nir: add a vectorization pass
authorConnor Abbott <cwabbott0@gmail.com>
Sun, 15 Nov 2015 01:26:47 +0000 (20:26 -0500)
committerAlyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
Tue, 18 Jun 2019 13:43:30 +0000 (06:43 -0700)
This effectively does the opposite of nir_lower_alus_to_scalar, trying
to combine per-component ALU operations with the same sources but
different swizzles into one larger ALU operation. It uses a similar
model as CSE, where we do a depth-first approach and keep around a hash
set of instructions to be combined, but there are a few major
differences:

1. For now, we only support entirely per-component ALU operations.
2. Since it's not always guaranteed that we'll be able to combine
equivalent instructions, we keep a stack of equivalent instructions
around, trying to combine new instructions with instructions on the
stack.

The pass isn't comprehensive by far; it can't handle operations where
some of the sources are per-component and others aren't, and it can't
handle phi nodes. But it should handle the more common cases, and it
should be reasonably efficient.

[Alyssa: Rebase on latest master, updating with respect to typeless
moves]

Acked-by: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
src/compiler/Makefile.sources
src/compiler/nir/meson.build
src/compiler/nir/nir.h
src/compiler/nir/nir_opt_vectorize.c [new file with mode: 0644]

index 0708b256feb53987396ac1d052199d6d4b8761a5..324e5a0e939900d41b2c890d48d5442338ef4b0d 100644 (file)
@@ -311,6 +311,7 @@ NIR_FILES = \
        nir/nir_opt_shrink_load.c \
        nir/nir_opt_trivial_continues.c \
        nir/nir_opt_undef.c \
+       nir/nir_opt_vectorize.c \
        nir/nir_phi_builder.c \
        nir/nir_phi_builder.h \
        nir/nir_print.c \
index ad380e172f124268598fbe5d22b79486bf6f3b30..268acfeb2e63ffceb7e38ca3366e120d57d0388b 100644 (file)
@@ -192,6 +192,7 @@ files_libnir = files(
   'nir_opt_shrink_load.c',
   'nir_opt_trivial_continues.c',
   'nir_opt_undef.c',
+  'nir_opt_vectorize.c',
   'nir_phi_builder.c',
   'nir_phi_builder.h',
   'nir_print.c',
index 8972b4af74806c568e66c1970e52a71276a65bc1..6b2ebcab6fb7bdd281e4b61944405fc4e82a3eb0 100644 (file)
@@ -3618,6 +3618,8 @@ bool nir_opt_trivial_continues(nir_shader *shader);
 
 bool nir_opt_undef(nir_shader *shader);
 
+bool nir_opt_vectorize(nir_shader *shader);
+
 bool nir_opt_conditional_discard(nir_shader *shader);
 
