if (memcmp(prog->data->sha1, zero, sizeof(prog->data->sha1)) == 0)
return;
- struct blob *metadata = blob_create();
+ struct blob metadata;
+ blob_init(&metadata);
- write_uniforms(metadata, prog);
+ write_uniforms(&metadata, prog);
- write_hash_tables(metadata, prog);
+ write_hash_tables(&metadata, prog);
- blob_write_uint32(metadata, prog->data->Version);
- blob_write_uint32(metadata, prog->data->linked_stages);
+ blob_write_uint32(&metadata, prog->data->Version);
+ blob_write_uint32(&metadata, prog->data->linked_stages);
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (sh) {
- write_shader_metadata(metadata, sh);
+ write_shader_metadata(&metadata, sh);
if (sh->Program->info.name)
- blob_write_string(metadata, sh->Program->info.name);
+ blob_write_string(&metadata, sh->Program->info.name);
else
- blob_write_string(metadata, "");
+ blob_write_string(&metadata, "");
if (sh->Program->info.label)
- blob_write_string(metadata, sh->Program->info.label);
+ blob_write_string(&metadata, sh->Program->info.label);
else
- blob_write_string(metadata, "");
+ blob_write_string(&metadata, "");
size_t s_info_size, s_info_ptrs;
get_shader_info_and_pointer_sizes(&s_info_size, &s_info_ptrs,
&sh->Program->info);
/* Store shader info */
- blob_write_bytes(metadata,
+ blob_write_bytes(&metadata,
((char *) &sh->Program->info) + s_info_ptrs,
s_info_size - s_info_ptrs);
}
}
- write_xfb(metadata, prog);
+ write_xfb(&metadata, prog);
- write_uniform_remap_tables(metadata, prog);
+ write_uniform_remap_tables(&metadata, prog);
- write_atomic_buffers(metadata, prog);
+ write_atomic_buffers(&metadata, prog);
- write_buffer_blocks(metadata, prog);
+ write_buffer_blocks(&metadata, prog);
- write_subroutines(metadata, prog);
+ write_subroutines(&metadata, prog);
- write_program_resource_list(metadata, prog);
+ write_program_resource_list(&metadata, prog);
struct cache_item_metadata cache_item_metadata;
cache_item_metadata.type = CACHE_ITEM_TYPE_GLSL;
}
}
- disk_cache_put(cache, prog->data->sha1, metadata->data, metadata->size,
+ disk_cache_put(cache, prog->data->sha1, metadata.data, metadata.size,
&cache_item_metadata);
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
fail:
free(cache_item_metadata.keys);
- blob_destroy(metadata);
+ blob_finish(&metadata);
}
bool
static void
test_write_and_read_functions (void)
{
- struct blob *blob;
+ struct blob blob;
struct blob_reader reader;
uint8_t *reserved;
size_t str_offset, uint_offset;
uint8_t reserve_buf[sizeof(reserve_test_str)];
- blob = blob_create();
+ blob_init(&blob);
/*** Test blob by writing one of every possible kind of value. */
- blob_write_bytes(blob, bytes_test_str, sizeof(bytes_test_str));
+ blob_write_bytes(&blob, bytes_test_str, sizeof(bytes_test_str));
- reserved = blob_reserve_bytes(blob, sizeof(reserve_test_str));
+ reserved = blob_reserve_bytes(&blob, sizeof(reserve_test_str));
memcpy(reserved, reserve_test_str, sizeof(reserve_test_str));
/* Write a placeholder, (to be replaced later via overwrite_bytes) */
- str_offset = blob->size;
- blob_write_bytes(blob, placeholder_str, sizeof(placeholder_str));
+ str_offset = blob.size;
