static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
+static int mips32_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR);
+static int micromips_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR,
+ int);
+static int mips16_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR,
+ int);
+
/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
#define ST0_FR (1 << 26)
NULL
};
+/* For backwards compatibility we default to MIPS16. This flag is
+ overridden as soon as unambiguous ELF file flags tell us the
+ compressed ISA encoding used. */
+static const char mips_compression_mips16[] = "mips16";
+static const char mips_compression_micromips[] = "micromips";
+static const char *const mips_compression_strings[] =
+{
+ mips_compression_mips16,
+ mips_compression_micromips,
+ NULL
+};
+
+static const char *mips_compression_string = mips_compression_mips16;
+
/* The standard register names, and all the valid aliases for them. */
struct register_alias
{
}
}
-/* MIPS16 function addresses are odd (bit 0 is set). Here are some
- functions to test, set, or clear bit 0 of addresses. */
+/* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
+ are some functions to handle addresses associated with compressed
+ code including but not limited to testing, setting, or clearing
+ bit 0 of such addresses. */
-static CORE_ADDR
-is_mips16_addr (CORE_ADDR addr)
+/* Return one iff compressed code is the MIPS16 instruction set. */
+
+static int
+is_mips16_isa (struct gdbarch *gdbarch)
+{
+ return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
+}
+
+/* Return one iff compressed code is the microMIPS instruction set. */
+
+static int
+is_micromips_isa (struct gdbarch *gdbarch)
+{
+ return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
+}
+
+/* Return one iff ADDR denotes compressed code. */
+
+static int
+is_compact_addr (CORE_ADDR addr)
{
return ((addr) & 1);
}
+/* Return one iff ADDR denotes standard ISA code. */
+
+static int
+is_mips_addr (CORE_ADDR addr)
+{
+ return !is_compact_addr (addr);
+}
+
+/* Return one iff ADDR denotes MIPS16 code. */
+
+static int
+is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+ return is_compact_addr (addr) && is_mips16_isa (gdbarch);
+}
+
+/* Return one iff ADDR denotes microMIPS code. */
+
+static int
+is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+ return is_compact_addr (addr) && is_micromips_isa (gdbarch);
+}
+
+/* Strip the ISA (compression) bit off from ADDR. */
+
static CORE_ADDR
-unmake_mips16_addr (CORE_ADDR addr)
+unmake_compact_addr (CORE_ADDR addr)
{
return ((addr) & ~(CORE_ADDR) 1);
}
+/* Add the ISA (compression) bit to ADDR. */
+
static CORE_ADDR
-make_mips16_addr (CORE_ADDR addr)
+make_compact_addr (CORE_ADDR addr)
{
return ((addr) | (CORE_ADDR) 1);
}
/* Functions for setting and testing a bit in a minimal symbol that
- marks it as 16-bit function. The MSB of the minimal symbol's
- "info" field is used for this purpose.
+ marks it as MIPS16 or microMIPS function. The MSB of the minimal
+ symbol's "info" field is used for this purpose.
- gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
- i.e. refers to a 16-bit function, and sets a "special" bit in a
- minimal symbol to mark it as a 16-bit function
+ gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
+ "special", i.e. refers to a MIPS16 or microMIPS function, and sets
+ one of the "special" bits in a minimal symbol to mark it accordingly.
+ The test checks an ELF-private flag that is valid for true function
+ symbols only; in particular synthetic symbols such as for PLT stubs
+ have no ELF-private part at all.
- MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
+ msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
+ in a minimal symbol. */
static void
mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
{
- if (ELF_ST_IS_MIPS16 (((elf_symbol_type *)
- (sym))->internal_elf_sym.st_other))
- {
- MSYMBOL_TARGET_FLAG_1 (msym) = 1;
- }
+ elf_symbol_type *elfsym = (elf_symbol_type *) sym;
+
+ if ((sym->flags & BSF_SYNTHETIC) != 0)
+ return;
+
+ if (ELF_ST_IS_MICROMIPS (elfsym->internal_elf_sym.st_other))
+ MSYMBOL_TARGET_FLAG_2 (msym) = 1;
+ else if (ELF_ST_IS_MIPS16 (elfsym->internal_elf_sym.st_other))
+ MSYMBOL_TARGET_FLAG_1 (msym) = 1;
+}
+
+/* Return one iff MSYM refers to standard ISA code. */
+
+static int
+msymbol_is_mips (struct minimal_symbol *msym)
+{
+ return !(MSYMBOL_TARGET_FLAG_1 (msym) | MSYMBOL_TARGET_FLAG_2 (msym));
}
+/* Return one iff MSYM refers to MIPS16 code. */
+
static int
-msymbol_is_special (struct minimal_symbol *msym)
+msymbol_is_mips16 (struct minimal_symbol *msym)
{
return MSYMBOL_TARGET_FLAG_1 (msym);
}
+/* Return one iff MSYM refers to microMIPS code. */
+
+static int
+msymbol_is_micromips (struct minimal_symbol *msym)
+{
+ return MSYMBOL_TARGET_FLAG_2 (msym);
+}
+
/* XFER a value from the big/little/left end of the register.
Depending on the size of the value it might occupy the entire
register or just part of it. Make an allowance for this, aligning
return 0;
}
-/* Table to translate MIPS16 register field to actual register number. */
-static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
+/* Table to translate 3-bit register field to actual register number. */
+static int mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
/* Heuristic_proc_start may hunt through the text section for a long
time across a 2400 baud serial line. Allows the user to limit this
}
}
+/* Tell if the program counter value in MEMADDR is in a standard ISA
+ function. */
+
+int
+mips_pc_is_mips (CORE_ADDR memaddr)
+{
+ struct minimal_symbol *sym;
+
+ /* Flags indicating that this is a MIPS16 or microMIPS function is
+ stored by elfread.c in the high bit of the info field. Use this
+ to decide if the function is standard MIPS. Otherwise if bit 0
+ of the address is clear, then this is a standard MIPS function. */
+ sym = lookup_minimal_symbol_by_pc (memaddr);
+ if (sym)
+ return msymbol_is_mips (sym);
+ else
+ return is_mips_addr (memaddr);
+}
+
/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
int
-mips_pc_is_mips16 (CORE_ADDR memaddr)
+mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
{
struct minimal_symbol *sym;
/* A flag indicating that this is a MIPS16 function is stored by
elfread.c in the high bit of the info field. Use this to decide
- if the function is MIPS16 or normal MIPS. Otherwise if bit 0 of
- the address is set, assume this is a MIPS16 address. */
+ if the function is MIPS16. Otherwise if bit 0 of the address is
+ set, then ELF file flags will tell if this is a MIPS16 function. */
+ sym = lookup_minimal_symbol_by_pc (memaddr);
+ if (sym)
+ return msymbol_is_mips16 (sym);
+ else
+ return is_mips16_addr (gdbarch, memaddr);
+}
+
+/* Tell if the program counter value in MEMADDR is in a microMIPS function. */
+
+int
+mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
+{
+ struct minimal_symbol *sym;
+
+ /* A flag indicating that this is a microMIPS function is stored by
+ elfread.c in the high bit of the info field. Use this to decide
+ if the function is microMIPS. Otherwise if bit 0 of the address
+ is set, then ELF file flags will tell if this is a microMIPS
+ function. */
+ sym = lookup_minimal_symbol_by_pc (memaddr);
+ if (sym)
+ return msymbol_is_micromips (sym);
+ else
+ return is_micromips_addr (gdbarch, memaddr);
+}
+