 void nir_strip(nir_shader *shader);
diff --git a/src/compiler/nir/nir_opt_vectorize.c b/src/compiler/nir/nir_opt_vectorize.c
new file mode 100644 (file)
index 0000000..275202b
--- /dev/null
@@ -0,0 +1,453 @@
+/*
+ * Copyright © 2015 Connor Abbott
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ *
+ */
+
+#include "nir.h"
+#include "nir_vla.h"
+#include "nir_builder.h"
+#include "util/u_dynarray.h"
+
+#define HASH(hash, data) _mesa_fnv32_1a_accumulate((hash), (data))
+
+static uint32_t
+hash_src(uint32_t hash, const nir_src *src)
+{
+   assert(src->is_ssa);
+
+   return HASH(hash, src->ssa);
+}
+
+static uint32_t
+hash_alu_src(uint32_t hash, const nir_alu_src *src)
+{
+   assert(!src->abs && !src->negate);
+
+   /* intentionally don't hash swizzle */
+
+   return hash_src(hash, &src->src);
+}
+
+static uint32_t
+hash_alu(uint32_t hash, const nir_alu_instr *instr)
+{
+   hash = HASH(hash, instr->op);
+
+   hash = HASH(hash, instr->dest.dest.ssa.bit_size);
+
+   for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
+      hash = hash_alu_src(hash, &instr->src[i]);
+
+   return hash;
+}
+
+static uint32_t
+hash_instr(const nir_instr *instr)
+{
+   uint32_t hash = _mesa_fnv32_1a_offset_bias;
+
+   switch (instr->type) {
+   case nir_instr_type_alu:
+      return hash_alu(hash, nir_instr_as_alu(instr));
+   default:
+      unreachable("bad instruction type");
+   }
+}
+
+static bool
+srcs_equal(const nir_src *src1, const nir_src *src2)
+{
+   assert(src1->is_ssa);
+   assert(src2->is_ssa);
+
+   return src1->ssa == src2->ssa;
+}
+
+static bool
+alu_srcs_equal(const nir_alu_src *src1, const nir_alu_src *src2)
+{
+   assert(!src1->abs);
+   assert(!src1->negate);
+   assert(!src2->abs);
+   assert(!src2->negate);
+
+   return srcs_equal(&src1->src, &src2->src);
+}
+
+static bool
+instrs_equal(const nir_instr *instr1, const nir_instr *instr2)
+{
+   switch (instr1->type) {
+   case nir_instr_type_alu: {
+      nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
+      nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
+
+      if (alu1->op != alu2->op)
+         return false;
+
+      if (alu1->dest.dest.ssa.bit_size != alu2->dest.dest.ssa.bit_size)
+         return false;
+
+      for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
+         if (!alu_srcs_equal(&alu1->src[i], &alu2->src[i]))
+            return false;
+      }
+
+      return true;
+   }
+
+   default:
+      unreachable("bad instruction type");
+   }
+}
+
+static bool
+instr_can_rewrite(nir_instr *instr)
+{
+   switch (instr->type) {
+   case nir_instr_type_alu: {
+      nir_alu_instr *alu = nir_instr_as_alu(instr);
+
+      /* Don't try and vectorize mov's. Either they'll be handled by copy
+       * prop, or they're actually necessary and trying to vectorize them
+       * would result in fighting with copy prop.
+       */
+      if (alu->op == nir_op_mov)
+         return false;
+
+      if (nir_op_infos[alu->op].output_size != 0)
+         return false;
+
+      for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
+         if (nir_op_infos[alu->op].input_sizes[i] != 0)
+            return false;
+      }
+
+      return true;
+   }
+
+   /* TODO support phi nodes */
+   default:
+      break;
+   }
+
+   return false;
+}
+
+/*
+ * Tries to combine two instructions whose sources are different components of
+ * the same instructions into one vectorized instruction. Note that instr1
+ * should dominate instr2.
+ */
+
+static nir_instr *
+instr_try_combine(nir_instr *instr1, nir_instr *instr2)
+{
+   assert(instr1->type == nir_instr_type_alu);
+   assert(instr2->type == nir_instr_type_alu);
+   nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
+   nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
+
+   assert(alu1->dest.dest.ssa.bit_size == alu2->dest.dest.ssa.bit_size);
+   unsigned alu1_components = alu1->dest.dest.ssa.num_components;
+   unsigned alu2_components = alu2->dest.dest.ssa.num_components;
+   unsigned total_components = alu1_components + alu2_components;
+
+   if (total_components > 4)
+      return NULL;
+
+   nir_builder b;
+   nir_builder_init(&b, nir_cf_node_get_function(&instr1->block->cf_node));
+   b.cursor = nir_after_instr(instr1);
+
+   nir_alu_instr *new_alu = nir_alu_instr_create(b.shader, alu1->op);
