+2012-11-27 Kostya Serebryany <kcc@google.com>
+
+ * All files: Merge from upstream r168699.
+
2012-11-24 Kostya Serebryany kcc@google.com
Jack Howarth <howarth@bromo.med.uc.edu>
-168514
+168699
The first line of this file holds the svn revision number of the
last merge done from the master library sources.
}
static u8 *MmapNewPagesAndPoisonShadow(uptr size) {
- CHECK(IsAligned(size, kPageSize));
+ CHECK(IsAligned(size, GetPageSizeCached()));
u8 *res = (u8*)MmapOrDie(size, __FUNCTION__);
PoisonShadow((uptr)res, size, kAsanHeapLeftRedzoneMagic);
if (flags()->debug) {
uptr mmap_size = Max(size, kMinMmapSize);
uptr n_chunks = mmap_size / size;
CHECK(n_chunks * size == mmap_size);
- if (size < kPageSize) {
+ uptr PageSize = GetPageSizeCached();
+ if (size < PageSize) {
// Size is small, just poison the last chunk.
n_chunks--;
} else {
// Size is large, allocate an extra page at right and poison it.
- mmap_size += kPageSize;
+ mmap_size += PageSize;
}
CHECK(n_chunks > 0);
u8 *mem = MmapNewPagesAndPoisonShadow(mmap_size);
}
void *asan_valloc(uptr size, StackTrace *stack) {
- void *ptr = (void*)Allocate(kPageSize, size, stack);
+ void *ptr = (void*)Allocate(GetPageSizeCached(), size, stack);
__asan_malloc_hook(ptr, size);
return ptr;
}
void *asan_pvalloc(uptr size, StackTrace *stack) {
- size = RoundUpTo(size, kPageSize);
+ uptr PageSize = GetPageSizeCached();
+ size = RoundUpTo(size, PageSize);
if (size == 0) {
// pvalloc(0) should allocate one page.
- size = kPageSize;
+ size = PageSize;
}
- void *ptr = (void*)Allocate(kPageSize, size, stack);
+ void *ptr = (void*)Allocate(PageSize, size, stack);
__asan_malloc_hook(ptr, size);
return ptr;
}
}
void FakeStack::AllocateOneSizeClass(uptr size_class) {
- CHECK(ClassMmapSize(size_class) >= kPageSize);
+ CHECK(ClassMmapSize(size_class) >= GetPageSizeCached());
uptr new_mem = (uptr)MmapOrDie(
ClassMmapSize(size_class), __FUNCTION__);
// Printf("T%d new_mem[%zu]: %p-%p mmap %zu\n",
uptr sp = (uptr)ucp->uc_stack.ss_sp;
uptr size = ucp->uc_stack.ss_size;
// Align to page size.
- uptr bottom = sp & ~(kPageSize - 1);
+ uptr PageSize = GetPageSizeCached();
+ uptr bottom = sp & ~(PageSize - 1);
size += sp - bottom;
- size = RoundUpTo(size, kPageSize);
+ size = RoundUpTo(size, PageSize);
PoisonShadow(bottom, size, 0);
}
#else
static void *island_allocator_pos = 0;
#if SANITIZER_WORDSIZE == 32
-# define kIslandEnd (0xffdf0000 - kPageSize)
-# define kIslandBeg (kIslandEnd - 256 * kPageSize)
+# define kIslandEnd (0xffdf0000 - GetPageSizeCached())
+# define kIslandBeg (kIslandEnd - 256 * GetPageSizeCached())
#else
-# define kIslandEnd (0x7fffffdf0000 - kPageSize)
-# define kIslandBeg (kIslandEnd - 256 * kPageSize)
+# define kIslandEnd (0x7fffffdf0000 - GetPageSizeCached())
+# define kIslandBeg (kIslandEnd - 256 * GetPageSizeCached())
#endif
extern "C"
internal_memset(island_allocator_pos, 0xCC, kIslandEnd - kIslandBeg);
};
*ptr = island_allocator_pos;
- island_allocator_pos = (char*)island_allocator_pos + kPageSize;
+ island_allocator_pos = (char*)island_allocator_pos + GetPageSizeCached();
if (flags()->verbosity) {
Report("Branch island allocated at %p\n", *ptr);
}
return malloc_zone_valloc(system_malloc_zone, size);
}
GET_STACK_TRACE_HERE_FOR_MALLOC;
- return asan_memalign(kPageSize, size, &stack);
+ return asan_memalign(GetPageSizeCached(), size, &stack);
}
#define GET_ZONE_FOR_PTR(ptr) \
#define kHighShadowBeg MEM_TO_SHADOW(kHighMemBeg)
#define kHighShadowEnd MEM_TO_SHADOW(kHighMemEnd)
-#define kShadowGapBeg (kLowShadowEnd ? kLowShadowEnd + 1 : 16 * kPageSize)
+// With the zero shadow base we can not actually map pages starting from 0.
+// This constant is somewhat arbitrary.