+/* Tell the ISA type of the function the program counter value in MEMADDR
+ is in. */
+
+static enum mips_isa
+mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
+{
+ struct minimal_symbol *sym;
+
+ /* A flag indicating that this is a MIPS16 or a microMIPS function
+ is stored by elfread.c in the high bit of the info field. Use
+ this to decide if the function is MIPS16 or microMIPS or normal
+ MIPS. Otherwise if bit 0 of the address is set, then ELF file
+ flags will tell if this is a MIPS16 or a microMIPS function. */
sym = lookup_minimal_symbol_by_pc (memaddr);
if (sym)
- return msymbol_is_special (sym);
+ {
+ if (msymbol_is_micromips (sym))
+ return ISA_MICROMIPS;
+ else if (msymbol_is_mips16 (sym))
+ return ISA_MIPS16;
+ else
+ return ISA_MIPS;
+ }
else
- return is_mips16_addr (memaddr);
+ {
+ if (is_mips_addr (memaddr))
+ return ISA_MIPS;
+ else if (is_micromips_addr (gdbarch, memaddr))
+ return ISA_MICROMIPS;
+ else
+ return ISA_MIPS16;
+ }
}
/* Various MIPS16 thunk (aka stub or trampoline) names. */
ULONGEST pc;
regcache_cooked_read_signed (regcache, regnum, &pc);
- if (is_mips16_addr (pc))
- pc = unmake_mips16_addr (pc);
+ if (is_compact_addr (pc))
+ pc = unmake_compact_addr (pc);
return pc;
}
CORE_ADDR pc;
pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
- if (is_mips16_addr (pc))
- pc = unmake_mips16_addr (pc);
+ if (is_compact_addr (pc))
+ pc = unmake_compact_addr (pc);
/* macro/2012-04-20: This hack skips over MIPS16 call thunks as
intermediate frames. In this case we can get the caller's address
from $ra, or if $ra contains an address within a thunk as well, then
{
pc = frame_unwind_register_signed
(next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
- if (is_mips16_addr (pc))
- pc = unmake_mips16_addr (pc);
+ if (is_compact_addr (pc))
+ pc = unmake_compact_addr (pc);
if (mips_in_frame_stub (pc))
{
pc = frame_unwind_register_signed
(next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
- if (is_mips16_addr (pc))
- pc = unmake_mips16_addr (pc);
+ if (is_compact_addr (pc))
+ pc = unmake_compact_addr (pc);
}
}
return pc;
{
int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
- if (mips_pc_is_mips16 (pc))
- regcache_cooked_write_unsigned (regcache, regnum, make_mips16_addr (pc));
- else
+ if (mips_pc_is_mips (pc))
regcache_cooked_write_unsigned (regcache, regnum, pc);
+ else
+ regcache_cooked_write_unsigned (regcache, regnum, make_compact_addr (pc));
}
-/* Fetch and return instruction from the specified location. If the PC
- is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
+/* Fetch and return instruction from the specified location. Handle
+ MIPS16/microMIPS as appropriate. */
static ULONGEST
-mips_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
+mips_fetch_instruction (struct gdbarch *gdbarch,
+ enum mips_isa isa, CORE_ADDR addr, int *statusp)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[MIPS_INSN32_SIZE];
int instlen;
int status;
- if (mips_pc_is_mips16 (addr))
+ switch (isa)
{
+ case ISA_MICROMIPS:
+ case ISA_MIPS16:
instlen = MIPS_INSN16_SIZE;
- addr = unmake_mips16_addr (addr);
+ addr = unmake_compact_addr (addr);
+ break;
+ case ISA_MIPS:
+ instlen = MIPS_INSN32_SIZE;
+ break;
+ default:
+ internal_error (__FILE__, __LINE__, _("invalid ISA"));
+ break;
}
- else
- instlen = MIPS_INSN32_SIZE;
status = target_read_memory (addr, buf, instlen);
+ if (statusp != NULL)
+ *statusp = status;
if (status)
- memory_error (status, addr);
+ {
+ if (statusp == NULL)
+ memory_error (status, addr);
+ return 0;
+ }
return extract_unsigned_integer (buf, instlen, byte_order);
}
#define rtype_shamt(x) ((x >> 6) & 0x1f)
#define rtype_funct(x) (x & 0x3f)
+/* MicroMIPS instruction fields. */
+#define micromips_op(x) ((x) >> 10)
+
+/* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
+ bit and the size respectively of the field extracted. */
+#define b0s4_imm(x) ((x) & 0xf)
+#define b0s5_imm(x) ((x) & 0x1f)
+#define b0s5_reg(x) ((x) & 0x1f)
+#define b0s7_imm(x) ((x) & 0x7f)
+#define b0s10_imm(x) ((x) & 0x3ff)
+#define b1s4_imm(x) (((x) >> 1) & 0xf)
+#define b1s9_imm(x) (((x) >> 1) & 0x1ff)
+#define b2s3_cc(x) (((x) >> 2) & 0x7)
+#define b4s2_regl(x) (((x) >> 4) & 0x3)
+#define b5s5_op(x) (((x) >> 5) & 0x1f)
+#define b5s5_reg(x) (((x) >> 5) & 0x1f)
+#define b6s4_op(x) (((x) >> 6) & 0xf)
+#define b7s3_reg(x) (((x) >> 7) & 0x7)
+
+/* 32-bit instruction formats, B and S refer to the lowest bit and the size
+ respectively of the field extracted. */
+#define b0s6_op(x) ((x) & 0x3f)
+#define b0s11_op(x) ((x) & 0x7ff)
+#define b0s12_imm(x) ((x) & 0xfff)
+#define b0s16_imm(x) ((x) & 0xffff)
+#define b0s26_imm(x) ((x) & 0x3ffffff)
+#define b6s10_ext(x) (((x) >> 6) & 0x3ff)
+#define b11s5_reg(x) (((x) >> 11) & 0x1f)
+#define b12s4_op(x) (((x) >> 12) & 0xf)
+
+/* Return the size in bytes of the instruction INSN encoded in the ISA
+ instruction set. */
+
+static int
+mips_insn_size (enum mips_isa isa, ULONGEST insn)
+{
+ switch (isa)
+ {
+ case ISA_MICROMIPS:
+ if (micromips_op (insn) == 0x1f)
+ return 3 * MIPS_INSN16_SIZE;
+ else if (((micromips_op (insn) & 0x4) == 0x4)
+ || ((micromips_op (insn) & 0x7) == 0x0))
+ return 2 * MIPS_INSN16_SIZE;
+ else
+ return MIPS_INSN16_SIZE;
+ case ISA_MIPS16:
+ if ((insn & 0xf800) == 0xf000)
+ return 2 * MIPS_INSN16_SIZE;
+ else
+ return MIPS_INSN16_SIZE;
+ case ISA_MIPS:
+ return MIPS_INSN32_SIZE;
+ }
+ internal_error (__FILE__, __LINE__, _("invalid ISA"));
+}
+
static LONGEST
mips32_relative_offset (ULONGEST inst)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
unsigned long inst;
int op;
- inst = mips_fetch_instruction (gdbarch, pc);
+ inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
instruction. */
{
return pc;
} /* mips32_next_pc */
+/* Extract the 7-bit signed immediate offset from the microMIPS instruction
+ INSN. */
+
+static LONGEST
+micromips_relative_offset7 (ULONGEST insn)
+{
+ return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
+}
+
+/* Extract the 10-bit signed immediate offset from the microMIPS instruction
+ INSN. */
+
+static LONGEST
+micromips_relative_offset10 (ULONGEST insn)
+{
+ return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
+}
+
+/* Extract the 16-bit signed immediate offset from the microMIPS instruction
+ INSN. */
+
+static LONGEST
+micromips_relative_offset16 (ULONGEST insn)
+{
+ return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
+}
+
+/* Return the size in bytes of the microMIPS instruction at the address PC. */
+
+static int
+micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+ ULONGEST insn;
+
+ insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
+ return mips_insn_size (ISA_MICROMIPS, insn);
+}
+
+/* Calculate the address of the next microMIPS instruction to execute
+ after the INSN coprocessor 1 conditional branch instruction at the
+ address PC. COUNT denotes the number of coprocessor condition bits
+ examined by the branch. */
+
+static CORE_ADDR
+micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
+ ULONGEST insn, CORE_ADDR pc, int count)
+{
+ int fcsr = mips_regnum (gdbarch)->fp_control_status;
+ int cnum = b2s3_cc (insn >> 16) & (count - 1);
+ int tf = b5s5_op (insn >> 16) & 1;
+ int mask = (1 << count) - 1;
+ ULONGEST fcs;
+ int cond;
+
+ if (fcsr == -1)
+ /* No way to handle; it'll most likely trap anyway. */
+ return pc;
+
