{ "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
/* True if we want to allow Python-based pretty-printing. */
-static int pretty_printing = 0;
+static bool pretty_printing = false;
void
varobj_enable_pretty_printing (void)
{
- pretty_printing = 1;
+ pretty_printing = true;
}
/* Data structures */
was created. */
int thread_id = 0;
- /* If 1, the -var-update always recomputes the value in the
+ /* If true, the -var-update always recomputes the value in the
current thread and frame. Otherwise, variable object is
always updated in the specific scope/thread/frame. */
- int floating = 0;
+ bool floating = false;
- /* Flag that indicates validity: set to 0 when this varobj_root refers
+ /* Flag that indicates validity: set to false when this varobj_root refers
to symbols that do not exist anymore. */
- int is_valid = 1;
+ bool is_valid = true;
/* Language-related operations for this variable and its
children. */
used to decide if dynamic varobj should recompute their children.
In the event that the frontend never asked for the children, we
can avoid that. */
- int children_requested = 0;
+ bool children_requested_ = false;
/* The pretty-printer constructor. If NULL, then the default
pretty-printer will be looked up. If None, then no
/* Helper functions for the above subcommands. */
-static int delete_variable (struct varobj *, int);
+static int delete_variable (struct varobj *, bool);
-static void delete_variable_1 (int *, struct varobj *, int, int);
+static void delete_variable_1 (int *, struct varobj *, bool, bool);
-static int install_variable (struct varobj *);
+static bool install_variable (struct varobj *);
static void uninstall_variable (struct varobj *);
static enum varobj_display_formats variable_default_display (struct varobj *);
-static int update_type_if_necessary (struct varobj *var,
- struct value *new_value);
+static bool update_type_if_necessary (struct varobj *var,
+ struct value *new_value);
-static int install_new_value (struct varobj *var, struct value *value,
- int initial);
+static bool install_new_value (struct varobj *var, struct value *value,
+ bool initial);
/* Language-specific routines. */
static std::string name_of_child (struct varobj *, int);
-static struct value *value_of_root (struct varobj **var_handle, int *);
+static struct value *value_of_root (struct varobj **var_handle, bool *);
static struct value *value_of_child (const struct varobj *parent, int index);
static std::string my_value_of_variable (struct varobj *var,
enum varobj_display_formats format);
-static int is_root_p (const struct varobj *var);
+static bool is_root_p (const struct varobj *var);
static struct varobj *varobj_add_child (struct varobj *var,
struct varobj_item *item);
\f
/* API Implementation */
-static int
+static bool
is_root_p (const struct varobj *var)
{
return (var->root->rootvar == var);
/* frame = -2 means always use selected frame. */
if (type == USE_SELECTED_FRAME)
- var->root->floating = 1;
+ var->root->floating = true;
pc = 0;
block = NULL;
/* See varobj.h. */
int
-varobj_delete (struct varobj *var, int only_children)
+varobj_delete (struct varobj *var, bool only_children)
{
return delete_variable (var, only_children);
}
/* Return true if the varobj has items after TO, false otherwise. */
-int
+bool
varobj_has_more (const struct varobj *var, int to)
{
if (var->children.size () > to)
- return 1;
+ return true;
return ((to == -1 || var->children.size () == to)
&& (var->dynamic->saved_item != NULL));
}
void
-varobj_set_frozen (struct varobj *var, int frozen)
+varobj_set_frozen (struct varobj *var, bool frozen)
{
/* When a variable is unfrozen, we don't fetch its value.
