static int typename_compare (const void *, const void *);
static tree local_variable_p_walkfn (tree *, int *, void *);
static tree record_builtin_java_type (const char *, int);
-static const char *tag_name (enum tag_types code);
+static const char *tag_name (enum tag_types);
+static tree lookup_and_check_tag (enum tag_types, tree, bool globalize, bool);
static int walk_namespaces_r (tree, walk_namespaces_fn, void *);
static int walk_globals_r (tree, void*);
static int walk_vtables_r (tree, void*);
type = TREE_TYPE (decl);
+ /* Check TEMPLATE_TYPE_PARM first because DECL_IMPLICIT_TYPEDEF_P
+ is false for this case as well. */
+ if (TREE_CODE (type) == TEMPLATE_TYPE_PARM)
+ {
+ error ("using template type parameter %qT after %qs",
+ type, tag_name (tag_code));
+ return error_mark_node;
+ }
/* [dcl.type.elab]
If the identifier resolves to a typedef-name or a template
In other words, the only legitimate declaration to use in the
elaborated type specifier is the implicit typedef created when
the type is declared. */
- if (!DECL_IMPLICIT_TYPEDEF_P (decl))
+ else if (!DECL_IMPLICIT_TYPEDEF_P (decl))
{
error ("using typedef-name %qD after %qs", decl, tag_name (tag_code));
- return IS_AGGR_TYPE (type) ? type : error_mark_node;
- }
-
- if (TREE_CODE (type) == TEMPLATE_TYPE_PARM)
- {
- error ("using template type parameter %qT after %qs",
- type, tag_name (tag_code));
+ cp_error_at ("%qD has a previous declaration here", decl);
return error_mark_node;
}
else if (TREE_CODE (type) != RECORD_TYPE
&& tag_code != enum_type)
{
error ("%qT referred to as %qs", type, tag_name (tag_code));
+ cp_error_at ("%qT has a previous declaration here", type);
return error_mark_node;
}
else if (TREE_CODE (type) != ENUMERAL_TYPE
&& tag_code == enum_type)
{
error ("%qT referred to as enum", type);
+ cp_error_at ("%qT has a previous declaration here", type);
return error_mark_node;
}
else if (!allow_template_p
return type;
}
+/* Lookup NAME in elaborate type specifier in scope according to
+ GLOBALIZE and issue diagnostics if necessary.
+ Return *_TYPE node upon success, NULL_TREE when the NAME is not
+ found, and ERROR_MARK_NODE for type error. */
+
+static tree
+lookup_and_check_tag (enum tag_types tag_code, tree name,
+ bool globalize, bool template_header_p)
+{
+ tree t;
+ tree decl;
+ if (globalize)
+ decl = lookup_name (name, 2);
+ else
+ decl = lookup_type_scope (name);
+
+ if (decl && DECL_CLASS_TEMPLATE_P (decl))
+ decl = DECL_TEMPLATE_RESULT (decl);
+
+ if (decl && TREE_CODE (decl) == TYPE_DECL)
+ {
+ /* Two cases we need to consider when deciding if a class
+ template is allowed as an elaborated type specifier:
+ 1. It is a self reference to its own class.
+ 2. It comes with a template header.
+
+ For example:
+
+ template <class T> class C {
+ class C *c1; // DECL_SELF_REFERENCE_P is true
+ class D;
+ };
+ template <class U> class C; // template_header_p is true
+ template <class T> class C<T>::D {
+ class C *c2; // DECL_SELF_REFERENCE_P is true
+ }; */
+
+ t = check_elaborated_type_specifier (tag_code,
+ decl,
+ template_header_p
+ | DECL_SELF_REFERENCE_P (decl));
+ return t;
+ }
+ else
+ return NULL_TREE;
+}
+
/* Get the struct, enum or union (TAG_CODE says which) with tag NAME.
Define the tag as a forward-reference if it is not defined.