+ fcs = get_frame_register_unsigned (frame, fcsr);
+ cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
+
+ if (((cond >> cnum) & mask) != mask * !tf)
+ pc += micromips_relative_offset16 (insn);
+ else
+ pc += micromips_pc_insn_size (gdbarch, pc);
+
+ return pc;
+}
+
+/* Calculate the address of the next microMIPS instruction to execute
+ after the instruction at the address PC. */
+
+static CORE_ADDR
+micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
+{
+ struct gdbarch *gdbarch = get_frame_arch (frame);
+ ULONGEST insn;
+
+ insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
+ pc += MIPS_INSN16_SIZE;
+ switch (mips_insn_size (ISA_MICROMIPS, insn))
+ {
+ /* 48-bit instructions. */
+ case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
+ /* No branch or jump instructions in this category. */
+ pc += 2 * MIPS_INSN16_SIZE;
+ break;
+
+ /* 32-bit instructions. */
+ case 2 * MIPS_INSN16_SIZE:
+ insn <<= 16;
+ insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
+ pc += MIPS_INSN16_SIZE;
+ switch (micromips_op (insn >> 16))
+ {
+ case 0x00: /* POOL32A: bits 000000 */
+ if (b0s6_op (insn) == 0x3c
+ /* POOL32Axf: bits 000000 ... 111100 */
+ && (b6s10_ext (insn) & 0x2bf) == 0x3c)
+ /* JALR, JALR.HB: 000000 000x111100 111100 */
+ /* JALRS, JALRS.HB: 000000 010x111100 111100 */
+ pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
+ break;
+
+ case 0x10: /* POOL32I: bits 010000 */
+ switch (b5s5_op (insn >> 16))
+ {
+ case 0x00: /* BLTZ: bits 010000 00000 */
+ case 0x01: /* BLTZAL: bits 010000 00001 */
+ case 0x11: /* BLTZALS: bits 010000 10001 */
+ if (get_frame_register_signed (frame,
+ b0s5_reg (insn >> 16)) < 0)
+ pc += micromips_relative_offset16 (insn);
+ else
+ pc += micromips_pc_insn_size (gdbarch, pc);
+ break;
+
+ case 0x02: /* BGEZ: bits 010000 00010 */
+ case 0x03: /* BGEZAL: bits 010000 00011 */
+ case 0x13: /* BGEZALS: bits 010000 10011 */
+ if (get_frame_register_signed (frame,
+ b0s5_reg (insn >> 16)) >= 0)
+ pc += micromips_relative_offset16 (insn);
+ else
+ pc += micromips_pc_insn_size (gdbarch, pc);
+ break;
+
+ case 0x04: /* BLEZ: bits 010000 00100 */
+ if (get_frame_register_signed (frame,
+ b0s5_reg (insn >> 16)) <= 0)
+ pc += micromips_relative_offset16 (insn);
+ else
+ pc += micromips_pc_insn_size (gdbarch, pc);
+ break;
+
+ case 0x05: /* BNEZC: bits 010000 00101 */
+ if (get_frame_register_signed (frame,
+ b0s5_reg (insn >> 16)) != 0)
+ pc += micromips_relative_offset16 (insn);
+ break;
+
+ case 0x06: /* BGTZ: bits 010000 00110 */
+ if (get_frame_register_signed (frame,
+ b0s5_reg (insn >> 16)) > 0)
+ pc += micromips_relative_offset16 (insn);
+ else
+ pc += micromips_pc_insn_size (gdbarch, pc);
+ break;
+
+ case 0x07: /* BEQZC: bits 010000 00111 */
+ if (get_frame_register_signed (frame,
+ b0s5_reg (insn >> 16)) == 0)
+ pc += micromips_relative_offset16 (insn);
+ break;
+
+ case 0x14: /* BC2F: bits 010000 10100 xxx00 */
+ case 0x15: /* BC2T: bits 010000 10101 xxx00 */
+ if (((insn >> 16) & 0x3) == 0x0)
+ /* BC2F, BC2T: don't know how to handle these. */
+ break;
+ break;
+
+ case 0x1a: /* BPOSGE64: bits 010000 11010 */
+ case 0x1b: /* BPOSGE32: bits 010000 11011 */
+ {
+ unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
+ int dspctl = mips_regnum (gdbarch)->dspctl;
+
+ if (dspctl == -1)
+ /* No way to handle; it'll most likely trap anyway. */
+ break;
+
+ if ((get_frame_register_unsigned (frame,
+ dspctl) & 0x7f) >= pos)
+ pc += micromips_relative_offset16 (insn);
+ else
+ pc += micromips_pc_insn_size (gdbarch, pc);
+ }
+ break;
+
+ case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
+ /* BC1ANY2F: bits 010000 11100 xxx01 */
+ case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
+ /* BC1ANY2T: bits 010000 11101 xxx01 */
+ if (((insn >> 16) & 0x2) == 0x0)
+ pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
+ ((insn >> 16) & 0x1) + 1);
+ break;
+
+ case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
+ case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
+ if (((insn >> 16) & 0x3) == 0x1)
+ pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
+ break;
+ }
+ break;
+
+ case 0x1d: /* JALS: bits 011101 */
+ case 0x35: /* J: bits 110101 */
+ case 0x3d: /* JAL: bits 111101 */
+ pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
+ break;
+
+ case 0x25: /* BEQ: bits 100101 */
+ if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
+ == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
+ pc += micromips_relative_offset16 (insn);
+ else
+ pc += micromips_pc_insn_size (gdbarch, pc);
+ break;
+
+ case 0x2d: /* BNE: bits 101101 */
+ if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
+ != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
+ pc += micromips_relative_offset16 (insn);
+ else
+ pc += micromips_pc_insn_size (gdbarch, pc);
+ break;
+
+ case 0x3c: /* JALX: bits 111100 */
+ pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
+ break;
+ }
+ break;
+
+ /* 16-bit instructions. */
+ case MIPS_INSN16_SIZE:
+ switch (micromips_op (insn))
+ {
+ case 0x11: /* POOL16C: bits 010001 */
+ if ((b5s5_op (insn) & 0x1c) == 0xc)
+ /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
+ pc = get_frame_register_signed (frame, b0s5_reg (insn));
+ else if (b5s5_op (insn) == 0x18)
+ /* JRADDIUSP: bits 010001 11000 */
+ pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
+ break;
+
+ case 0x23: /* BEQZ16: bits 100011 */
+ {
+ int rs = mips_reg3_to_reg[b7s3_reg (insn)];
+
+ if (get_frame_register_signed (frame, rs) == 0)
+ pc += micromips_relative_offset7 (insn);
+ else
+ pc += micromips_pc_insn_size (gdbarch, pc);
+ }
+ break;
+
+ case 0x2b: /* BNEZ16: bits 101011 */
+ {
+ int rs = mips_reg3_to_reg[b7s3_reg (insn)];
+
+ if (get_frame_register_signed (frame, rs) != 0)
+ pc += micromips_relative_offset7 (insn);
+ else
+ pc += micromips_pc_insn_size (gdbarch, pc);
+ }
+ break;
+
+ case 0x33: /* B16: bits 110011 */
+ pc += micromips_relative_offset10 (insn);
+ break;
+ }
+ break;
+ }
+
+ return pc;
+}
+
/* Decoding the next place to set a breakpoint is irregular for the
mips 16 variant, but fortunately, there fewer instructions. We have
to cope ith extensions for 16 bit instructions and a pair of actual
unsigned int nexthalf;
value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
value = value << 16;
- nexthalf = mips_fetch_instruction (gdbarch, pc + 2); /* low bit
- still set. */
+ nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
+ /* Low bit still set. */
value |= nexthalf;
offset = value;
regx = -1;
struct upk_mips16 upk;
int reg;
unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
- reg = get_frame_register_signed (frame, mips16_to_32_reg[upk.regx]);
+ reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
if (reg == 0)
pc += (upk.offset << 1) + 2;
else
struct upk_mips16 upk;
int reg;
unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
- reg = get_frame_register_signed (frame, mips16_to_32_reg[upk.regx]);
+ reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
if (reg != 0)
pc += (upk.offset << 1) + 2;
else
upk.regx = (insn >> 8) & 0x07;
upk.regy = (insn >> 5) & 0x07;
if ((upk.regy & 1) == 0)
- reg = mips16_to_32_reg[upk.regx];
+ reg = mips_reg3_to_reg[upk.regx];
else
reg = 31; /* Function return instruction. */
pc = get_frame_register_signed (frame, reg);
target monitor or stub is not developed enough to do a single_step.