+   nir_ssa_dest_init(&new_alu->instr, &new_alu->dest.dest,
+                     total_components, alu1->dest.dest.ssa.bit_size, NULL);
+   new_alu->dest.write_mask = (1 << total_components) - 1;
+
+   for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
+      new_alu->src[i].src = alu1->src[i].src;
+
+      for (unsigned j = 0; j < alu1_components; j++)
+         new_alu->src[i].swizzle[j] = alu1->src[i].swizzle[j];
+
+      for (unsigned j = 0; j < alu2_components; j++) {
+         new_alu->src[i].swizzle[j + alu1_components] =
+            alu2->src[i].swizzle[j];
+      }
+   }
+
+   nir_builder_instr_insert(&b, &new_alu->instr);
+
+   unsigned swiz[4] = {0, 1, 2, 3};
+   nir_ssa_def *new_alu1 = nir_swizzle(&b, &new_alu->dest.dest.ssa, swiz,
+                                       alu1_components);
+
+   for (unsigned i = 0; i < alu2_components; i++)
+      swiz[i] += alu1_components;
+   nir_ssa_def *new_alu2 = nir_swizzle(&b, &new_alu->dest.dest.ssa, swiz,
+                                       alu2_components);
+
+   nir_foreach_use_safe(src, &alu1->dest.dest.ssa) {
+      if (src->parent_instr->type == nir_instr_type_alu) {
+         /* For ALU instructions, rewrite the source directly to avoid a
+          * round-trip through copy propagation.
+          */
+
+         nir_instr_rewrite_src(src->parent_instr, src,
+                               nir_src_for_ssa(&new_alu->dest.dest.ssa));
+      } else {
+         nir_instr_rewrite_src(src->parent_instr, src,
+                               nir_src_for_ssa(new_alu1));
+      }
+   }
+
+   nir_foreach_if_use_safe(src, &alu1->dest.dest.ssa) {
+      nir_if_rewrite_condition(src->parent_if, nir_src_for_ssa(new_alu1));
+   }
+
+   assert(list_empty(&alu1->dest.dest.ssa.uses));
+   assert(list_empty(&alu1->dest.dest.ssa.if_uses));
+
+   nir_foreach_use_safe(src, &alu2->dest.dest.ssa) {
+      if (src->parent_instr->type == nir_instr_type_alu) {
+         /* For ALU instructions, rewrite the source directly to avoid a
+          * round-trip through copy propagation.
+          */
+
+         nir_alu_instr *use = nir_instr_as_alu(src->parent_instr);
+
+         unsigned src_index = 5;
+         for (unsigned i = 0; i < nir_op_infos[use->op].num_inputs; i++) {
+            if (&use->src[i].src == src) {
+               src_index = i;
+               break;
+            }
+         }
+         assert(src_index != 5);
+
+         nir_instr_rewrite_src(src->parent_instr, src,
+                               nir_src_for_ssa(&new_alu->dest.dest.ssa));
+
+         for (unsigned i = 0;
+              i < nir_ssa_alu_instr_src_components(use, src_index); i++) {
+            use->src[src_index].swizzle[i] += alu1_components;
+         }
+      } else {
+         nir_instr_rewrite_src(src->parent_instr, src,
+                               nir_src_for_ssa(new_alu2));
+      }
+   }
+
+   nir_foreach_if_use_safe(src, &alu2->dest.dest.ssa) {
+      nir_if_rewrite_condition(src->parent_if, nir_src_for_ssa(new_alu2));
+   }
+
+   assert(list_empty(&alu2->dest.dest.ssa.uses));
+   assert(list_empty(&alu2->dest.dest.ssa.if_uses));
+
+   nir_instr_remove(instr1);
+   nir_instr_remove(instr2);
+
+   return &new_alu->instr;
+}
+
+/*
+ * Use an array to represent a stack of instructions that are equivalent.
+ *
+ * We push and pop instructions off the stack in dominance order. The first
+ * element dominates the second element which dominates the third, etc. When
+ * trying to add to the stack, first we try and combine the instruction with
+ * each of the instructions on the stack and, if successful, replace the
+ * instruction on the stack with the newly-combined instruction.
+ */
+
+static struct util_dynarray *
+vec_instr_stack_create(void *mem_ctx)
+{
+   struct util_dynarray *stack = ralloc(mem_ctx, struct util_dynarray);
+   util_dynarray_init(stack, mem_ctx);
+   return stack;
+}
+
+/* returns true if we were able to successfully replace the instruction */
+
+static bool
+vec_instr_stack_push(struct util_dynarray *stack, nir_instr *instr)
+{
+   /* Walk the stack from child to parent to make live ranges shorter by
+    * matching the closest thing we can
+    */
+   util_dynarray_foreach_reverse(stack, nir_instr *, stack_instr) {