+ blob_write_bytes(&blob, placeholder_str, sizeof(placeholder_str));
- blob_write_uint32(blob, uint32_test);
+ blob_write_uint32(&blob, uint32_test);
/* Write a placeholder, (to be replaced later via overwrite_uint32) */
- uint_offset = blob->size;
- blob_write_uint32(blob, uint32_placeholder);
+ uint_offset = blob.size;
+ blob_write_uint32(&blob, uint32_placeholder);
- blob_write_uint64(blob, uint64_test);
+ blob_write_uint64(&blob, uint64_test);
- blob_write_intptr(blob, (intptr_t) blob);
+ blob_write_intptr(&blob, (intptr_t) &blob);
- blob_write_string(blob, string_test_str);
+ blob_write_string(&blob, string_test_str);
/* Finally, overwrite our placeholders. */
- blob_overwrite_bytes(blob, str_offset, overwrite_test_str,
+ blob_overwrite_bytes(&blob, str_offset, overwrite_test_str,
sizeof(overwrite_test_str));
- blob_overwrite_uint32(blob, uint_offset, uint32_overwrite);
+ blob_overwrite_uint32(&blob, uint_offset, uint32_overwrite);
/*** Now read each value and verify. */
- blob_reader_init(&reader, blob->data, blob->size);
+ blob_reader_init(&reader, blob.data, blob.size);
expect_equal_str(bytes_test_str,
blob_read_bytes(&reader, sizeof(bytes_test_str)),
"blob_overwrite_uint32");
expect_equal(uint64_test, blob_read_uint64(&reader),
"blob_write/read_uint64");
- expect_equal((intptr_t) blob, blob_read_intptr(&reader),
+ expect_equal((intptr_t) &blob, blob_read_intptr(&reader),
"blob_write/read_intptr");
expect_equal_str(string_test_str, blob_read_string(&reader),
"blob_write/read_string");
"read_consumes_all_bytes");
expect_equal(false, reader.overrun, "read_does_not_overrun");
- blob_destroy(blob);
+ blob_finish(&blob);
}
/* Test that data values are written and read with proper alignment. */
static void
test_alignment(void)
{
- struct blob *blob;
+ struct blob blob;
struct blob_reader reader;
uint8_t bytes[] = "ABCDEFGHIJKLMNOP";
size_t delta, last, num_bytes;
- blob = blob_create();
+ blob_init(&blob);
/* First, write an intptr value to the blob and capture that size. This is
* the expected offset between any pair of intptr values (if written with
* alignment).
*/
- blob_write_intptr(blob, (intptr_t) blob);
+ blob_write_intptr(&blob, (intptr_t) &blob);
- delta = blob->size;
- last = blob->size;
+ delta = blob.size;
+ last = blob.size;
/* Then loop doing the following:
*
* 2. Verify that that write results in an aligned size
*/
for (num_bytes = 1; num_bytes < sizeof(intptr_t); num_bytes++) {
- blob_write_bytes(blob, bytes, num_bytes);
+ blob_write_bytes(&blob, bytes, num_bytes);
- expect_unequal(delta, blob->size - last, "unaligned write of bytes");
+ expect_unequal(delta, blob.size - last, "unaligned write of bytes");
- blob_write_intptr(blob, (intptr_t) blob);
+ blob_write_intptr(&blob, (intptr_t) &blob);
- expect_equal(2 * delta, blob->size - last, "aligned write of intptr");
+ expect_equal(2 * delta, blob.size - last, "aligned write of intptr");
- last = blob->size;
+ last = blob.size;
}
/* Finally, test that reading also does proper alignment. Since we know
* that values were written with all the right alignment, all we have to do
* here is verify that correct values are read.