It works by decoding the current instruction and predicting where a
branch will go. This isnt hard because all the data is available.
- The MIPS32 and MIPS16 variants are quite different. */
+ The MIPS32, MIPS16 and microMIPS variants are quite different. */
static CORE_ADDR
mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
- if (mips_pc_is_mips16 (pc))
+ struct gdbarch *gdbarch = get_frame_arch (frame);
+
+ if (mips_pc_is_mips16 (gdbarch, pc))
return mips16_next_pc (frame, pc);
+ else if (mips_pc_is_micromips (gdbarch, pc))
+ return micromips_next_pc (frame, pc);
else
return mips32_next_pc (frame, pc);
}
prev_inst = inst;
/* Fetch and decode the instruction. */
- inst = (unsigned short) mips_fetch_instruction (gdbarch, cur_pc);
+ inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
+ cur_pc, NULL);
/* Normally we ignore extend instructions. However, if it is
not followed by a valid prologue instruction, then this
else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
{
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
- reg = mips16_to_32_reg[(inst & 0x700) >> 8];
+ reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
set_reg_offset (gdbarch, this_cache, reg, sp + offset);
}
else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
{
offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
- reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
+ reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
set_reg_offset (gdbarch, this_cache, reg, sp + offset);
}
else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
{
offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
- reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
+ reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
}
else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
{
offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
- reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
+ reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
}
else if ((inst & 0xf81f) == 0xe809
offset -= mips_abi_regsize (gdbarch);
}
- /* Check if A0-A3 were pushed on the stack. */
- for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
+ /* Check if A0-A3 were pushed on the stack. */
+ for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
+ {
+ set_reg_offset (gdbarch, this_cache, reg, sp + offset);
+ offset -= mips_abi_regsize (gdbarch);
+ }
+ }
+
+ if (this_cache != NULL)
+ {
+ this_cache->base =
+ (get_frame_register_signed (this_frame,
+ gdbarch_num_regs (gdbarch) + frame_reg)
+ + frame_offset - frame_adjust);
+ /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
+ be able to get rid of the assignment below, evetually. But it's
+ still needed for now. */
+ this_cache->saved_regs[gdbarch_num_regs (gdbarch)
+ + mips_regnum (gdbarch)->pc]
+ = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
+ }
+
+ /* If we didn't reach the end of the prologue when scanning the function
+ instructions, then set end_prologue_addr to the address of the
+ instruction immediately after the last one we scanned. */
+ if (end_prologue_addr == 0)
+ end_prologue_addr = cur_pc;
+
+ return end_prologue_addr;
+}
+
+/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
+ Procedures that use the 32-bit instruction set are handled by the
+ mips_insn32 unwinder. */
+
+static struct mips_frame_cache *
+mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
+{
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
+ struct mips_frame_cache *cache;
+
+ if ((*this_cache) != NULL)
+ return (*this_cache);
+ cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
+ (*this_cache) = cache;
+ cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
+
+ /* Analyze the function prologue. */
+ {
+ const CORE_ADDR pc = get_frame_address_in_block (this_frame);
+ CORE_ADDR start_addr;
+
+ find_pc_partial_function (pc, NULL, &start_addr, NULL);
+ if (start_addr == 0)
+ start_addr = heuristic_proc_start (gdbarch, pc);
+ /* We can't analyze the prologue if we couldn't find the begining
+ of the function. */
+ if (start_addr == 0)
+ return cache;
+
+ mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
+ }
+
+ /* gdbarch_sp_regnum contains the value and not the address. */
+ trad_frame_set_value (cache->saved_regs,
+ gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
+ cache->base);
+
+ return (*this_cache);
+}
+
+static void
+mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
+ struct frame_id *this_id)
+{
+ struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
+ this_cache);
+ /* This marks the outermost frame. */
+ if (info->base == 0)
+ return;
+ (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
+}
+
+static struct value *
+mips_insn16_frame_prev_register (struct frame_info *this_frame,
+ void **this_cache, int regnum)
+{
+ struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
+ this_cache);
+ return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
+}
+
+static int
+mips_insn16_frame_sniffer (const struct frame_unwind *self,
+ struct frame_info *this_frame, void **this_cache)
+{
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
+ CORE_ADDR pc = get_frame_pc (this_frame);
+ if (mips_pc_is_mips16 (gdbarch, pc))
+ return 1;
+ return 0;
+}
+
+static const struct frame_unwind mips_insn16_frame_unwind =
+{
+ NORMAL_FRAME,
+ default_frame_unwind_stop_reason,
+ mips_insn16_frame_this_id,
+ mips_insn16_frame_prev_register,
+ NULL,
+ mips_insn16_frame_sniffer
+};
+
+static CORE_ADDR
+mips_insn16_frame_base_address (struct frame_info *this_frame,
+ void **this_cache)
+{
+ struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
+ this_cache);
+ return info->base;
+}
+
+static const struct frame_base mips_insn16_frame_base =
+{
+ &mips_insn16_frame_unwind,
+ mips_insn16_frame_base_address,
+ mips_insn16_frame_base_address,
+ mips_insn16_frame_base_address
+};
+
+static const struct frame_base *
+mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
+{
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
+ CORE_ADDR pc = get_frame_pc (this_frame);
+ if (mips_pc_is_mips16 (gdbarch, pc))
+ return &mips_insn16_frame_base;
+ else
+ return NULL;
+}
+
+/* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
+ to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
+ interpreted directly, and then multiplied by 4. */
+
+static int
+micromips_decode_imm9 (int imm)
+{
+ imm = (imm ^ 0x100) - 0x100;
+ if (imm > -3 && imm < 2)
+ imm ^= 0x100;
+ return imm << 2;
+}
+
+/* Analyze the function prologue from START_PC to LIMIT_PC. Return
+ the address of the first instruction past the prologue. */
+
+static CORE_ADDR
+micromips_scan_prologue (struct gdbarch *gdbarch,
+ CORE_ADDR start_pc, CORE_ADDR limit_pc,
+ struct frame_info *this_frame,
+ struct mips_frame_cache *this_cache)
+{
+ CORE_ADDR end_prologue_addr = 0;
+ int prev_non_prologue_insn = 0;
+ int frame_reg = MIPS_SP_REGNUM;
+ int this_non_prologue_insn;
+ int non_prologue_insns = 0;
+ long frame_offset = 0; /* Size of stack frame. */
+ long frame_adjust = 0; /* Offset of FP from SP. */
+ CORE_ADDR frame_addr = 0; /* Value of $30, used as frame pointer. */
+ CORE_ADDR prev_pc;
+ CORE_ADDR cur_pc;