The 'not_fetched' flag remains set, so next -var-update
var->frozen = frozen;
}
-int
+bool
varobj_get_frozen (const struct varobj *var)
{
return var->frozen;
std::vector<varobj *> *type_changed,
std::vector<varobj *> *newobj,
std::vector<varobj *> *unchanged,
- int *cchanged,
+ bool *cchanged,
int index,
struct varobj_item *item)
{
if (newobj != NULL)
{
newobj->push_back (child);
- *cchanged = 1;
+ *cchanged = true;
}
}
else
{
varobj *existing = var->children[index];
- int type_updated = update_type_if_necessary (existing, item->value);
+ bool type_updated = update_type_if_necessary (existing, item->value);
if (type_updated)
{
#if HAVE_PYTHON
-static int
+static bool
dynamic_varobj_has_child_method (const struct varobj *var)
{
PyObject *printer = var->dynamic->pretty_printer;
if (!gdb_python_initialized)
- return 0;
+ return false;
gdbpy_enter_varobj enter_py (var);
return PyObject_HasAttr (printer, gdbpy_children_cst);
}
}
-static int
+static bool
update_dynamic_varobj_children (struct varobj *var,
std::vector<varobj *> *changed,
std::vector<varobj *> *type_changed,
std::vector<varobj *> *newobj,
std::vector<varobj *> *unchanged,
- int *cchanged,
- int update_children,
+ bool *cchanged,
+ bool update_children,
int from,
int to)
{
int i;
- *cchanged = 0;
+ *cchanged = false;
if (update_children || var->dynamic->child_iter == NULL)
{
i = 0;
if (var->dynamic->child_iter == NULL)
- return 0;
+ return false;
}
else
i = var->children.size ();
/* We don't want to push the extra child on any report list. */
if (to < 0 || i < to)
{
- int can_mention = from < 0 || i >= from;
+ bool can_mention = from < 0 || i >= from;
install_dynamic_child (var, can_mention ? changed : NULL,
can_mention ? type_changed : NULL,
if (i < var->children.size ())
{
- *cchanged = 1;
+ *cchanged = true;
for (int j = i; j < var->children.size (); ++j)
varobj_delete (var->children[j], 0);
/* If there are fewer children than requested, note that the list of
children changed. */
if (to >= 0 && var->children.size () < to)
- *cchanged = 1;
+ *cchanged = true;
var->num_children = var->children.size ();
- return 1;
+ return true;
}
int
{
if (varobj_is_dynamic_p (var))
{
- int dummy;
+ bool dummy;
/* If we have a dynamic varobj, don't report -1 children.
So, try to fetch some children first. */
update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
- 0, 0, 0);
+ false, 0, 0);
}
else
var->num_children = number_of_children (var);
const std::vector<varobj *> &
varobj_list_children (struct varobj *var, int *from, int *to)
{
- int children_changed;
-
- var->dynamic->children_requested = 1;
+ var->dynamic->children_requested_ = true;
if (varobj_is_dynamic_p (var))
{
+ bool children_changed;
+
/* This, in theory, can result in the number of children changing without
frontend noticing. But well, calling -var-list-children on the same
varobj twice is not something a sane frontend would do. */
update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
- &children_changed, 0, 0, *to);
+ &children_changed, false, 0, *to);
varobj_restrict_range (var->children, from, to);
return var->children;
}
/* Is VAR a path expression parent, i.e., can it be used to construct
a valid path expression? */
-static int
+static bool
is_path_expr_parent (const struct varobj *var)
{
gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
a valid path expression? By default we assume any VAR can be a path
parent. */
-int
+bool
varobj_default_is_path_expr_parent (const struct varobj *var)
{
- return 1;
+ return true;
}
/* Return the path expression parent for VAR. */
/* Return true if VAR is a dynamic varobj. */
-int
+bool
varobj_is_dynamic_p (const struct varobj *var)
{
return var->dynamic->pretty_printer != NULL;
value of the given expression. */
/* Note: Invokes functions that can call error(). */
-int
+bool
varobj_set_value (struct varobj *var, const char *expression)
{
struct value *val = NULL; /* Initialize to keep gcc happy. */
CATCH (except, RETURN_MASK_ERROR)
{
/* We cannot proceed without a valid expression. */
- return 0;
+ return false;
}
END_CATCH
CATCH (except, RETURN_MASK_ERROR)
{
- return 0;
+ return false;
}
END_CATCH
variable as changed -- because the first assignment has set the
'updated' flag. There's no need to optimize that, because return value
of -var-update should be considered an approximation. */
- var->updated = install_new_value (var, val, 0 /* Compare values. */);
+ var->updated = install_new_value (var, val, false /* Compare values. */);
input_radix = saved_input_radix;
- return 1;
+ return true;
}
#if HAVE_PYTHON
VAR will change when a new value NEW_VALUE is assigned and if it is so
updates the type of VAR. */
-static int
+static bool
update_type_if_necessary (struct varobj *var, struct value *new_value)
{
if (new_value)
varobj_delete (var, 1);
var->children.clear ();
var->num_children = -1;
- return 1;
+ return true;
}
}
}
- return 0;
+ return false;
}
-/* Assign a new value to a variable object. If INITIAL is non-zero,
- this is the first assignement after the variable object was just
+/* Assign a new value to a variable object. If INITIAL is true,
+ this is the first assignment after the variable object was just
created, or changed type. In that case, just assign the value
- and return 0.