+#define kZeroBaseShadowStart (1 << 18)
+
+#define kShadowGapBeg (kLowShadowEnd ? kLowShadowEnd + 1 \
+ : kZeroBaseShadowStart)
#define kShadowGapEnd (kHighShadowBeg - 1)
#define kGlobalAndStackRedzone \
// ---------------------- mmap -------------------- {{{1
// Reserve memory range [beg, end].
static void ReserveShadowMemoryRange(uptr beg, uptr end) {
- CHECK((beg % kPageSize) == 0);
- CHECK(((end + 1) % kPageSize) == 0);
+ CHECK((beg % GetPageSizeCached()) == 0);
+ CHECK(((end + 1) % GetPageSizeCached()) == 0);
uptr size = end - beg + 1;
void *res = MmapFixedNoReserve(beg, size);
if (res != (void*)beg) {
int local_stack;
AsanThread *curr_thread = asanThreadRegistry().GetCurrent();
CHECK(curr_thread);
+ uptr PageSize = GetPageSizeCached();
uptr top = curr_thread->stack_top();
- uptr bottom = ((uptr)&local_stack - kPageSize) & ~(kPageSize-1);
+ uptr bottom = ((uptr)&local_stack - PageSize) & ~(PageSize-1);
PoisonShadow(bottom, top - bottom, 0);
}
}
uptr shadow_start = kLowShadowBeg;
- if (kLowShadowBeg > 0) shadow_start -= kMmapGranularity;
+ if (kLowShadowBeg > 0) shadow_start -= GetMmapGranularity();
uptr shadow_end = kHighShadowEnd;
if (MemoryRangeIsAvailable(shadow_start, shadow_end)) {
if (kLowShadowBeg != kLowShadowEnd) {
// mmap the low shadow plus at least one page.
- ReserveShadowMemoryRange(kLowShadowBeg - kMmapGranularity, kLowShadowEnd);
+ ReserveShadowMemoryRange(kLowShadowBeg - GetMmapGranularity(),
+ kLowShadowEnd);
}
// mmap the high shadow.
ReserveShadowMemoryRange(kHighShadowBeg, kHighShadowEnd);
Printf("Stats: %zuM really freed by %zu calls\n",
really_freed>>20, real_frees);
Printf("Stats: %zuM (%zu full pages) mmaped in %zu calls\n",
- mmaped>>20, mmaped / kPageSize, mmaps);
+ mmaped>>20, mmaped / GetPageSizeCached(), mmaps);
PrintMallocStatsArray(" mmaps by size class: ", mmaped_by_size);
PrintMallocStatsArray(" mallocs by size class: ", malloced_by_size);
AsanThread *AsanThread::Create(u32 parent_tid, thread_callback_t start_routine,
void *arg, StackTrace *stack) {
- uptr size = RoundUpTo(sizeof(AsanThread), kPageSize);
+ uptr PageSize = GetPageSizeCached();
+ uptr size = RoundUpTo(sizeof(AsanThread), PageSize);
AsanThread *thread = (AsanThread*)MmapOrDie(size, __FUNCTION__);
thread->start_routine_ = start_routine;
thread->arg_ = arg;
- const uptr kSummaryAllocSize = kPageSize;
+ const uptr kSummaryAllocSize = PageSize;
CHECK_LE(sizeof(AsanThreadSummary), kSummaryAllocSize);
AsanThreadSummary *summary =
- (AsanThreadSummary*)MmapOrDie(kPageSize, "AsanThreadSummary");
+ (AsanThreadSummary*)MmapOrDie(PageSize, "AsanThreadSummary");
summary->Init(parent_tid, stack);
summary->set_thread(thread);
thread->set_summary(summary);
// and we don't want it to have any poisoned stack.
ClearShadowForThreadStack();
fake_stack().Cleanup();
- uptr size = RoundUpTo(sizeof(AsanThread), kPageSize);
+ uptr size = RoundUpTo(sizeof(AsanThread), GetPageSizeCached());
UnmapOrDie(this, size);
}
// Align allocation size.
size = RoundUpTo(size, 8);
if (allocated_end_ - allocated_current_ < (sptr)size) {
- uptr size_to_allocate = Max(size, kPageSize);
+ uptr size_to_allocate = Max(size, GetPageSizeCached());
allocated_current_ =
(char*)MmapOrDie(size_to_allocate, __FUNCTION__);
allocated_end_ = allocated_current_ + size_to_allocate;
}
static uptr AllocBeg() { return kSpaceBeg; }
- static uptr AllocEnd() { return kSpaceBeg + kSpaceSize + AdditionalSize(); }
static uptr AllocSize() { return kSpaceSize + AdditionalSize(); }
static const uptr kNumClasses = 256; // Power of two <= 256
static uptr AdditionalSize() {
uptr res = sizeof(RegionInfo) * kNumClasses;
- CHECK_EQ(res % kPageSize, 0);
+ CHECK_EQ(res % GetPageSizeCached(), 0);
return res;
}
public:
void Init() {
internal_memset(this, 0, sizeof(*this));
+ page_size_ = GetPageSizeCached();
}
void *Allocate(uptr size, uptr alignment) {
CHECK(IsPowerOfTwo(alignment));
uptr map_size = RoundUpMapSize(size);
- if (alignment > kPageSize)
+ if (alignment > page_size_)
map_size += alignment;
if (map_size < size) return 0; // Overflow.
uptr map_beg = reinterpret_cast<uptr>(
MmapOrDie(map_size, "LargeMmapAllocator"));
uptr map_end = map_beg + map_size;
- uptr res = map_beg + kPageSize;
+ uptr res = map_beg + page_size_;
if (res & (alignment - 1)) // Align.
res += alignment - (res & (alignment - 1));
CHECK_EQ(0, res & (alignment - 1));
bool PointerIsMine(void *p) {
// Fast check.