+ ULONGEST insn; /* current instruction */
+ CORE_ADDR sp;
+ long offset;
+ long sp_adj;
+ long v1_off = 0; /* The assumption is LUI will replace it. */
+ int reglist;
+ int breg;
+ int dreg;
+ int sreg;
+ int treg;
+ int loc;
+ int op;
+ int s;
+ int i;
+
+ /* Can be called when there's no process, and hence when there's no
+ THIS_FRAME. */
+ if (this_frame != NULL)
+ sp = get_frame_register_signed (this_frame,
+ gdbarch_num_regs (gdbarch)
+ + MIPS_SP_REGNUM);
+ else
+ sp = 0;
+
+ if (limit_pc > start_pc + 200)
+ limit_pc = start_pc + 200;
+ prev_pc = start_pc;
+
+ /* Permit at most one non-prologue non-control-transfer instruction
+ in the middle which may have been reordered by the compiler for
+ optimisation. */
+ for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
+ {
+ this_non_prologue_insn = 0;
+ sp_adj = 0;
+ loc = 0;
+ insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
+ loc += MIPS_INSN16_SIZE;
+ switch (mips_insn_size (ISA_MICROMIPS, insn))
+ {
+ /* 48-bit instructions. */
+ case 3 * MIPS_INSN16_SIZE:
+ /* No prologue instructions in this category. */
+ this_non_prologue_insn = 1;
+ loc += 2 * MIPS_INSN16_SIZE;
+ break;
+
+ /* 32-bit instructions. */
+ case 2 * MIPS_INSN16_SIZE:
+ insn <<= 16;
+ insn |= mips_fetch_instruction (gdbarch,
+ ISA_MICROMIPS, cur_pc + loc, NULL);
+ loc += MIPS_INSN16_SIZE;
+ switch (micromips_op (insn >> 16))
+ {
+ /* Record $sp/$fp adjustment. */
+ /* Discard (D)ADDU $gp,$jp used for PIC code. */
+ case 0x0: /* POOL32A: bits 000000 */
+ case 0x16: /* POOL32S: bits 010110 */
+ op = b0s11_op (insn);
+ sreg = b0s5_reg (insn >> 16);
+ treg = b5s5_reg (insn >> 16);
+ dreg = b11s5_reg (insn);
+ if (op == 0x1d0
+ /* SUBU: bits 000000 00111010000 */
+ /* DSUBU: bits 010110 00111010000 */
+ && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
+ && treg == 3)
+ /* (D)SUBU $sp, $v1 */
+ sp_adj = v1_off;
+ else if (op != 0x150
+ /* ADDU: bits 000000 00101010000 */
+ /* DADDU: bits 010110 00101010000 */
+ || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
+ this_non_prologue_insn = 1;
+ break;
+
+ case 0x8: /* POOL32B: bits 001000 */
+ op = b12s4_op (insn);
+ breg = b0s5_reg (insn >> 16);
+ reglist = sreg = b5s5_reg (insn >> 16);
+ offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
+ if ((op == 0x9 || op == 0xc)
+ /* SWP: bits 001000 1001 */
+ /* SDP: bits 001000 1100 */
+ && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
+ /* S[DW]P reg,offset($sp) */
+ {
+ s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
+ set_reg_offset (gdbarch, this_cache,
+ sreg, sp + offset);
+ set_reg_offset (gdbarch, this_cache,
+ sreg + 1, sp + offset + s);
+ }
+ else if ((op == 0xd || op == 0xf)
+ /* SWM: bits 001000 1101 */
+ /* SDM: bits 001000 1111 */
+ && breg == MIPS_SP_REGNUM
+ /* SWM reglist,offset($sp) */
+ && ((reglist >= 1 && reglist <= 9)
+ || (reglist >= 16 && reglist <= 25)))
+ {
+ int sreglist = min(reglist & 0xf, 8);
+
+ s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
+ for (i = 0; i < sreglist; i++)
+ set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
+ if ((reglist & 0xf) > 8)
+ set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
+ if ((reglist & 0x10) == 0x10)
+ set_reg_offset (gdbarch, this_cache,
+ MIPS_RA_REGNUM, sp + s * i++);
+ }
+ else
+ this_non_prologue_insn = 1;
+ break;
+
+ /* Record $sp/$fp adjustment. */
+ /* Discard (D)ADDIU $gp used for PIC code. */
+ case 0xc: /* ADDIU: bits 001100 */
+ case 0x17: /* DADDIU: bits 010111 */
+ sreg = b0s5_reg (insn >> 16);
+ dreg = b5s5_reg (insn >> 16);
+ offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
+ if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
+ /* (D)ADDIU $sp, imm */
+ sp_adj = offset;
+ else if (sreg == MIPS_SP_REGNUM && dreg == 30)
+ /* (D)ADDIU $fp, $sp, imm */
+ {
+ frame_addr = sp + offset;
+ frame_adjust = offset;
+ frame_reg = 30;
+ }
+ else if (sreg != 28 || dreg != 28)
+ /* (D)ADDIU $gp, imm */
+ this_non_prologue_insn = 1;
+ break;
+
+ /* LUI $v1 is used for larger $sp adjustments. */
+ /* Discard LUI $gp is used for PIC code. */
+ case 0x10: /* POOL32I: bits 010000 */
+ if (b5s5_op (insn >> 16) == 0xd
+ /* LUI: bits 010000 001101 */
+ && b0s5_reg (insn >> 16) == 3)
+ /* LUI $v1, imm */
+ v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
+ else if (b5s5_op (insn >> 16) != 0xd
+ /* LUI: bits 010000 001101 */
+ || b0s5_reg (insn >> 16) != 28)
+ /* LUI $gp, imm */
+ this_non_prologue_insn = 1;
+ break;
+
+ /* ORI $v1 is used for larger $sp adjustments. */
+ case 0x14: /* ORI: bits 010100 */
+ sreg = b0s5_reg (insn >> 16);
+ dreg = b5s5_reg (insn >> 16);
+ if (sreg == 3 && dreg == 3)
+ /* ORI $v1, imm */
+ v1_off |= b0s16_imm (insn);
+ else
+ this_non_prologue_insn = 1;
+ break;
+
+ case 0x26: /* SWC1: bits 100110 */
+ case 0x2e: /* SDC1: bits 101110 */
+ breg = b0s5_reg (insn >> 16);
+ if (breg != MIPS_SP_REGNUM)
+ /* S[DW]C1 reg,offset($sp) */
+ this_non_prologue_insn = 1;
+ break;
+
+ case 0x36: /* SD: bits 110110 */
+ case 0x3e: /* SW: bits 111110 */
+ breg = b0s5_reg (insn >> 16);
+ sreg = b5s5_reg (insn >> 16);
+ offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
+ if (breg == MIPS_SP_REGNUM)
+ /* S[DW] reg,offset($sp) */
+ set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
+ else
+ this_non_prologue_insn = 1;
+ break;
+
+ default:
+ this_non_prologue_insn = 1;
+ break;
+ }
+ break;
+
+ /* 16-bit instructions. */
+ case MIPS_INSN16_SIZE:
+ switch (micromips_op (insn))
+ {
+ case 0x3: /* MOVE: bits 000011 */
+ sreg = b0s5_reg (insn);
+ dreg = b5s5_reg (insn);
+ if (sreg == MIPS_SP_REGNUM && dreg == 30)
+ /* MOVE $fp, $sp */
+ {
+ frame_addr = sp;
+ frame_reg = 30;
+ }
+ else if ((sreg & 0x1c) != 0x4)
+ /* MOVE reg, $a0-$a3 */
+ this_non_prologue_insn = 1;
+ break;
+
+ case 0x11: /* POOL16C: bits 010001 */
+ if (b6s4_op (insn) == 0x5)
+ /* SWM: bits 010001 0101 */
+ {
+ offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
+ reglist = b4s2_regl (insn);
+ for (i = 0; i <= reglist; i++)
+ set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
+ set_reg_offset (gdbarch, this_cache,
+ MIPS_RA_REGNUM, sp + 4 * i++);
+ }
+ else
+ this_non_prologue_insn = 1;
+ break;
+
+ case 0x13: /* POOL16D: bits 010011 */
+ if ((insn & 0x1) == 0x1)
+ /* ADDIUSP: bits 010011 1 */
+ sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
+ else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
+ /* ADDIUS5: bits 010011 0 */
+ /* ADDIUS5 $sp, imm */
+ sp_adj = (b1s4_imm (insn) ^ 8) - 8;
+ else
+ this_non_prologue_insn = 1;
+ break;
+
+ case 0x32: /* SWSP: bits 110010 */
+ offset = b0s5_imm (insn) << 2;
+ sreg = b5s5_reg (insn);
+ set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
+ break;
+
+ default:
+ this_non_prologue_insn = 1;
+ break;
+ }
+ break;
+ }
+ if (sp_adj < 0)
+ frame_offset -= sp_adj;
+
+ non_prologue_insns += this_non_prologue_insn;
+ /* Enough non-prologue insns seen or positive stack adjustment? */
+ if (end_prologue_addr == 0 && (non_prologue_insns > 1 || sp_adj > 0))
{
- set_reg_offset (gdbarch, this_cache, reg, sp + offset);
- offset -= mips_abi_regsize (gdbarch);
+ end_prologue_addr = prev_non_prologue_insn ? prev_pc : cur_pc;