- Otherwise, assign the new value, and return 1 if the value is
- different from the current one, 0 otherwise. The comparison is
+ and return false.
+ Otherwise, assign the new value, and return true if the value is
+ different from the current one, false otherwise. The comparison is
done on textual representation of value. Therefore, some types
need not be compared. E.g. for structures the reported value is
always "{...}", so no comparison is necessary here. If the old
- value was NULL and new one is not, or vice versa, we always return 1.
+ value was NULL and new one is not, or vice versa, we always return true.
The VALUE parameter should not be released -- the function will
take care of releasing it when needed. */
-static int
-install_new_value (struct varobj *var, struct value *value, int initial)
+static bool
+install_new_value (struct varobj *var, struct value *value, bool initial)
{
- int changeable;
- int need_to_fetch;
- int changed = 0;
- int intentionally_not_fetched = 0;
+ bool changeable;
+ bool need_to_fetch;
+ bool changed = false;
+ bool intentionally_not_fetched = false;
/* We need to know the varobj's type to decide if the value should
be fetched or not. C++ fake children (public/protected/private)
changeable. FIXME: need to make sure this behaviour will not
mess up read-sensitive values. */
if (var->dynamic->pretty_printer != NULL)
- changeable = 1;
+ changeable = true;
need_to_fetch = changeable;
the data from memory. For unions, that means we'll read the
same memory more than once, which is not desirable. So
fetch now. */
- need_to_fetch = 1;
+ need_to_fetch = true;
/* The new value might be lazy. If the type is changeable,
that is we'll be comparing values of this type, fetch the
if (need_to_fetch && value && value_lazy (value))
{
const struct varobj *parent = var->parent;
- int frozen = var->frozen;
+ bool frozen = var->frozen;
for (; !frozen && parent; parent = parent->parent)
frozen |= parent->frozen;
variables, we don't do fetch on initial assignment.
For non-initial assignemnt we do the fetch, since it means we're
explicitly asked to compare the new value with the old one. */
- intentionally_not_fetched = 1;
+ intentionally_not_fetched = true;
}
else
{
varobj had after the previous -var-update. So need to the
varobj as changed. */
if (var->updated)
- {
- changed = 1;
- }
+ changed = true;
else if (var->dynamic->pretty_printer == NULL)
{
/* Try to compare the values. That requires that both
Now that we've fetched the real value, we need to report
this varobj as changed so that UI can show the real
value. */
- changed = 1;
+ changed = true;
}
else if (var->value == NULL && value == NULL)
/* Equal. */
;
else if (var->value == NULL || value == NULL)
{
- changed = 1;
+ changed = true;
}
else
{
gdb_assert (!var->print_value.empty () && !print_value.empty ());
if (var->print_value != print_value)
- changed = 1;
+ changed = true;
}
}
}
value_free (var->value);
var->value = value;
if (value && value_lazy (value) && intentionally_not_fetched)
- var->not_fetched = 1;
+ var->not_fetched = true;
else
- var->not_fetched = 0;
- var->updated = 0;
+ var->not_fetched = false;
+ var->updated = false;
install_new_value_visualizer (var);
|| (!var->print_value.empty () && print_value.empty ())
|| (!var->print_value.empty () && !print_value.empty ()
&& var->print_value != print_value))
- changed = 1;
+ changed = true;
}
var->print_value = print_value;
}
/* If NEW_VALUE is the new value of the given varobj (var), return
- non-zero if var has mutated. In other words, if the type of
+ true if var has mutated. In other words, if the type of
the new value is different from the type of the varobj's old
value.