- if ((reinterpret_cast<uptr>(p) % kPageSize) != 0) return false;
+ if ((reinterpret_cast<uptr>(p) & (page_size_ - 1))) return false;
SpinMutexLock l(&mutex_);
for (Header *l = list_; l; l = l->next) {
if (GetUser(l) == p) return true;
}
uptr GetActuallyAllocatedSize(void *p) {
- return RoundUpMapSize(GetHeader(p)->size) - kPageSize;
+ return RoundUpMapSize(GetHeader(p)->size) - page_size_;
}
- // At least kPageSize/2 metadata bytes is available.
+ // At least page_size_/2 metadata bytes is available.
void *GetMetaData(void *p) {
return GetHeader(p) + 1;
}
Header *prev;
};
- Header *GetHeader(uptr p) { return reinterpret_cast<Header*>(p - kPageSize); }
+ Header *GetHeader(uptr p) {
+ return reinterpret_cast<Header*>(p - page_size_);
+ }
Header *GetHeader(void *p) { return GetHeader(reinterpret_cast<uptr>(p)); }
void *GetUser(Header *h) {
- return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + kPageSize);
+ return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
}
uptr RoundUpMapSize(uptr size) {
- return RoundUpTo(size, kPageSize) + kPageSize;
+ return RoundUpTo(size, page_size_) + page_size_;
}
+ uptr page_size_;
Header *list_;
SpinMutex mutex_;
};
namespace __sanitizer {
+uptr GetPageSizeCached() {
+ static uptr PageSize;
+ if (!PageSize)
+ PageSize = GetPageSize();
+ return PageSize;
+}
+
// By default, dump to stderr. If report_fd is kInvalidFd, try to obtain file
// descriptor by opening file in report_path.
static fd_t report_fd = kStderrFd;
uptr ReadFileToBuffer(const char *file_name, char **buff,
uptr *buff_size, uptr max_len) {
- const uptr kMinFileLen = kPageSize;
+ uptr PageSize = GetPageSizeCached();
+ uptr kMinFileLen = PageSize;
uptr read_len = 0;
*buff = 0;
*buff_size = 0;
// Read up to one page at a time.
read_len = 0;
bool reached_eof = false;
- while (read_len + kPageSize <= size) {
- uptr just_read = internal_read(fd, *buff + read_len, kPageSize);
+ while (read_len + PageSize <= size) {
+ uptr just_read = internal_read(fd, *buff + read_len, PageSize);
if (just_read == 0) {
reached_eof = true;
break;
// Constants.
const uptr kWordSize = SANITIZER_WORDSIZE / 8;
const uptr kWordSizeInBits = 8 * kWordSize;
+
#if defined(__powerpc__) || defined(__powerpc64__)
-// Current PPC64 kernels use 64K pages sizes, but they can be
-// configured with 4K or even other sizes.
-// We may want to use getpagesize() or sysconf(_SC_PAGESIZE) here rather than
-// hardcoding the values, but today these values need to be compile-time
-// constants.
-const uptr kPageSize = 1UL << 16;
const uptr kCacheLineSize = 128;
-const uptr kMmapGranularity = kPageSize;
-#elif !defined(_WIN32)
-const uptr kPageSize = 1UL << 12;
-const uptr kCacheLineSize = 64;
-const uptr kMmapGranularity = kPageSize;
#else
-const uptr kPageSize = 1UL << 12;
const uptr kCacheLineSize = 64;
-const uptr kMmapGranularity = 1UL << 16;
#endif
+uptr GetPageSize();
+uptr GetPageSizeCached();
+uptr GetMmapGranularity();
// Threads
int GetPid();
uptr GetTid();
namespace __sanitizer {
// ------------- sanitizer_common.h
+uptr GetPageSize() {
+ return sysconf(_SC_PAGESIZE);
+}
+
+uptr GetMmapGranularity() {
+ return GetPageSize();
+}
int GetPid() {
return getpid();
}
void *MmapOrDie(uptr size, const char *mem_type) {
- size = RoundUpTo(size, kPageSize);
+ size = RoundUpTo(size, GetPageSizeCached());
void *res = internal_mmap(0, size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
}
void *MmapFixedNoReserve(uptr fixed_addr, uptr size) {
- void *p = internal_mmap((void*)(fixed_addr & ~(kPageSize - 1)),
- RoundUpTo(size, kPageSize),
+ uptr PageSize = GetPageSizeCached();
+ void *p = internal_mmap((void*)(fixed_addr & ~(PageSize - 1)),
+ RoundUpTo(size, PageSize),
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON | MAP_FIXED | MAP_NORESERVE,
-1, 0);
uptr fsize = internal_filesize(fd);
CHECK_NE(fsize, (uptr)-1);
CHECK_GT(fsize, 0);
- *buff_size = RoundUpTo(fsize, kPageSize);
+ *buff_size = RoundUpTo(fsize, GetPageSizeCached());
void *map = internal_mmap(0, *buff_size, PROT_READ, MAP_PRIVATE, fd, 0);
return (map == MAP_FAILED) ? 0 : map;
}
bool symbolize, const char *strip_file_prefix,
SymbolizeCallback symbolize_callback ) {
MemoryMappingLayout proc_maps;
- InternalScopedBuffer<char> buff(kPageSize * 2);
+ InternalScopedBuffer<char> buff(GetPageSizeCached() * 2);
InternalScopedBuffer<AddressInfo> addr_frames(64);
uptr frame_num = 0;
for (uptr i = 0; i < size && addr[i]; i++) {
namespace __sanitizer {
// --------------------- sanitizer_common.h
+uptr GetPageSize() {
+ return 1U << 14; // FIXME: is this configurable?