+ break;
}
+ prev_non_prologue_insn = this_non_prologue_insn;
+ prev_pc = cur_pc;
}
if (this_cache != NULL)
{
this_cache->base =
- (get_frame_register_signed (this_frame,
+ (get_frame_register_signed (this_frame,
gdbarch_num_regs (gdbarch) + frame_reg)
- + frame_offset - frame_adjust);
+ + frame_offset - frame_adjust);
/* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
- be able to get rid of the assignment below, evetually. But it's
- still needed for now. */
+ be able to get rid of the assignment below, evetually. But it's
+ still needed for now. */
this_cache->saved_regs[gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->pc]
- = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
+ = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
}
/* If we didn't reach the end of the prologue when scanning the function
instructions, then set end_prologue_addr to the address of the
- instruction immediately after the last one we scanned. */
+ instruction immediately after the last one we scanned. Unless the
+ last one looked like a non-prologue instruction (and we looked ahead),
+ in which case use its address instead. */
if (end_prologue_addr == 0)
- end_prologue_addr = cur_pc;
+ end_prologue_addr = prev_non_prologue_insn ? prev_pc : cur_pc;
return end_prologue_addr;
}
-/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
+/* Heuristic unwinder for procedures using microMIPS instructions.
Procedures that use the 32-bit instruction set are handled by the
- mips_insn32 unwinder. */
+ mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
static struct mips_frame_cache *
-mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
+mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
struct mips_frame_cache *cache;
if ((*this_cache) != NULL)
return (*this_cache);
+
cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
(*this_cache) = cache;
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
find_pc_partial_function (pc, NULL, &start_addr, NULL);
if (start_addr == 0)
- start_addr = heuristic_proc_start (gdbarch, pc);
+ start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
/* We can't analyze the prologue if we couldn't find the begining
of the function. */
if (start_addr == 0)
return cache;
- mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
+ micromips_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
}
-
+
/* gdbarch_sp_regnum contains the value and not the address. */
trad_frame_set_value (cache->saved_regs,
gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
}
static void
-mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
- struct frame_id *this_id)
+mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
+ struct frame_id *this_id)
{
- struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
- this_cache);
+ struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
+ this_cache);
/* This marks the outermost frame. */
if (info->base == 0)
return;
}
static struct value *
-mips_insn16_frame_prev_register (struct frame_info *this_frame,
- void **this_cache, int regnum)
+mips_micro_frame_prev_register (struct frame_info *this_frame,
+ void **this_cache, int regnum)
{
- struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
- this_cache);
+ struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
+ this_cache);
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}
static int
-mips_insn16_frame_sniffer (const struct frame_unwind *self,
- struct frame_info *this_frame, void **this_cache)
+mips_micro_frame_sniffer (const struct frame_unwind *self,
+ struct frame_info *this_frame, void **this_cache)
{
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
CORE_ADDR pc = get_frame_pc (this_frame);
- if (mips_pc_is_mips16 (pc))
+
+ if (mips_pc_is_micromips (gdbarch, pc))
return 1;
return 0;
}
-static const struct frame_unwind mips_insn16_frame_unwind =
+static const struct frame_unwind mips_micro_frame_unwind =
{
NORMAL_FRAME,
default_frame_unwind_stop_reason,
- mips_insn16_frame_this_id,
- mips_insn16_frame_prev_register,
+ mips_micro_frame_this_id,
+ mips_micro_frame_prev_register,
NULL,
- mips_insn16_frame_sniffer
+ mips_micro_frame_sniffer
};
static CORE_ADDR
-mips_insn16_frame_base_address (struct frame_info *this_frame,
- void **this_cache)
+mips_micro_frame_base_address (struct frame_info *this_frame,
+ void **this_cache)
{
- struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
- this_cache);
+ struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
+ this_cache);
return info->base;
}
-static const struct frame_base mips_insn16_frame_base =
+static const struct frame_base mips_micro_frame_base =
{
- &mips_insn16_frame_unwind,
- mips_insn16_frame_base_address,
- mips_insn16_frame_base_address,
- mips_insn16_frame_base_address
+ &mips_micro_frame_unwind,
+ mips_micro_frame_base_address,
+ mips_micro_frame_base_address,
+ mips_micro_frame_base_address
};
static const struct frame_base *
-mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
+mips_micro_frame_base_sniffer (struct frame_info *this_frame)
{
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
CORE_ADDR pc = get_frame_pc (this_frame);
- if (mips_pc_is_mips16 (pc))
- return &mips_insn16_frame_base;
+
+ if (mips_pc_is_micromips (gdbarch, pc))
+ return &mips_micro_frame_base;
else
return NULL;
}
int reg;
/* Fetch the instruction. */
- inst = (unsigned long) mips_fetch_instruction (gdbarch, cur_pc);
+ inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
+ cur_pc, NULL);
/* Save some code by pre-extracting some useful fields. */
high_word = (inst >> 16) & 0xffff;
/* Heuristic unwinder for procedures using 32-bit instructions (covers
both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
instructions (a.k.a. MIPS16) are handled by the mips_insn16
- unwinder. */
+ unwinder. Likewise microMIPS and the mips_micro unwinder. */
static struct mips_frame_cache *
mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
struct frame_info *this_frame, void **this_cache)
{
CORE_ADDR pc = get_frame_pc (this_frame);
- if (! mips_pc_is_mips16 (pc))
+ if (mips_pc_is_mips (pc))
return 1;
return 0;
}
mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
{
CORE_ADDR pc = get_frame_pc (this_frame);
- if (! mips_pc_is_mips16 (pc))
+ if (mips_pc_is_mips (pc))
return &mips_insn32_frame_base;
else
return NULL;
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- if (is_mips16_addr (addr))
- addr = unmake_mips16_addr (addr);
+ if (is_compact_addr (addr))
+ addr = unmake_compact_addr (addr);
if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
/* This hack is a work-around for existing boards using PMON, the
return addr;
}
-/* Instructions used during single-stepping of atomic sequences. */
-#define LL_OPCODE 0x30
-#define LLD_OPCODE 0x34
-#define SC_OPCODE 0x38
-#define SCD_OPCODE 0x3c
/* Checks for an atomic sequence of instructions beginning with a LL/LLD
instruction and ending with a SC/SCD instruction. If such a sequence
is found, attempt to step through it. A breakpoint is placed at the end of
the sequence. */
+/* Instructions used during single-stepping of atomic sequences, standard