NEW_VALUE may be NULL, if the varobj is now out of scope. */
-static int
+static bool
varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
struct type *new_type)
{
the type has mutated or not. For all intents and purposes,
it has not mutated. */
if (var->num_children < 0)
- return 0;
+ return false;
- if (var->root->lang_ops->value_has_mutated)
+ if (var->root->lang_ops->value_has_mutated != NULL)
{
/* The varobj module, when installing new values, explicitly strips
references, saying that we're not interested in those addresses.
return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
}
else
- return 0;
+ return false;
}
/* Update the values for a variable and its children. This is a
through its children, reconstructing them and noting if they've
changed.
- The EXPLICIT parameter specifies if this call is result
+ The IS_EXPLICIT parameter specifies if this call is result
of MI request to update this specific variable, or
result of implicit -var-update *. For implicit request, we don't
update frozen variables.
to point to the new varobj. */
std::vector<varobj_update_result>
-varobj_update (struct varobj **varp, int is_explicit)
+varobj_update (struct varobj **varp, bool is_explicit)
{
- int type_changed = 0;
+ bool type_changed = false;
struct value *newobj;
std::vector<varobj_update_result> stack;
std::vector<varobj_update_result> result;
value_of_root variable dispose of the varobj if the type
has changed. */
newobj = value_of_root (varp, &type_changed);
- if (update_type_if_necessary(*varp, newobj))
- type_changed = 1;
+ if (update_type_if_necessary (*varp, newobj))
+ type_changed = true;
r.varobj = *varp;
r.type_changed = type_changed;
if (install_new_value ((*varp), newobj, type_changed))
- r.changed = 1;
+ r.changed = true;
if (newobj == NULL)
r.status = VAROBJ_NOT_IN_SCOPE;
- r.value_installed = 1;
+ r.value_installed = true;
if (r.status == VAROBJ_NOT_IN_SCOPE)
{
struct type *new_type;
newobj = value_of_child (v->parent, v->index);
- if (update_type_if_necessary(v, newobj))
- r.type_changed = 1;
+ if (update_type_if_necessary (v, newobj))
+ r.type_changed = true;
if (newobj)
new_type = value_type (newobj);
else
v->to = -1;
v->from = -1;
v->type = new_type;
- r.type_changed = 1;
+ r.type_changed = true;
}
if (install_new_value (v, newobj, r.type_changed))
{
- r.changed = 1;
- v->updated = 0;
+ r.changed = true;
+ v->updated = false;
}
}
if (varobj_is_dynamic_p (v))
{
std::vector<varobj *> changed, type_changed, unchanged, newobj;
- int children_changed = 0;
+ bool children_changed = false;
if (v->frozen)
continue;
- if (!v->dynamic->children_requested)
+ if (!v->dynamic->children_requested_)
{
- int dummy;
+ bool dummy;
/* If we initially did not have potential children, but
now we do, consider the varobj as changed.