+}
+
+uptr GetMmapGranularity() {
+ return 1U << 16; // FIXME: is this configurable?
+}
+
bool FileExists(const char *filename) {
UNIMPLEMENTED();
}
TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(valloc, sz);
- return user_alloc(thr, pc, sz, kPageSize);
+ return user_alloc(thr, pc, sz, GetPageSizeCached());
}
TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(pvalloc, sz);
- sz = RoundUp(sz, kPageSize);
- return user_alloc(thr, pc, sz, kPageSize);
+ sz = RoundUp(sz, GetPageSizeCached());
+ return user_alloc(thr, pc, sz, GetPageSizeCached());
}
TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
void __tsan_func_entry(void *call_pc);
void __tsan_func_exit();
+void __tsan_read_range(void *addr, unsigned long size); // NOLINT
+void __tsan_write_range(void *addr, unsigned long size); // NOLINT
+
#ifdef __cplusplus
} // extern "C"
#endif
//
//===----------------------------------------------------------------------===//
+// ThreadSanitizer atomic operations are based on C++11/C1x standards.
+// For background see C++11 standard. A slightly older, publically
+// available draft of the standard (not entirely up-to-date, but close enough
+// for casual browsing) is available here:
+// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
+// The following page contains more background information:
+// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
+
#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_interface_atomic.h"
#include "tsan_flags.h"
typedef __tsan_atomic16 a16;
typedef __tsan_atomic32 a32;
typedef __tsan_atomic64 a64;
+typedef __tsan_atomic128 a128;
const morder mo_relaxed = __tsan_memory_order_relaxed;
const morder mo_consume = __tsan_memory_order_consume;
const morder mo_acquire = __tsan_memory_order_acquire;
StatInc(thr, size == 1 ? StatAtomic1
: size == 2 ? StatAtomic2
: size == 4 ? StatAtomic4
- : StatAtomic8);
+ : size == 8 ? StatAtomic8
+ : StatAtomic16);
StatInc(thr, mo == mo_relaxed ? StatAtomicRelaxed
: mo == mo_consume ? StatAtomicConsume
: mo == mo_acquire ? StatAtomicAcquire
|| mo == mo_acq_rel || mo == mo_seq_cst;
}
+static bool IsAcqRelOrder(morder mo) {
+ return mo == mo_acq_rel || mo == mo_seq_cst;
+}
+
static morder ConvertOrder(morder mo) {
if (mo > (morder)100500) {
mo = morder(mo - 100500);
return mo;
}
+template<typename T> T func_xchg(T v, T op) {
+ return op;
+}
+
+template<typename T> T func_add(T v, T op) {
+ return v + op;
+}
+
+template<typename T> T func_sub(T v, T op) {
+ return v - op;
+}
+
+template<typename T> T func_and(T v, T op) {
+ return v & op;
+}
+
+template<typename T> T func_or(T v, T op) {
+ return v | op;
+}
+
+template<typename T> T func_xor(T v, T op) {
+ return v ^ op;
+}
+
+template<typename T> T func_nand(T v, T op) {
+ return ~v & op;
+}
+
#define SCOPED_ATOMIC(func, ...) \
mo = ConvertOrder(mo); \
mo = flags()->force_seq_cst_atomics ? (morder)mo_seq_cst : mo; \
static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a,
morder mo) {
CHECK(IsLoadOrder(mo));
+ // This fast-path is critical for performance.
+ // Assume the access is atomic.
+ if (!IsAcquireOrder(mo) && sizeof(T) <= sizeof(a))
+ return *a;
+ SyncVar *s = CTX()->synctab.GetAndLock(thr, pc, (uptr)a, false);
+ thr->clock.set(thr->tid, thr->fast_state.epoch());
+ thr->clock.acquire(&s->clock);
T v = *a;
- if (IsAcquireOrder(mo))
- Acquire(thr, pc, (uptr)a);
+ s->mtx.ReadUnlock();
return v;
}
static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
CHECK(IsStoreOrder(mo));
- if (IsReleaseOrder(mo))
- ReleaseStore(thr, pc, (uptr)a);
+ // This fast-path is critical for performance.
+ // Assume the access is atomic.
+ // Strictly saying even relaxed store cuts off release sequence,
+ // so must reset the clock.