+ ISA version. */
+#define LL_OPCODE 0x30
+#define LLD_OPCODE 0x34
+#define SC_OPCODE 0x38
+#define SCD_OPCODE 0x3c
+
static int
-deal_with_atomic_sequence (struct gdbarch *gdbarch,
- struct address_space *aspace, CORE_ADDR pc)
+mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
+ struct address_space *aspace, CORE_ADDR pc)
{
CORE_ADDR breaks[2] = {-1, -1};
CORE_ADDR loc = pc;
CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
- unsigned long insn;
+ ULONGEST insn;
int insn_count;
int index;
int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
const int atomic_sequence_length = 16; /* Instruction sequence length. */
- if (pc & 0x01)
- return 0;
-
- insn = mips_fetch_instruction (gdbarch, loc);
+ insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
/* Assume all atomic sequences start with a ll/lld instruction. */
if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
return 0;
{
int is_branch = 0;
loc += MIPS_INSN32_SIZE;
- insn = mips_fetch_instruction (gdbarch, loc);
+ insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
/* Assume that there is at most one branch in the atomic
sequence. If a branch is found, put a breakpoint in its
return 1;
}
+static int
+micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
+ struct address_space *aspace,
+ CORE_ADDR pc)
+{
+ const int atomic_sequence_length = 16; /* Instruction sequence length. */
+ int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
+ CORE_ADDR breaks[2] = {-1, -1};
+ CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
+ CORE_ADDR loc = pc;
+ int sc_found = 0;
+ ULONGEST insn;
+ int insn_count;
+ int index;
+
+ /* Assume all atomic sequences start with a ll/lld instruction. */
+ insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
+ if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
+ return 0;
+ loc += MIPS_INSN16_SIZE;
+ insn <<= 16;
+ insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
+ if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
+ return 0;
+ loc += MIPS_INSN16_SIZE;
+
+ /* Assume all atomic sequences end with an sc/scd instruction. Assume
+ that no atomic sequence is longer than "atomic_sequence_length"
+ instructions. */
+ for (insn_count = 0;
+ !sc_found && insn_count < atomic_sequence_length;
+ ++insn_count)
+ {
+ int is_branch = 0;
+
+ insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
+ loc += MIPS_INSN16_SIZE;
+
+ /* Assume that there is at most one conditional branch in the
+ atomic sequence. If a branch is found, put a breakpoint in
+ its destination address. */
+ switch (mips_insn_size (ISA_MICROMIPS, insn))
+ {
+ /* 48-bit instructions. */
+ case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
+ loc += 2 * MIPS_INSN16_SIZE;
+ break;
+
+ /* 32-bit instructions. */
+ case 2 * MIPS_INSN16_SIZE:
+ switch (micromips_op (insn))
+ {
+ case 0x10: /* POOL32I: bits 010000 */
+ if ((b5s5_op (insn) & 0x18) != 0x0
+ /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
+ /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
+ && (b5s5_op (insn) & 0x1d) != 0x11
+ /* BLTZALS, BGEZALS: bits 010000 100x1 */
+ && ((b5s5_op (insn) & 0x1e) != 0x14
+ || (insn & 0x3) != 0x0)
+ /* BC2F, BC2T: bits 010000 1010x xxx00 */
+ && (b5s5_op (insn) & 0x1e) != 0x1a
+ /* BPOSGE64, BPOSGE32: bits 010000 1101x */
+ && ((b5s5_op (insn) & 0x1e) != 0x1c
+ || (insn & 0x3) != 0x0)
+ /* BC1F, BC1T: bits 010000 1110x xxx00 */
+ && ((b5s5_op (insn) & 0x1c) != 0x1c
+ || (insn & 0x3) != 0x1))
+ /* BC1ANY*: bits 010000 111xx xxx01 */
+ break;
+ /* Fall through. */
+
+ case 0x25: /* BEQ: bits 100101 */
+ case 0x2d: /* BNE: bits 101101 */
+ insn <<= 16;
+ insn |= mips_fetch_instruction (gdbarch,
+ ISA_MICROMIPS, loc, NULL);
+ branch_bp = (loc + MIPS_INSN16_SIZE
+ + micromips_relative_offset16 (insn));
+ is_branch = 1;
+ break;
+
+ case 0x00: /* POOL32A: bits 000000 */
+ insn <<= 16;
+ insn |= mips_fetch_instruction (gdbarch,
+ ISA_MICROMIPS, loc, NULL);
+ if (b0s6_op (insn) != 0x3c
+ /* POOL32Axf: bits 000000 ... 111100 */
+ || (b6s10_ext (insn) & 0x2bf) != 0x3c)
+ /* JALR, JALR.HB: 000000 000x111100 111100 */
+ /* JALRS, JALRS.HB: 000000 010x111100 111100 */
+ break;
+ /* Fall through. */
+
+ case 0x1d: /* JALS: bits 011101 */
+ case 0x35: /* J: bits 110101 */
+ case 0x3d: /* JAL: bits 111101 */
+ case 0x3c: /* JALX: bits 111100 */
+ return 0; /* Fall back to the standard single-step code. */
+
+ case 0x18: /* POOL32C: bits 011000 */
+ if ((b12s4_op (insn) & 0xb) == 0xb)
+ /* SC, SCD: bits 011000 1x11 */
+ sc_found = 1;
+ break;
+ }
+ loc += MIPS_INSN16_SIZE;
+ break;
+
+ /* 16-bit instructions. */
+ case MIPS_INSN16_SIZE:
+ switch (micromips_op (insn))
+ {
+ case 0x23: /* BEQZ16: bits 100011 */
+ case 0x2b: /* BNEZ16: bits 101011 */
+ branch_bp = loc + micromips_relative_offset7 (insn);
+ is_branch = 1;
+ break;
+
+ case 0x11: /* POOL16C: bits 010001 */
+ if ((b5s5_op (insn) & 0x1c) != 0xc
+ /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
+ && b5s5_op (insn) != 0x18)
+ /* JRADDIUSP: bits 010001 11000 */
+ break;
+ return 0; /* Fall back to the standard single-step code. */
+
+ case 0x33: /* B16: bits 110011 */
+ return 0; /* Fall back to the standard single-step code. */
+ }
+ break;
+ }
+ if (is_branch)
+ {
+ if (last_breakpoint >= 1)
+ return 0; /* More than one branch found, fallback to the
+ standard single-step code. */
+ breaks[1] = branch_bp;
+ last_breakpoint++;
+ }
+ }
+ if (!sc_found)
+ return 0;
+
+ /* Insert a breakpoint right after the end of the atomic sequence. */
+ breaks[0] = loc;
+
+ /* Check for duplicated breakpoints. Check also for a breakpoint
+ placed (branch instruction's destination) in the atomic sequence */
+ if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
+ last_breakpoint = 0;
+
+ /* Effectively inserts the breakpoints. */
+ for (index = 0; index <= last_breakpoint; index++)
+ insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
+
+ return 1;
+}
+
+static int
+deal_with_atomic_sequence (struct gdbarch *gdbarch,
+ struct address_space *aspace, CORE_ADDR pc)
+{
+ if (mips_pc_is_mips (pc))
+ return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
+ else if (mips_pc_is_micromips (gdbarch, pc))
+ return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
+ else
+ return 0;
+}
+
/* mips_software_single_step() is called just before we want to resume
the inferior, if we want to single-step it but there is no hardware
or kernel single-step support (MIPS on GNU/Linux for example). We find
ULONGEST hint;
/* This used to check for MIPS16, but this piece of code is never
- called for MIPS16 functions. */
- gdb_assert (!mips_pc_is_mips16 (pc));
+ called for MIPS16 functions. And likewise microMIPS ones. */
+ gdb_assert (mips_pc_is_mips (pc));
- insn = mips_fetch_instruction (gdbarch, pc);
+ insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
hint = 0x7c0;
return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
}
if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
fence = VM_MIN_ADDRESS;
- instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
+ instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
inf = current_inferior ();
return 0;
}