if (!varobj_has_more (v, 0))
{
update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
- &dummy, 0, 0, 0);
+ &dummy, false, 0, 0);
if (varobj_has_more (v, 0))
- r.changed = 1;
+ r.changed = true;
}
if (r.changed)
continue;
}
- /* If update_dynamic_varobj_children returns 0, then we have
+ /* If update_dynamic_varobj_children returns false, then we have
a non-conforming pretty-printer, so we skip it. */
if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
- &unchanged, &children_changed, 1,
+ &unchanged, &children_changed, true,
v->from, v->to))
{
if (children_changed || !newobj.empty ())
{
- r.children_changed = 1;
+ r.children_changed = true;
r.newobj = std::move (newobj);
}
/* Push in reverse order so that the first child is
varobj_update_result r (type_changed[i]);
/* Type may change only if value was changed. */
- r.changed = 1;
- r.type_changed = 1;
- r.value_installed = 1;
+ r.changed = true;
+ r.type_changed = true;
+ r.value_installed = true;
stack.push_back (std::move (r));
}
{
varobj_update_result r (changed[i]);
- r.changed = 1;
- r.value_installed = 1;
+ r.changed = true;
+ r.value_installed = true;
stack.push_back (std::move (r));
}
{
varobj_update_result r (unchanged[i]);
- r.value_installed = 1;
+ r.value_installed = true;
stack.push_back (std::move (r));
}
*/
static int
-delete_variable (struct varobj *var, int only_children_p)
+delete_variable (struct varobj *var, bool only_children_p)
{
int delcount = 0;
delete_variable_1 (&delcount, var, only_children_p,
- 1 /* remove_from_parent_p */ );
+ true /* remove_from_parent_p */ );
return delcount;
}
and the parent is not removed we dump core. It must be always
initially called with remove_from_parent_p set. */
static void
-delete_variable_1 (int *delcountp, struct varobj *var, int only_children_p,
- int remove_from_parent_p)
+delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
+ bool remove_from_parent_p)
{
/* Delete any children of this variable, too. */
for (varobj *child : var->children)
if (!remove_from_parent_p)
child->parent = NULL;
- delete_variable_1 (delcountp, child, 0, only_children_p);
+ delete_variable_1 (delcountp, child, false, only_children_p);
}
var->children.clear ();
}
/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
-static int
+static bool
install_variable (struct varobj *var)
{
struct vlist *cv;
rootlist = var->root;
}
- return 1; /* OK */
+ return true; /* OK */
}
/* Unistall the object VAR. */
}
/* If frame associated with VAR can be found, switch
- to it and return 1. Otherwise, return 0. */
+ to it and return true. Otherwise, return false. */
-static int
+static bool
check_scope (const struct varobj *var)
{
struct frame_info *fi;
- int scope;
+ bool scope;
fi = frame_find_by_id (var->root->frame);
scope = fi != NULL;
if (pc < BLOCK_START (var->root->valid_block) ||
pc >= BLOCK_END (var->root->valid_block))
- scope = 0;
+ scope = false;
else
select_frame (fi);
}
{
struct value *new_val = NULL;
struct varobj *var = *var_handle;
- int within_scope = 0;
+ bool within_scope = false;
/* Only root variables can be updated... */
if (!is_root_p (var))
/* Determine whether the variable is still around. */
if (var->root->valid_block == NULL || var->root->floating)
- within_scope = 1;
+ within_scope = true;
else if (var->root->thread_id == 0)
{
/* The program was single-threaded when the variable object was
- *var_handle will be set to the new varobj
Otherwise, *type_changed will be set to 0. */
static struct value *
-value_of_root (struct varobj **var_handle, int *type_changed)
+value_of_root (struct varobj **var_handle, bool *type_changed)
{
struct varobj *var;
install_variable (tmp_var);
*var_handle = tmp_var;
var = *var_handle;
- *type_changed = 1;
+ *type_changed = true;
}
}
else
var->num_children = -1;
var->to = -1;
var->from = -1;
- *type_changed = 1;
+ *type_changed = true;
}
return value;
}
gdb::unique_xmalloc_ptr<char> encoding;
/* Initialize it just to avoid a GCC false warning. */