+ if (!IsReleaseOrder(mo) && sizeof(T) <= sizeof(a)) {
+ *a = v;
+ return;
+ }
+ SyncVar *s = CTX()->synctab.GetAndLock(thr, pc, (uptr)a, true);
+ thr->clock.set(thr->tid, thr->fast_state.epoch());
+ thr->clock.ReleaseStore(&s->clock);
*a = v;
+ s->mtx.Unlock();
+}
+
+template<typename T, T (*F)(T v, T op)>
+static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) {
+ SyncVar *s = CTX()->synctab.GetAndLock(thr, pc, (uptr)a, true);
+ thr->clock.set(thr->tid, thr->fast_state.epoch());
+ if (IsAcqRelOrder(mo))
+ thr->clock.acq_rel(&s->clock);
+ else if (IsReleaseOrder(mo))
+ thr->clock.release(&s->clock);
+ else if (IsAcquireOrder(mo))
+ thr->clock.acquire(&s->clock);
+ T c = *a;
+ *a = F(c, v);
+ s->mtx.Unlock();
+ return c;
}
template<typename T>
static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
- if (IsReleaseOrder(mo))
- Release(thr, pc, (uptr)a);
- v = __sync_lock_test_and_set(a, v);
- if (IsAcquireOrder(mo))
- Acquire(thr, pc, (uptr)a);
- return v;
+ return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
- if (IsReleaseOrder(mo))
- Release(thr, pc, (uptr)a);
- v = __sync_fetch_and_add(a, v);
- if (IsAcquireOrder(mo))
- Acquire(thr, pc, (uptr)a);
- return v;
+ return AtomicRMW<T, func_add>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
- if (IsReleaseOrder(mo))
- Release(thr, pc, (uptr)a);
- v = __sync_fetch_and_sub(a, v);
- if (IsAcquireOrder(mo))
- Acquire(thr, pc, (uptr)a);
- return v;
+ return AtomicRMW<T, func_sub>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
- if (IsReleaseOrder(mo))
- Release(thr, pc, (uptr)a);
- v = __sync_fetch_and_and(a, v);
- if (IsAcquireOrder(mo))
- Acquire(thr, pc, (uptr)a);
- return v;
+ return AtomicRMW<T, func_and>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
- if (IsReleaseOrder(mo))
- Release(thr, pc, (uptr)a);
- v = __sync_fetch_and_or(a, v);
- if (IsAcquireOrder(mo))
- Acquire(thr, pc, (uptr)a);
- return v;
+ return AtomicRMW<T, func_or>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
- if (IsReleaseOrder(mo))
- Release(thr, pc, (uptr)a);
- v = __sync_fetch_and_xor(a, v);
- if (IsAcquireOrder(mo))
- Acquire(thr, pc, (uptr)a);
- return v;
+ return AtomicRMW<T, func_xor>(thr, pc, a, v, mo);
+}
+
+template<typename T>
+static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v,
+ morder mo) {
+ return AtomicRMW<T, func_nand>(thr, pc, a, v, mo);
}
template<typename T>
static bool AtomicCAS(ThreadState *thr, uptr pc,
- volatile T *a, T *c, T v, morder mo) {
- if (IsReleaseOrder(mo))
- Release(thr, pc, (uptr)a);
- T cc = *c;
- T pr = __sync_val_compare_and_swap(a, cc, v);
- if (IsAcquireOrder(mo))
- Acquire(thr, pc, (uptr)a);
- if (pr == cc)
- return true;
- *c = pr;
- return false;
+ volatile T *a, T *c, T v, morder mo, morder fmo) {
+ (void)fmo; // Unused because llvm does not pass it yet.
+ SyncVar *s = CTX()->synctab.GetAndLock(thr, pc, (uptr)a, true);
+ thr->clock.set(thr->tid, thr->fast_state.epoch());
+ if (IsAcqRelOrder(mo))
+ thr->clock.acq_rel(&s->clock);
+ else if (IsReleaseOrder(mo))
+ thr->clock.release(&s->clock);
+ else if (IsAcquireOrder(mo))
+ thr->clock.acquire(&s->clock);
+ T cur = *a;
+ bool res = false;
+ if (cur == *c) {
+ *a = v;
+ res = true;
+ } else {
+ *c = cur;
+ }
+ s->mtx.Unlock();
+ return res;
}
template<typename T>
static T AtomicCAS(ThreadState *thr, uptr pc,
- volatile T *a, T c, T v, morder mo) {
- AtomicCAS(thr, pc, a, &c, v, mo);
+ volatile T *a, T c, T v, morder mo, morder fmo) {
+ AtomicCAS(thr, pc, a, &c, v, mo, fmo);
return c;
}
static void AtomicFence(ThreadState *thr, uptr pc, morder mo) {
+ // FIXME(dvyukov): not implemented.