{
enum tree_code code;
tree t;
- struct cp_binding_level *b = current_binding_level;
tree context = NULL_TREE;
timevar_push (TV_NAME_LOOKUP);
gcc_unreachable ();
}
- if (! globalize)
- {
- /* If we know we are defining this tag, only look it up in
- this scope and don't try to find it as a type. */
- t = lookup_tag (code, name, b, 1);
- }
+ /* In case of anonymous name, xref_tag is only called to
+ make type node and push name. Name lookup is not required. */
+ if (ANON_AGGRNAME_P (name))
+ t = NULL_TREE;
else
- {
- tree decl = lookup_name (name, 2);
+ t = lookup_and_check_tag (tag_code, name,
+ globalize, template_header_p);
- if (decl && DECL_CLASS_TEMPLATE_P (decl))
- decl = DECL_TEMPLATE_RESULT (decl);
+ if (t == error_mark_node)
+ POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
- if (decl && TREE_CODE (decl) == TYPE_DECL)
- {
- /* Two cases we need to consider when deciding if a class
- template is allowed as an elaborated type specifier:
- 1. It is a self reference to its own class.
- 2. It comes with a template header.
-
- For example:
-
- template <class T> class C {
- class C *c1; // DECL_SELF_REFERENCE_P is true
- class D;
- };
- template <class U> class C; // template_header_p is true
- template <class T> class C<T>::D {
- class C *c2; // DECL_SELF_REFERENCE_P is true
- }; */
-
- t = check_elaborated_type_specifier (tag_code,
- decl,
- template_header_p
- | DECL_SELF_REFERENCE_P (decl));
- if (t == error_mark_node)
- POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
- }
- else
- t = NULL_TREE;
-
- if (t && current_class_type
- && template_class_depth (current_class_type)
- && template_header_p)
- {
- /* Since GLOBALIZE is nonzero, we are not looking at a
- definition of this tag. Since, in addition, we are currently
- processing a (member) template declaration of a template
- class, we must be very careful; consider:
+ if (globalize && t && current_class_type
+ && template_class_depth (current_class_type)
+ && template_header_p)
+ {
+ /* Since GLOBALIZE is nonzero, we are not looking at a
+ definition of this tag. Since, in addition, we are currently
+ processing a (member) template declaration of a template
+ class, we must be very careful; consider:
- template <class X>
- struct S1
+ template <class X>
+ struct S1
- template <class U>
- struct S2
- { template <class V>
- friend struct S1; };
+ template <class U>
+ struct S2
+ { template <class V>
+ friend struct S1; };
- Here, the S2::S1 declaration should not be confused with the
- outer declaration. In particular, the inner version should
- have a template parameter of level 2, not level 1. This
- would be particularly important if the member declaration
- were instead:
+ Here, the S2::S1 declaration should not be confused with the
+ outer declaration. In particular, the inner version should
+ have a template parameter of level 2, not level 1. This
+ would be particularly important if the member declaration
+ were instead:
- template <class V = U> friend struct S1;
+ template <class V = U> friend struct S1;
- say, when we should tsubst into `U' when instantiating
- S2. On the other hand, when presented with:
+ say, when we should tsubst into `U' when instantiating
+ S2. On the other hand, when presented with:
- template <class T>
- struct S1 {
- template <class U>
- struct S2 {};
- template <class U>
- friend struct S2;
- };
+ template <class T>
+ struct S1 {
+ template <class U>
+ struct S2 {};
+ template <class U>
+ friend struct S2;
+ };
- we must find the inner binding eventually. We
- accomplish this by making sure that the new type we
- create to represent this declaration has the right
- TYPE_CONTEXT. */
- context = TYPE_CONTEXT (t);
- t = NULL_TREE;
- }
+ we must find the inner binding eventually. We
+ accomplish this by making sure that the new type we
+ create to represent this declaration has the right
+ TYPE_CONTEXT. */
+ context = TYPE_CONTEXT (t);
+ t = NULL_TREE;
}
if (! t)
start_enum (tree name)
{
tree enumtype = NULL_TREE;
- struct cp_binding_level *b = current_binding_level;
/* If this is the real definition for a previous forward reference,
fill in the contents in the same object that used to be the
forward reference. */
if (name != NULL_TREE)
- enumtype = lookup_tag (ENUMERAL_TYPE, name, b, 1);
+ enumtype = lookup_and_check_tag (enum_type, name, 0, 0);
