LLVMGetParam(radeon_bld->main_fn, param_start_instance), "");
}
+/* Bitcast <4 x float> to <2 x double>, extract the component, and convert
+ * to float. */
+static LLVMValueRef extract_double_to_float(struct si_shader_context *ctx,
+ LLVMValueRef vec4,
+ unsigned double_index)
+{
+ LLVMBuilderRef builder = ctx->gallivm.builder;
+ LLVMTypeRef f64 = LLVMDoubleTypeInContext(ctx->gallivm.context);
+ LLVMValueRef dvec2 = LLVMBuildBitCast(builder, vec4,
+ LLVMVectorType(f64, 2), "");
+ LLVMValueRef index = LLVMConstInt(ctx->i32, double_index, 0);
+ LLVMValueRef value = LLVMBuildExtractElement(builder, dvec2, index, "");
+ return LLVMBuildFPTrunc(builder, value, ctx->f32, "");
+}
+
static void declare_input_vs(
struct si_shader_context *ctx,
unsigned input_index,
unsigned chan;
unsigned fix_fetch;
+ unsigned num_fetches;
+ unsigned fetch_stride;
LLVMValueRef t_list_ptr;
LLVMValueRef t_offset;
LLVMValueRef t_list;
- LLVMValueRef attribute_offset;
- LLVMValueRef buffer_index;
+ LLVMValueRef vertex_index;
LLVMValueRef args[3];
- LLVMValueRef input;
+ LLVMValueRef input[3];
/* Load the T list */
t_list_ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_VERTEX_BUFFERS);
t_list = ac_build_indexed_load_const(&ctx->ac, t_list_ptr, t_offset);
- /* Build the attribute offset */
- attribute_offset = lp_build_const_int32(gallivm, 0);
-
- buffer_index = LLVMGetParam(ctx->main_fn,
+ vertex_index = LLVMGetParam(ctx->main_fn,
ctx->param_vertex_index0 +
input_index);
+ fix_fetch = (ctx->shader->key.mono.vs.fix_fetch >> (4 * input_index)) & 0xf;
+
+ /* Do multiple loads for double formats. */
+ if (fix_fetch == SI_FIX_FETCH_RGB_64_FLOAT) {
+ num_fetches = 3; /* 3 2-dword loads */
+ fetch_stride = 8;
+ } else if (fix_fetch == SI_FIX_FETCH_RGBA_64_FLOAT) {
+ num_fetches = 2; /* 2 4-dword loads */
+ fetch_stride = 16;
+ } else {
+ num_fetches = 1;
+ fetch_stride = 0;
+ }
+
args[0] = t_list;
- args[1] = attribute_offset;
- args[2] = buffer_index;
- input = lp_build_intrinsic(gallivm->builder,
- "llvm.SI.vs.load.input", ctx->v4f32, args, 3,
- LP_FUNC_ATTR_READNONE);
+ args[2] = vertex_index;
+
+ for (unsigned i = 0; i < num_fetches; i++) {
+ args[1] = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
+
+ input[i] = lp_build_intrinsic(gallivm->builder,
+ "llvm.SI.vs.load.input", ctx->v4f32, args, 3,
+ LP_FUNC_ATTR_READNONE);
+ }
/* Break up the vec4 into individual components */
for (chan = 0; chan < 4; chan++) {
LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
out[chan] = LLVMBuildExtractElement(gallivm->builder,
- input, llvm_chan, "");
+ input[0], llvm_chan, "");
}
- fix_fetch = (ctx->shader->key.mono.vs.fix_fetch >> (4 * input_index)) & 0xf;
-
switch (fix_fetch) {
case SI_FIX_FETCH_A2_SNORM:
case SI_FIX_FETCH_A2_SSCALED:
out[chan], ctx->f32, "");
}
break;
+ case SI_FIX_FETCH_RG_64_FLOAT:
+ for (chan = 0; chan < 2; chan++)
+ out[chan] = extract_double_to_float(ctx, input[0], chan);
+
+ out[2] = LLVMConstReal(ctx->f32, 0);
+ out[3] = LLVMConstReal(ctx->f32, 1);
+ break;
+ case SI_FIX_FETCH_RGB_64_FLOAT:
+ for (chan = 0; chan < 3; chan++)