__sync_synchronize();
}
SCOPED_ATOMIC(Load, a, mo);
}
+#if __TSAN_HAS_INT128
+a128 __tsan_atomic128_load(const volatile a128 *a, morder mo) {
+ SCOPED_ATOMIC(Load, a, mo);
+}
+#endif
+
void __tsan_atomic8_store(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(Store, a, v, mo);
}
SCOPED_ATOMIC(Store, a, v, mo);
}
+#if __TSAN_HAS_INT128
+void __tsan_atomic128_store(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(Store, a, v, mo);
+}
+#endif
+
a8 __tsan_atomic8_exchange(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(Exchange, a, v, mo);
}
SCOPED_ATOMIC(Exchange, a, v, mo);
}
+#if __TSAN_HAS_INT128
+a128 __tsan_atomic128_exchange(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(Exchange, a, v, mo);
+}
+#endif
+
a8 __tsan_atomic8_fetch_add(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchAdd, a, v, mo);
}
SCOPED_ATOMIC(FetchAdd, a, v, mo);
}
+#if __TSAN_HAS_INT128
+a128 __tsan_atomic128_fetch_add(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(FetchAdd, a, v, mo);
+}
+#endif
+
a8 __tsan_atomic8_fetch_sub(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchSub, a, v, mo);
}
SCOPED_ATOMIC(FetchSub, a, v, mo);
}
+#if __TSAN_HAS_INT128
+a128 __tsan_atomic128_fetch_sub(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(FetchSub, a, v, mo);
+}
+#endif
+
a8 __tsan_atomic8_fetch_and(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchAnd, a, v, mo);
}
SCOPED_ATOMIC(FetchAnd, a, v, mo);
}
+#if __TSAN_HAS_INT128
+a128 __tsan_atomic128_fetch_and(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(FetchAnd, a, v, mo);
+}
+#endif
+
a8 __tsan_atomic8_fetch_or(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchOr, a, v, mo);
}
SCOPED_ATOMIC(FetchOr, a, v, mo);
}
+#if __TSAN_HAS_INT128
+a128 __tsan_atomic128_fetch_or(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(FetchOr, a, v, mo);
+}
+#endif
+
a8 __tsan_atomic8_fetch_xor(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchXor, a, v, mo);
}
SCOPED_ATOMIC(FetchXor, a, v, mo);
}
+#if __TSAN_HAS_INT128
+a128 __tsan_atomic128_fetch_xor(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(FetchXor, a, v, mo);
+}
+#endif
+
+a8 __tsan_atomic8_fetch_nand(volatile a8 *a, a8 v, morder mo) {
+ SCOPED_ATOMIC(FetchNand, a, v, mo);
+}
+
+a16 __tsan_atomic16_fetch_nand(volatile a16 *a, a16 v, morder mo) {
+ SCOPED_ATOMIC(FetchNand, a, v, mo);
+}
+
+a32 __tsan_atomic32_fetch_nand(volatile a32 *a, a32 v, morder mo) {
+ SCOPED_ATOMIC(FetchNand, a, v, mo);
+}
+
+a64 __tsan_atomic64_fetch_nand(volatile a64 *a, a64 v, morder mo) {
+ SCOPED_ATOMIC(FetchNand, a, v, mo);
+}
+
+#if __TSAN_HAS_INT128
+a128 __tsan_atomic128_fetch_nand(volatile a128 *a, a128 v, morder mo) {
+ SCOPED_ATOMIC(FetchNand, a, v, mo);
+}
+#endif
+
int __tsan_atomic8_compare_exchange_strong(volatile a8 *a, a8 *c, a8 v,
- morder mo) {
- SCOPED_ATOMIC(CAS, a, c, v, mo);
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
int __tsan_atomic16_compare_exchange_strong(volatile a16 *a, a16 *c, a16 v,
- morder mo) {
- SCOPED_ATOMIC(CAS, a, c, v, mo);
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
int __tsan_atomic32_compare_exchange_strong(volatile a32 *a, a32 *c, a32 v,
- morder mo) {
- SCOPED_ATOMIC(CAS, a, c, v, mo);
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
int __tsan_atomic64_compare_exchange_strong(volatile a64 *a, a64 *c, a64 v,
- morder mo) {
- SCOPED_ATOMIC(CAS, a, c, v, mo);
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+#if __TSAN_HAS_INT128
+int __tsan_atomic128_compare_exchange_strong(volatile a128 *a, a128 *c, a128 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
+#endif
int __tsan_atomic8_compare_exchange_weak(volatile a8 *a, a8 *c, a8 v,
- morder mo) {
- SCOPED_ATOMIC(CAS, a, c, v, mo);
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
int __tsan_atomic16_compare_exchange_weak(volatile a16 *a, a16 *c, a16 v,
- morder mo) {
- SCOPED_ATOMIC(CAS, a, c, v, mo);
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
int __tsan_atomic32_compare_exchange_weak(volatile a32 *a, a32 *c, a32 v,
- morder mo) {
- SCOPED_ATOMIC(CAS, a, c, v, mo);
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
int __tsan_atomic64_compare_exchange_weak(volatile a64 *a, a64 *c, a64 v,
- morder mo) {
- SCOPED_ATOMIC(CAS, a, c, v, mo);
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
+#if __TSAN_HAS_INT128
+int __tsan_atomic128_compare_exchange_weak(volatile a128 *a, a128 *c, a128 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+#endif
+
a8 __tsan_atomic8_compare_exchange_val(volatile a8 *a, a8 c, a8 v,
- morder mo) {
- SCOPED_ATOMIC(CAS, a, c, v, mo);
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
a16 __tsan_atomic16_compare_exchange_val(volatile a16 *a, a16 c, a16 v,
- morder mo) {
- SCOPED_ATOMIC(CAS, a, c, v, mo);
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
a32 __tsan_atomic32_compare_exchange_val(volatile a32 *a, a32 c, a32 v,
- morder mo) {
- SCOPED_ATOMIC(CAS, a, c, v, mo);
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
a64 __tsan_atomic64_compare_exchange_val(volatile a64 *a, a64 c, a64 v,
- morder mo) {
- SCOPED_ATOMIC(CAS, a, c, v, mo);
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
+}
+
+#if __TSAN_HAS_INT128
+a128 __tsan_atomic64_compare_exchange_val(volatile a128 *a, a128 c, a128 v,
+ morder mo, morder fmo) {
+ SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
+#endif
void __tsan_atomic_thread_fence(morder mo) {
char* a;
extern "C" {
#endif
-typedef char __tsan_atomic8;
-typedef short __tsan_atomic16; // NOLINT
-typedef int __tsan_atomic32;
-typedef long __tsan_atomic64; // NOLINT
+typedef char __tsan_atomic8;
+typedef short __tsan_atomic16; // NOLINT
+typedef int __tsan_atomic32;
+typedef long __tsan_atomic64; // NOLINT
+
+#if defined(__SIZEOF_INT128__) \
+ || (__clang_major__ * 100 + __clang_minor__ >= 302)
+typedef __int128 __tsan_atomic128;
+#define __TSAN_HAS_INT128 1
+#else
+typedef char __tsan_atomic128;
+#define __TSAN_HAS_INT128 0
+#endif
// Part of ABI, do not change.
