmap -map +/techmap.v -D _NO_POS_SR -map +/xilinx/ff_map.v");
- Pass::call(design, "techmap -map +/techmap.v");
+ Pass::call(design, "read_verilog +/xilinx/cells_box.v");
+ if (abc == "abc9")
+ Pass::call(design, abc + " -lut +/xilinx/cells.lut -box +/xilinx/cells.box" + string(retime ? " -dff" : ""));
+ else
+ Pass::call(design, abc + " -luts 2:2,3,6:5,10,20" + string(retime ? " -dff" : ""));
Pass::call(design, "clean");
- Pass::call(design, "techmap -map +/xilinx/lut_map.v -map +/xilinx/ff_map.v");
+ // This shregmap call infers fixed length shift registers after abc
+ // has performed any necessary retiming
+ if (!nosrl)
+ Pass::call(design, "shregmap -minlen 3 -init -params -enpol any_or_none");
+ Pass::call(design, "techmap -map +/xilinx/lut_map.v -map +/xilinx/ff_map.v -map +/xilinx/cells_map.v");
Pass::call(design, "dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff FDPE Q INIT -ff FDSE Q INIT "
"-ff FDRE_1 Q INIT -ff FDCE_1 Q INIT -ff FDPE_1 Q INIT -ff FDSE_1 Q INIT");
- Pass::call(design, "clean");
}
if (check_label(active, run_from, run_to, "check"))