+ out[chan] = extract_double_to_float(ctx, input[chan], 0);
+
+ out[3] = LLVMConstReal(ctx->f32, 1);
+ break;
+ case SI_FIX_FETCH_RGBA_64_FLOAT:
+ for (chan = 0; chan < 4; chan++) {
+ out[chan] = extract_double_to_float(ctx, input[chan / 2],
+ chan % 2);
+ }
+ break;
}
}
return V_008F0C_BUF_DATA_FORMAT_32_32_32_32;
}
break;
+ case 64:
+ /* Legacy double formats. */
+ switch (desc->nr_channels) {
+ case 1: /* 1 load */
+ return V_008F0C_BUF_DATA_FORMAT_32_32;
+ case 2: /* 1 load */
+ return V_008F0C_BUF_DATA_FORMAT_32_32_32_32;
+ case 3: /* 3 loads */
+ return V_008F0C_BUF_DATA_FORMAT_32_32;
+ case 4: /* 2 loads */
+ return V_008F0C_BUF_DATA_FORMAT_32_32_32_32;
+ }
+ break;
}
return V_008F0C_BUF_DATA_FORMAT_INVALID;
unsigned data_format, num_format;
int first_non_void;
unsigned vbo_index = elements[i].vertex_buffer_index;
+ unsigned char swizzle[4];
if (vbo_index >= SI_NUM_VERTEX_BUFFERS) {
FREE(v);
data_format = si_translate_buffer_dataformat(ctx->screen, desc, first_non_void);
num_format = si_translate_buffer_numformat(ctx->screen, desc, first_non_void);
channel = first_non_void >= 0 ? &desc->channel[first_non_void] : NULL;
+ memcpy(swizzle, desc->swizzle, sizeof(swizzle));
- v->rsrc_word3[i] = S_008F0C_DST_SEL_X(si_map_swizzle(desc->swizzle[0])) |
- S_008F0C_DST_SEL_Y(si_map_swizzle(desc->swizzle[1])) |
- S_008F0C_DST_SEL_Z(si_map_swizzle(desc->swizzle[2])) |
- S_008F0C_DST_SEL_W(si_map_swizzle(desc->swizzle[3])) |
- S_008F0C_NUM_FORMAT(num_format) |
- S_008F0C_DATA_FORMAT(data_format);
v->format_size[i] = desc->block.bits / 8;
/* The hardware always treats the 2-bit alpha channel as
v->fix_fetch |= (uint64_t)SI_FIX_FETCH_RGBA_32_USCALED << (4 * i);
}
}
+ } else if (channel && channel->size == 64 &&
+ channel->type == UTIL_FORMAT_TYPE_FLOAT) {
+ switch (desc->nr_channels) {
+ case 1:
+ case 2:
+ v->fix_fetch |= (uint64_t)SI_FIX_FETCH_RG_64_FLOAT << (4 * i);
+ swizzle[0] = PIPE_SWIZZLE_X;
+ swizzle[1] = PIPE_SWIZZLE_Y;
+ swizzle[2] = desc->nr_channels == 2 ? PIPE_SWIZZLE_Z : PIPE_SWIZZLE_0;
+ swizzle[3] = desc->nr_channels == 2 ? PIPE_SWIZZLE_W : PIPE_SWIZZLE_0;
+ break;
+ case 3:
+ v->fix_fetch |= (uint64_t)SI_FIX_FETCH_RGB_64_FLOAT << (4 * i);
+ swizzle[0] = PIPE_SWIZZLE_X; /* 3 loads */
+ swizzle[1] = PIPE_SWIZZLE_Y;
+ swizzle[2] = PIPE_SWIZZLE_0;
+ swizzle[3] = PIPE_SWIZZLE_0;
+ break;
+ case 4:
+ v->fix_fetch |= (uint64_t)SI_FIX_FETCH_RGBA_64_FLOAT << (4 * i);
+ swizzle[0] = PIPE_SWIZZLE_X; /* 2 loads */
+ swizzle[1] = PIPE_SWIZZLE_Y;
+ swizzle[2] = PIPE_SWIZZLE_Z;
+ swizzle[3] = PIPE_SWIZZLE_W;
+ break;
+ default:
+ assert(0);
+ }
}
+ v->rsrc_word3[i] = S_008F0C_DST_SEL_X(si_map_swizzle(swizzle[0])) |
+ S_008F0C_DST_SEL_Y(si_map_swizzle(swizzle[1])) |
+ S_008F0C_DST_SEL_Z(si_map_swizzle(swizzle[2])) |
+ S_008F0C_DST_SEL_W(si_map_swizzle(swizzle[3])) |
+ S_008F0C_NUM_FORMAT(num_format) |
+ S_008F0C_DATA_FORMAT(data_format);
+
/* We work around the fact that 8_8_8 and 16_16_16 data formats
* do not exist by using the corresponding 4-component formats.
* This requires a fixup of the descriptor for bounds checks.