// http://llvm.org/viewvc/llvm-project/libcxx/trunk/include/atomic?view=markup
__tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_load(const volatile __tsan_atomic64 *a,
__tsan_memory_order mo);
+__tsan_atomic128 __tsan_atomic128_load(const volatile __tsan_atomic128 *a,
+ __tsan_memory_order mo);
void __tsan_atomic8_store(volatile __tsan_atomic8 *a, __tsan_atomic8 v,
__tsan_memory_order mo);
__tsan_memory_order mo);
void __tsan_atomic64_store(volatile __tsan_atomic64 *a, __tsan_atomic64 v,
__tsan_memory_order mo);
+void __tsan_atomic128_store(volatile __tsan_atomic128 *a, __tsan_atomic128 v,
+ __tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_exchange(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_exchange(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
+__tsan_atomic128 __tsan_atomic128_exchange(volatile __tsan_atomic128 *a,
+ __tsan_atomic128 v, __tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_fetch_add(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_fetch_add(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
+__tsan_atomic128 __tsan_atomic128_fetch_add(volatile __tsan_atomic128 *a,
+ __tsan_atomic128 v, __tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_fetch_sub(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_fetch_sub(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
+__tsan_atomic128 __tsan_atomic128_fetch_sub(volatile __tsan_atomic128 *a,
+ __tsan_atomic128 v, __tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_fetch_and(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_fetch_and(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
+__tsan_atomic128 __tsan_atomic128_fetch_and(volatile __tsan_atomic128 *a,
+ __tsan_atomic128 v, __tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_fetch_or(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_fetch_or(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
+__tsan_atomic128 __tsan_atomic128_fetch_or(volatile __tsan_atomic128 *a,
+ __tsan_atomic128 v, __tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_fetch_xor(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_fetch_xor(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
+__tsan_atomic128 __tsan_atomic128_fetch_xor(volatile __tsan_atomic128 *a,
+ __tsan_atomic128 v, __tsan_memory_order mo);
+
+__tsan_atomic8 __tsan_atomic8_fetch_nand(volatile __tsan_atomic8 *a,
+ __tsan_atomic8 v, __tsan_memory_order mo);
+__tsan_atomic16 __tsan_atomic16_fetch_nand(volatile __tsan_atomic16 *a,
+ __tsan_atomic16 v, __tsan_memory_order mo);
+__tsan_atomic32 __tsan_atomic32_fetch_nand(volatile __tsan_atomic32 *a,
+ __tsan_atomic32 v, __tsan_memory_order mo);
+__tsan_atomic64 __tsan_atomic64_fetch_nand(volatile __tsan_atomic64 *a,
+ __tsan_atomic64 v, __tsan_memory_order mo);
+__tsan_atomic128 __tsan_atomic128_fetch_nand(volatile __tsan_atomic128 *a,
+ __tsan_atomic128 v, __tsan_memory_order mo);
int __tsan_atomic8_compare_exchange_weak(volatile __tsan_atomic8 *a,
- __tsan_atomic8 *c, __tsan_atomic8 v, __tsan_memory_order mo);
+ __tsan_atomic8 *c, __tsan_atomic8 v, __tsan_memory_order mo,
+ __tsan_memory_order fail_mo);
int __tsan_atomic16_compare_exchange_weak(volatile __tsan_atomic16 *a,
- __tsan_atomic16 *c, __tsan_atomic16 v, __tsan_memory_order mo);
+ __tsan_atomic16 *c, __tsan_atomic16 v, __tsan_memory_order mo,
+ __tsan_memory_order fail_mo);
int __tsan_atomic32_compare_exchange_weak(volatile __tsan_atomic32 *a,
- __tsan_atomic32 *c, __tsan_atomic32 v, __tsan_memory_order mo);
+ __tsan_atomic32 *c, __tsan_atomic32 v, __tsan_memory_order mo,
+ __tsan_memory_order fail_mo);
int __tsan_atomic64_compare_exchange_weak(volatile __tsan_atomic64 *a,
- __tsan_atomic64 *c, __tsan_atomic64 v, __tsan_memory_order mo);
+ __tsan_atomic64 *c, __tsan_atomic64 v, __tsan_memory_order mo,
+ __tsan_memory_order fail_mo);
+int __tsan_atomic128_compare_exchange_weak(volatile __tsan_atomic128 *a,
+ __tsan_atomic128 *c, __tsan_atomic128 v, __tsan_memory_order mo,