CORE_ADDR str_addr = 0;
- int string_print = 0;
+ bool string_print = false;
if (value == NULL)
return std::string ();
{
gdbpy_extract_lazy_string (output.get (), &str_addr,
&type, &len, &encoding);
- string_print = 1;
+ string_print = true;
}
else
{
if (hint)
{
if (!strcmp (hint.get (), "string"))
- string_print = 1;
+ string_print = true;
}
thevalue = std::string (s.get ());
return std::move (stb.string ());
}
-int
+bool
varobj_editable_p (const struct varobj *var)
{
struct type *type;
if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
- return 0;
+ return false;
type = varobj_get_value_type (var);
case TYPE_CODE_ARRAY:
case TYPE_CODE_FUNC:
case TYPE_CODE_METHOD:
- return 0;
+ return false;
break;
default:
- return 1;
+ return true;
break;
}
}
/* Call VAR's value_is_changeable_p language-specific callback. */
-int
+bool
varobj_value_is_changeable_p (const struct varobj *var)
{
return var->root->lang_ops->value_is_changeable_p (var);
}
-/* Return 1 if that varobj is floating, that is is always evaluated in the
+/* Return true if that varobj is floating, that is is always evaluated in the
selected frame, and not bound to thread/frame. Such variable objects
are created using '@' as frame specifier to -var-create. */
-int
+bool
varobj_floating_p (const struct varobj *var)
{
return var->root->floating;
/* Implement the "value_is_changeable_p" varobj callback for most
languages. */
-int
+bool
varobj_default_value_is_changeable_p (const struct varobj *var)
{
- int r;
+ bool r;
struct type *type;
if (CPLUS_FAKE_CHILD (var))
- return 0;
+ return false;
type = varobj_get_value_type (var);
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
case TYPE_CODE_ARRAY:
- r = 0;
+ r = false;
break;
default:
- r = 1;
+ r = true;
}
return r;
install_variable (tmp_var);
}
else
- var->root->is_valid = 0;
+ var->root->is_valid = false;
}
else /* locals must be invalidated. */
- var->root->is_valid = 0;
+ var->root->is_valid = false;
}
/* Invalidate the varobjs that are tied to locals and re-create the ones that
DISABLE_COPY_AND_ASSIGN (varobj_update_result);
struct varobj *varobj;
- int type_changed = 0;
- int children_changed = 0;
- int changed = 0;
+ bool type_changed = false;
+ bool children_changed = false;
+ bool changed = false;
enum varobj_scope_status status;
/* This variable is used internally by varobj_update to indicate if the
new value of varobj is already computed and installed, or has to
be yet installed. Don't use this outside varobj.c. */
- int value_installed = 0;
+ bool value_installed = false;
/* This will be non-NULL when new children were added to the varobj.
It lists the new children (which must necessarily come at the end
enum varobj_display_formats format = FORMAT_NATURAL;
/* Was this variable updated via a varobj_set_value operation. */
- int updated = 0;
+ bool updated = false;
/* Last print value. */
std::string print_value;
/* Is this variable frozen. Frozen variables are never implicitly
updated by -var-update *
or -var-update <direct-or-indirect-parent>. */
- int frozen = 0;
+ bool frozen = false;
/* Is the value of this variable intentionally not fetched? It is
not fetched if either the variable is frozen, or any parents is
frozen. */
- int not_fetched = 0;
+ bool not_fetched = false;
/* Sub-range of children which the MI consumer has requested. If
FROM < 0 or TO < 0, means that all children have been
std::string (*value_of_variable) (const struct varobj *var,
enum varobj_display_formats format);
- /* Return non-zero if changes in value of VAR must be detected and
- reported by -var-update. Return zero if -var-update should never
+ /* Return true if changes in value of VAR must be detected and
+ reported by -var-update. Return false if -var-update should never
report changes of such values. This makes sense for structures
(since the changes in children values will be reported separately),
or for artificial objects (like 'public' pseudo-field in C++).