if (enumtype != NULL_TREE && TREE_CODE (enumtype) == ENUMERAL_TYPE)
{
static cxx_scope *innermost_nonclass_level (void);
static tree select_decl (const struct scope_binding *, int);
static cxx_binding *binding_for_name (cxx_scope *, tree);
-static tree lookup_name_current_level (tree);
+static tree lookup_name_innermost_nonclass_level (tree);
static tree push_overloaded_decl (tree, int);
static bool lookup_using_namespace (tree, struct scope_binding *, tree,
tree, int);
if (DECL_NAMESPACE_SCOPE_P (x) && namespace_bindings_p ())
t = namespace_binding (name, DECL_CONTEXT (x));
else
- t = lookup_name_current_level (name);
+ t = lookup_name_innermost_nonclass_level (name);
/* [basic.link] If there is a visible declaration of an entity
with linkage having the same name and type, ignoring entities
push_local_binding with a friend decl of a local class. */
b = innermost_nonclass_level ();
- if (lookup_name_current_level (id))
+ if (lookup_name_innermost_nonclass_level (id))
{
/* Supplement the existing binding. */
if (!supplement_binding (IDENTIFIER_BINDING (id), decl))
if (doing_global)
old = namespace_binding (name, DECL_CONTEXT (decl));
else
- old = lookup_name_current_level (name);
+ old = lookup_name_innermost_nonclass_level (name);
if (old)
{
&& at_function_scope_p ())
add_decl_expr (decl);
- oldval = lookup_name_current_level (name);
+ oldval = lookup_name_innermost_nonclass_level (name);
oldtype = lookup_type_current_level (name);
do_nonmember_using_decl (scope, name, oldval, oldtype, &newval, &newtype);
0, LOOKUP_COMPLAIN);
}
+/* Look up NAME for type used in elaborated name specifier in
+ the current scope (possibly more if cleanup or template parameter
+ scope is encounter). Unlike lookup_name_real, we make sure that
+ NAME is actually declared in the desired scope, not from inheritance,
+ using declaration, nor using directive. A TYPE_DECL best matching
+ the NAME is returned. Catching error and issuing diagnostics are
+ caller's responsibility. */
+
+tree
+lookup_type_scope (tree name)
+{
+ cxx_binding *iter = NULL;
+ tree val = NULL_TREE;
+
+ timevar_push (TV_NAME_LOOKUP);
+
+ /* Look in non-namespace scope first. */
+ if (current_binding_level->kind != sk_namespace)
+ iter = outer_binding (name, NULL, /*class_p=*/ true);
+ for (; iter; iter = outer_binding (name, iter, /*class_p=*/ true))
+ {
+ /* Check if this is the kind of thing we're looking for.
+ Make sure it doesn't come from base class. For ITER->VALUE,
+ we can simply use INHERITED_VALUE_BINDING_P. For ITER->TYPE,
+ we have to use our own check.
+
+ We check ITER->TYPE before ITER->VALUE in order to handle
+ typedef struct C {} C;
+ correctly. */
+
+ if (qualify_lookup (iter->type, LOOKUP_PREFER_TYPES)
+ && (LOCAL_BINDING_P (iter)
+ || DECL_CONTEXT (iter->type) == iter->scope->this_entity))
+ val = iter->type;
+ else if (!INHERITED_VALUE_BINDING_P (iter)
+ && qualify_lookup (iter->value, LOOKUP_PREFER_TYPES))
+ val = iter->value;
+
+ if (val)
+ break;
+ }
+
+ /* Look in namespace scope. */
+ if (!val)
+ {
+ iter = cxx_scope_find_binding_for_name
+ (NAMESPACE_LEVEL (current_decl_namespace ()), name);
+
+ if (iter)
+ {
+ /* If this is the kind of thing we're looking for, we're done. */
+ if (qualify_lookup (iter->type, LOOKUP_PREFER_TYPES))
+ val = iter->type;
+ else if (qualify_lookup (iter->value, LOOKUP_PREFER_TYPES))
+ val = iter->value;
+ }
+
+ }
+
+ /* Type found, check if it is in the current scope, ignoring cleanup
+ and template parameter scopes. */
+ if (val)
+ {
+ struct cp_binding_level *b = current_binding_level;
+ while (b)
+ {
+ if (iter->scope == b)
+ POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, val);
+
+ if (b->kind == sk_cleanup || b->kind == sk_template_parms)
+ b = b->level_chain;
+ else
+ break;
+ }
+ }
+
+ POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
+}
+
/* Similar to `lookup_name' but look only in the innermost non-class
binding level. */
static tree
-lookup_name_current_level (tree name)
+lookup_name_innermost_nonclass_level (tree name)
{
struct cp_binding_level *b;
tree t = NULL_TREE;
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
}
-/* Like lookup_name_current_level, but for types. */
+/* Like lookup_name_innermost_nonclass_level, but for types. */
static tree
lookup_type_current_level (tree name)