+ __tsan_memory_order fail_mo);
int __tsan_atomic8_compare_exchange_strong(volatile __tsan_atomic8 *a,
- __tsan_atomic8 *c, __tsan_atomic8 v, __tsan_memory_order mo);
+ __tsan_atomic8 *c, __tsan_atomic8 v, __tsan_memory_order mo,
+ __tsan_memory_order fail_mo);
int __tsan_atomic16_compare_exchange_strong(volatile __tsan_atomic16 *a,
- __tsan_atomic16 *c, __tsan_atomic16 v, __tsan_memory_order mo);
+ __tsan_atomic16 *c, __tsan_atomic16 v, __tsan_memory_order mo,
+ __tsan_memory_order fail_mo);
int __tsan_atomic32_compare_exchange_strong(volatile __tsan_atomic32 *a,
- __tsan_atomic32 *c, __tsan_atomic32 v, __tsan_memory_order mo);
+ __tsan_atomic32 *c, __tsan_atomic32 v, __tsan_memory_order mo,
+ __tsan_memory_order fail_mo);
int __tsan_atomic64_compare_exchange_strong(volatile __tsan_atomic64 *a,
- __tsan_atomic64 *c, __tsan_atomic64 v, __tsan_memory_order mo);
+ __tsan_atomic64 *c, __tsan_atomic64 v, __tsan_memory_order mo,
+ __tsan_memory_order fail_mo);
+int __tsan_atomic128_compare_exchange_strong(volatile __tsan_atomic128 *a,
+ __tsan_atomic128 *c, __tsan_atomic128 v, __tsan_memory_order mo,
+ __tsan_memory_order fail_mo);
__tsan_atomic8 __tsan_atomic8_compare_exchange_val(
volatile __tsan_atomic8 *a, __tsan_atomic8 c, __tsan_atomic8 v,
- __tsan_memory_order mo);
+ __tsan_memory_order mo, __tsan_memory_order fail_mo);
__tsan_atomic16 __tsan_atomic16_compare_exchange_val(
volatile __tsan_atomic16 *a, __tsan_atomic16 c, __tsan_atomic16 v,
- __tsan_memory_order mo);
+ __tsan_memory_order mo, __tsan_memory_order fail_mo);
__tsan_atomic32 __tsan_atomic32_compare_exchange_val(
volatile __tsan_atomic32 *a, __tsan_atomic32 c, __tsan_atomic32 v,
- __tsan_memory_order mo);
+ __tsan_memory_order mo, __tsan_memory_order fail_mo);
__tsan_atomic64 __tsan_atomic64_compare_exchange_val(
volatile __tsan_atomic64 *a, __tsan_atomic64 c, __tsan_atomic64 v,
- __tsan_memory_order mo);
+ __tsan_memory_order mo, __tsan_memory_order fail_mo);
+__tsan_atomic128 __tsan_atomic128_compare_exchange_val(
+ volatile __tsan_atomic128 *a, __tsan_atomic128 c, __tsan_atomic128 v,
+ __tsan_memory_order mo, __tsan_memory_order fail_mo);
void __tsan_atomic_thread_fence(__tsan_memory_order mo);
void __tsan_atomic_signal_fence(__tsan_memory_order mo);
void __tsan_func_exit() {
FuncExit(cur_thread());
}
+
+void __tsan_read_range(void *addr, uptr size) {
+ MemoryAccessRange(cur_thread(), CALLERPC, (uptr)addr, size, false);
+}
+
+void __tsan_write_range(void *addr, uptr size) {
+ MemoryAccessRange(cur_thread(), CALLERPC, (uptr)addr, size, true);
+}
static const uptr kLinuxShadowBeg = MemToShadow(kLinuxAppMemBeg);
static const uptr kLinuxShadowEnd =
- MemToShadow(kLinuxAppMemEnd) | (kPageSize - 1);
+ MemToShadow(kLinuxAppMemEnd) | 0xff;
static inline bool IsAppMem(uptr mem) {
return mem >= kLinuxAppMemBeg && mem <= kLinuxAppMemEnd;
#define HACKY_CALL(f) \
__asm__ __volatile__("sub $1024, %%rsp;" \
"/*.cfi_adjust_cfa_offset 1024;*/" \
+ ".hidden " #f "_thunk;" \
"call " #f "_thunk;" \
"add $1024, %%rsp;" \
"/*.cfi_adjust_cfa_offset -1024;*/" \
name[StatAtomicStore] = " store ";
name[StatAtomicExchange] = " exchange ";
name[StatAtomicFetchAdd] = " fetch_add ";
+ name[StatAtomicFetchSub] = " fetch_sub ";
+ name[StatAtomicFetchAnd] = " fetch_and ";
+ name[StatAtomicFetchOr] = " fetch_or ";
+ name[StatAtomicFetchXor] = " fetch_xor ";
+ name[StatAtomicFetchNand] = " fetch_nand ";
name[StatAtomicCAS] = " compare_exchange ";
name[StatAtomicFence] = " fence ";
name[StatAtomicRelaxed] = " Including relaxed ";
name[StatAtomic2] = " size 2 ";
name[StatAtomic4] = " size 4 ";
name[StatAtomic8] = " size 8 ";
+ name[StatAtomic16] = " size 16 ";
name[StatInterceptor] = "Interceptors ";
name[StatInt_longjmp] = " longjmp ";
StatAtomicFetchAnd,
StatAtomicFetchOr,
StatAtomicFetchXor,
+ StatAtomicFetchNand,
StatAtomicCAS,
StatAtomicFence,
StatAtomicRelaxed,
StatAtomic2,
StatAtomic4,
StatAtomic8,
+ StatAtomic16,
// Interceptors.
StatInterceptor,