*/
- blob_reader_init(&reader, blob->data, blob->size);
+ blob_reader_init(&reader, blob.data, blob.size);
- expect_equal((intptr_t) blob, blob_read_intptr(&reader),
+ expect_equal((intptr_t) &blob, blob_read_intptr(&reader),
"read of initial, aligned intptr_t");
for (num_bytes = 1; num_bytes < sizeof(intptr_t); num_bytes++) {
expect_equal_bytes(bytes, blob_read_bytes(&reader, num_bytes),
num_bytes, "unaligned read of bytes");
- expect_equal((intptr_t) blob, blob_read_intptr(&reader),
+ expect_equal((intptr_t) &blob, blob_read_intptr(&reader),
"aligned read of intptr_t");
}
- blob_destroy(blob);
+ blob_finish(&blob);
}
/* Test that we detect overrun. */
static void
test_overrun(void)
{
- struct blob *blob;
+ struct blob blob;
struct blob_reader reader;
uint32_t value = 0xdeadbeef;
- blob = blob_create();
+ blob_init(&blob);
- blob_write_uint32(blob, value);
+ blob_write_uint32(&blob, value);
- blob_reader_init(&reader, blob->data, blob->size);
+ blob_reader_init(&reader, blob.data, blob.size);
expect_equal(value, blob_read_uint32(&reader), "read before overrun");
expect_equal(false, reader.overrun, "overrun flag not set");
expect_equal(0, blob_read_uint32(&reader), "read at overrun");
expect_equal(true, reader.overrun, "overrun flag set");
- blob_destroy(blob);
+ blob_finish(&blob);
}
/* Test that we can read and write some large objects, (exercising the code in
test_big_objects(void)
{
void *ctx = ralloc_context(NULL);
- struct blob *blob;
+ struct blob blob;
struct blob_reader reader;
int size = 1000;
int count = 1000;
size_t i;
char *buf;
- blob = blob_create();
+ blob_init(&blob);
/* Initialize our buffer. */
buf = ralloc_size(ctx, size);
/* Write it many times. */
for (i = 0; i < count; i++) {
- blob_write_bytes(blob, buf, size);
+ blob_write_bytes(&blob, buf, size);
}
- blob_reader_init(&reader, blob->data, blob->size);
+ blob_reader_init(&reader, blob.data, blob.size);
/* Read and verify it many times. */
for (i = 0; i < count; i++) {
expect_equal(false, reader.overrun,
"overrun flag not set reading large objects");
- blob_destroy(blob);
+ blob_finish(&blob);
ralloc_free(ctx);
}
return;
unsigned char *sha1;
- struct blob *blob = blob_create();
+ struct blob blob;
+ blob_init(&blob);
switch (prog->info.stage) {
case MESA_SHADER_VERTEX: {
struct st_vertex_program *stvp = (struct st_vertex_program *) prog;
sha1 = stvp->sha1;
- blob_write_uint32(blob, stvp->num_inputs);
- blob_write_bytes(blob, stvp->index_to_input,
+ blob_write_uint32(&blob, stvp->num_inputs);
+ blob_write_bytes(&blob, stvp->index_to_input,
sizeof(stvp->index_to_input));
- blob_write_bytes(blob, stvp->result_to_output,
+ blob_write_bytes(&blob, stvp->result_to_output,
sizeof(stvp->result_to_output));
- write_stream_out_to_cache(blob, &stvp->tgsi);
- write_tgsi_to_cache(blob, &stvp->tgsi, st, sha1, num_tokens);
+ write_stream_out_to_cache(&blob, &stvp->tgsi);
+ write_tgsi_to_cache(&blob, &stvp->tgsi, st, sha1, num_tokens);
break;
}
case MESA_SHADER_TESS_CTRL:
struct st_common_program *p = st_common_program(prog);
sha1 = p->sha1;
- write_stream_out_to_cache(blob, out_state);
- write_tgsi_to_cache(blob, out_state, st, sha1, num_tokens);
+ write_stream_out_to_cache(&blob, out_state);
+ write_tgsi_to_cache(&blob, out_state, st, sha1, num_tokens);
break;
}
case MESA_SHADER_FRAGMENT: {
struct st_fragment_program *stfp = (struct st_fragment_program *) prog;
sha1 = stfp->sha1;
- write_tgsi_to_cache(blob, &stfp->tgsi, st, sha1, num_tokens);
+ write_tgsi_to_cache(&blob, &stfp->tgsi, st, sha1, num_tokens);
break;
}
case MESA_SHADER_COMPUTE: {
struct st_compute_program *stcp = (struct st_compute_program *) prog;
sha1 = stcp->sha1;
- write_tgsi_to_cache(blob, out_state, st, sha1, num_tokens);
+ write_tgsi_to_cache(&blob, out_state, st, sha1, num_tokens);
break;
}
default:
_mesa_shader_stage_to_string(prog->info.stage), sha1_buf);
}
- blob_destroy(blob);
+ blob_finish(&blob);
}
static void