+      nir_instr *new_instr = instr_try_combine(*stack_instr, instr);
+      if (new_instr) {
+         *stack_instr = new_instr;
+         return true;
+      }
+   }
+
+   util_dynarray_append(stack, nir_instr *, instr);
+   return false;
+}
+
+static void
+vec_instr_stack_pop(struct util_dynarray *stack, nir_instr *instr)
+{
+   nir_instr *last = util_dynarray_pop(stack, nir_instr *);
+   assert(last == instr);
+}
+
+static bool
+cmp_func(const void *data1, const void *data2)
+{
+   const struct util_dynarray *arr1 = data1;
+   const struct util_dynarray *arr2 = data2;
+
+   const nir_instr *instr1 = *(nir_instr **)util_dynarray_begin(arr1);
+   const nir_instr *instr2 = *(nir_instr **)util_dynarray_begin(arr2);
+
+   return instrs_equal(instr1, instr2);
+}
+
+static uint32_t
+hash_stack(const void *data)
+{
+   const struct util_dynarray *stack = data;
+   const nir_instr *first = *(nir_instr **)util_dynarray_begin(stack);
+   return hash_instr(first);
+}
+
+static struct set *
+vec_instr_set_create(void)
+{
+   return _mesa_set_create(NULL, hash_stack, cmp_func);
+}
+
+static void
+vec_instr_set_destroy(struct set *instr_set)
+{
+   _mesa_set_destroy(instr_set, NULL);
+}
+
+static bool
+vec_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr)
+{
+   if (!instr_can_rewrite(instr))
+      return false;
+
+   struct util_dynarray *new_stack = vec_instr_stack_create(instr_set);
+   vec_instr_stack_push(new_stack, instr);
+
+   struct set_entry *entry = _mesa_set_search(instr_set, new_stack);
+
+   if (entry) {
+      ralloc_free(new_stack);
+      struct util_dynarray *stack = (struct util_dynarray *) entry->key;
+      return vec_instr_stack_push(stack, instr);
+   }
+
+   _mesa_set_add(instr_set, new_stack);
+   return false;
+}
+
+static void
+vec_instr_set_remove(struct set *instr_set, nir_instr *instr)
+{
+   if (!instr_can_rewrite(instr))
+      return;
+
+   /*
+    * It's pretty unfortunate that we have to do this, but it's a side effect
+    * of the hash set interfaces. The hash set assumes that we're only
+    * interested in storing one equivalent element at a time, and if we try to
+    * insert a duplicate element it will remove the original. We could hack up
+    * the comparison function to "know" which input is an instruction we
+    * passed in and which is an array that's part of the entry, but that
+    * wouldn't work because we need to pass an array to _mesa_set_add() in
+    * vec_instr_add_or_rewrite() above, and _mesa_set_add() will call our
+    * comparison function as well.
+    */
+   struct util_dynarray *temp = vec_instr_stack_create(instr_set);
+   vec_instr_stack_push(temp, instr);
+   struct set_entry *entry = _mesa_set_search(instr_set, temp);
+   ralloc_free(temp);
+
+   if (entry) {
+      struct util_dynarray *stack = (struct util_dynarray *) entry->key;
+
+      if (util_dynarray_num_elements(stack, nir_instr *) > 1)
+         vec_instr_stack_pop(stack, instr);
+      else
+         _mesa_set_remove(instr_set, entry);
+   }
+}
+
+static bool
+vectorize_block(nir_block *block, struct set *instr_set)
+{
+   bool progress = false;
+
+   nir_foreach_instr_safe(instr, block) {
+      if (vec_instr_set_add_or_rewrite(instr_set, instr))
+         progress = true;
+   }
+
+   for (unsigned i = 0; i < block->num_dom_children; i++) {
+      nir_block *child = block->dom_children[i];
+      progress |= vectorize_block(child, instr_set);
+   }
+
+   nir_foreach_instr_reverse(instr, block)
+      vec_instr_set_remove(instr_set, instr);
+
+   return progress;
+}
+
+static bool
+nir_opt_vectorize_impl(nir_function_impl *impl)
+{
+   struct set *instr_set = vec_instr_set_create();
+
+   nir_metadata_require(impl, nir_metadata_dominance);
+
+   bool progress = vectorize_block(nir_start_block(impl), instr_set);
+
+   if (progress)
+      nir_metadata_preserve(impl, nir_metadata_block_index |
+                                  nir_metadata_dominance);
+
+   vec_instr_set_destroy(instr_set);
+   return progress;
+}
+
+bool
+nir_opt_vectorize(nir_shader *shader)
+{
+   bool progress = false;
+
+   nir_foreach_function(function, shader) {
+      if (function->impl)
+         progress |= nir_opt_vectorize_impl(function->impl);
+   }
+
+   return progress;
+}