- Return value of 0 means that gdb need not call value_fetch_lazy
+ Return value of false means that gdb need not call value_fetch_lazy
for the value of this variable object. */
- int (*value_is_changeable_p) (const struct varobj *var);
+ bool (*value_is_changeable_p) (const struct varobj *var);
- /* Return nonzero if the type of VAR has mutated.
+ /* Return true if the type of VAR has mutated.
VAR's value is still the varobj's previous value, while NEW_VALUE
is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
children is set (not < 0).
Languages where types do not mutate can set this to NULL. */
- int (*value_has_mutated) (const struct varobj *var, struct value *new_value,
- struct type *new_type);
+ bool (*value_has_mutated) (const struct varobj *var, struct value *new_value,
+ struct type *new_type);
- /* Return nonzero if VAR is a suitable path expression parent.
+ /* Return true if VAR is a suitable path expression parent.
For C like languages with anonymous structures and unions an anonymous
structure or union is not a suitable parent. */
- int (*is_path_expr_parent) (const struct varobj *var);
+ bool (*is_path_expr_parent) (const struct varobj *var);
};
extern const struct lang_varobj_ops c_varobj_ops;
extern std::string varobj_get_expression (const struct varobj *var);
-/* Delete a varobj and all its children if only_children == 0, otherwise delete
- only the children. Return the number of deleted variables. */
+/* Delete a varobj and all its children if only_children is false, otherwise
+ delete only the children. Return the number of deleted variables. */
-extern int varobj_delete (struct varobj *var, int only_children);
+extern int varobj_delete (struct varobj *var, bool only_children);
extern enum varobj_display_formats varobj_set_display_format (
struct varobj *var,
extern int varobj_get_thread_id (const struct varobj *var);
-extern void varobj_set_frozen (struct varobj *var, int frozen);
+extern void varobj_set_frozen (struct varobj *var, bool frozen);
-extern int varobj_get_frozen (const struct varobj *var);
+extern bool varobj_get_frozen (const struct varobj *var);
extern void varobj_get_child_range (const struct varobj *var, int *from,
int *to);
extern std::string varobj_get_value (struct varobj *var);
-extern int varobj_set_value (struct varobj *var, const char *expression);
+extern bool varobj_set_value (struct varobj *var, const char *expression);
extern void all_root_varobjs (void (*func) (struct varobj *var, void *data),
void *data);
extern std::vector<varobj_update_result>
- varobj_update (struct varobj **varp, int is_explicit);
+ varobj_update (struct varobj **varp, bool is_explicit);
extern void varobj_invalidate (void);
-extern int varobj_editable_p (const struct varobj *var);
+extern bool varobj_editable_p (const struct varobj *var);
-extern int varobj_floating_p (const struct varobj *var);
+extern bool varobj_floating_p (const struct varobj *var);
extern void varobj_set_visualizer (struct varobj *var,
const char *visualizer);
extern void varobj_enable_pretty_printing (void);
-extern int varobj_has_more (const struct varobj *var, int to);
+extern bool varobj_has_more (const struct varobj *var, int to);
-extern int varobj_is_dynamic_p (const struct varobj *var);
+extern bool varobj_is_dynamic_p (const struct varobj *var);
-extern int varobj_default_value_is_changeable_p (const struct varobj *var);
-extern int varobj_value_is_changeable_p (const struct varobj *var);
+extern bool varobj_default_value_is_changeable_p (const struct varobj *var);
+extern bool varobj_value_is_changeable_p (const struct varobj *var);
extern struct type *varobj_get_value_type (const struct varobj *var);
-extern int varobj_is_anonymous_child (const struct varobj *child);
+extern bool varobj_is_anonymous_child (const struct varobj *child);
extern const struct varobj *
varobj_get_path_expr_parent (const struct varobj *var);
extern void varobj_restrict_range (const std::vector<varobj *> &children,
int *from, int *to);
-extern int varobj_default_is_path_expr_parent (const struct varobj *var);
+extern bool varobj_default_is_path_expr_parent (const struct varobj *var);
#endif /* VAROBJ_H */