- else if (mips_pc_is_mips16 (start_pc))
+ else if (mips_pc_is_mips16 (gdbarch, start_pc))
{
unsigned short inst;
addiu sp,-n
daddiu sp,-n
extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
- inst = mips_fetch_instruction (gdbarch, start_pc);
+ inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
if ((inst & 0xff80) == 0x6480) /* save */
{
if (start_pc - instlen >= fence)
{
- inst = mips_fetch_instruction (gdbarch, start_pc - instlen);
+ inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
+ start_pc - instlen, NULL);
if ((inst & 0xf800) == 0xf000) /* extend */
start_pc -= instlen;
}
else
seen_adjsp = 0;
}
+ else if (mips_pc_is_micromips (gdbarch, start_pc))
+ {
+ ULONGEST insn;
+ int stop = 0;
+ long offset;
+ int dreg;
+ int sreg;
+
+ /* On microMIPS, any one of the following is likely to be the
+ start of a function:
+ ADDIUSP -imm
+ (D)ADDIU $sp, -imm
+ LUI $gp, imm */
+ insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
+ switch (micromips_op (insn))
+ {
+ case 0xc: /* ADDIU: bits 001100 */
+ case 0x17: /* DADDIU: bits 010111 */
+ sreg = b0s5_reg (insn);
+ dreg = b5s5_reg (insn);
+ insn <<= 16;
+ insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
+ pc + MIPS_INSN16_SIZE, NULL);
+ offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
+ if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
+ /* (D)ADDIU $sp, imm */
+ && offset < 0)
+ stop = 1;
+ break;
+
+ case 0x10: /* POOL32I: bits 010000 */
+ if (b5s5_op (insn) == 0xd
+ /* LUI: bits 010000 001101 */
+ && b0s5_reg (insn >> 16) == 28)
+ /* LUI $gp, imm */
+ stop = 1;
+ break;
+
+ case 0x13: /* POOL16D: bits 010011 */
+ if ((insn & 0x1) == 0x1)
+ /* ADDIUSP: bits 010011 1 */
+ {
+ offset = micromips_decode_imm9 (b1s9_imm (insn));
+ if (offset < 0)
+ /* ADDIUSP -imm */
+ stop = 1;
+ }
+ else
+ /* ADDIUS5: bits 010011 0 */
+ {
+ dreg = b5s5_reg (insn);
+ offset = (b1s4_imm (insn) ^ 8) - 8;
+ if (dreg == MIPS_SP_REGNUM && offset < 0)
+ /* ADDIUS5 $sp, -imm */
+ stop = 1;
+ }
+ break;
+ }
+ if (stop)
+ break;
+ }
else if (mips_about_to_return (gdbarch, start_pc))
{
/* Skip return and its delay slot. */
{
CORE_ADDR addr = extract_signed_integer (value_contents (arg),
len, byte_order);
- if (mips_pc_is_mips16 (addr))
+ if (mips_pc_is_mips (addr))
+ val = value_contents (arg);
+ else
{
store_signed_integer (valbuf, len, byte_order,
- make_mips16_addr (addr));
+ make_compact_addr (addr));
val = valbuf;
}
- else
- val = value_contents (arg);
}
/* The EABI passes structures that do not fit in a register by
reference. */
gdb_byte *readbuf, const gdb_byte *writebuf)
{
CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
+ int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- int mips16 = mips_pc_is_mips16 (func_addr);
enum mips_fval_reg fval_reg;
fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
{
CORE_ADDR addr = extract_signed_integer (value_contents (arg),
len, byte_order);
- if (mips_pc_is_mips16 (addr))
+ if (!mips_pc_is_mips (addr))
{
store_signed_integer (valbuf, len, byte_order,
- make_mips16_addr (addr));
+ make_compact_addr (addr));
val = valbuf;
}
}
gdb_byte *readbuf, const gdb_byte *writebuf)
{
CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
+ int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- int mips16 = mips_pc_is_mips16 (func_addr);
enum mips_fval_reg fval_reg;
fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
}
}
-/* Is this a branch with a delay slot? */
-
-static int
-is_delayed (unsigned long insn)
-{
- int i;
- for (i = 0; i < NUMOPCODES; ++i)
- if (mips_opcodes[i].pinfo != INSN_MACRO
- && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
- break;
- return (i < NUMOPCODES
- && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
- | INSN_COND_BRANCH_DELAY
- | INSN_COND_BRANCH_LIKELY)));
-}
-
static int
mips_single_step_through_delay (struct gdbarch *gdbarch,
struct frame_info *frame)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR pc = get_frame_pc (frame);
- gdb_byte buf[MIPS_INSN32_SIZE];
-
- /* There is no branch delay slot on MIPS16. */
- if (mips_pc_is_mips16 (pc))
- return 0;
-
- if (!breakpoint_here_p (get_frame_address_space (frame), pc + 4))
+ struct address_space *aspace;
+ enum mips_isa isa;
+ ULONGEST insn;
+ int status;
+ int size;
+
+ if ((mips_pc_is_mips (pc)
+ && !mips32_instruction_has_delay_slot (gdbarch, pc))
+ || (mips_pc_is_micromips (gdbarch, pc)
+ && !micromips_instruction_has_delay_slot (gdbarch, pc, 0))
+ || (mips_pc_is_mips16 (gdbarch, pc)
+ && !mips16_instruction_has_delay_slot (gdbarch, pc, 0)))
return 0;
- if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
- /* If error reading memory, guess that it is not a delayed
- branch. */
- return 0;
- return is_delayed (extract_unsigned_integer (buf, sizeof buf, byte_order));
+ isa = mips_pc_isa (gdbarch, pc);
+ /* _has_delay_slot above will have validated the read. */
+ insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
+ size = mips_insn_size (isa, insn);
+ aspace = get_frame_address_space (frame);
+ return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
}
/* To skip prologues, I use this predicate. Returns either PC itself
if (limit_pc == 0)
limit_pc = pc + 100; /* Magic. */
- if (mips_pc_is_mips16 (pc))
+ if (mips_pc_is_mips16 (gdbarch, pc))
return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
+ else if (mips_pc_is_micromips (gdbarch, pc))
+ return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
else
return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
}
unsigned long high_word;
unsigned long inst;
- inst = mips_fetch_instruction (gdbarch, pc);
+ inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
high_word = (inst >> 16) & 0xffff;
if (high_word != 0x27bd /* addiu $sp,$sp,offset */
return 0;
}
+/* Check whether the PC is in a function epilogue (microMIPS version).
+ This is a helper function for mips_in_function_epilogue_p. */
+
+static int
+micromips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+ CORE_ADDR func_addr = 0;
+ CORE_ADDR func_end = 0;
+ CORE_ADDR addr;
+ ULONGEST insn;
+ long offset;
+ int dreg;
+ int sreg;
+ int loc;
+
+ if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
+ return 0;
+
+ /* The microMIPS epilogue is max. 12 bytes long. */
+ addr = func_end - 12;
+
+ if (addr < func_addr + 2)
+ addr = func_addr + 2;
+ if (pc < addr)
+ return 0;
+
+ for (; pc < func_end; pc += loc)
+ {
+ loc = 0;
+ insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
+ loc += MIPS_INSN16_SIZE;
+ switch (mips_insn_size (ISA_MICROMIPS, insn))
+ {
+ /* 48-bit instructions. */
+ case 3 * MIPS_INSN16_SIZE:
+ /* No epilogue instructions in this category. */
+ return 0;
+
+ /* 32-bit instructions. */
+ case 2 * MIPS_INSN16_SIZE:
+ insn <<= 16;
+ insn |= mips_fetch_instruction (gdbarch,
+ ISA_MICROMIPS, pc + loc, NULL);
+ loc += MIPS_INSN16_SIZE;
+ switch (micromips_op (insn >> 16))
+ {
+ case 0xc: /* ADDIU: bits 001100 */
+ case 0x17: /* DADDIU: bits 010111 */
+ sreg = b0s5_reg (insn >> 16);
+ dreg = b5s5_reg (insn >> 16);
+ offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
+ if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
+ /* (D)ADDIU $sp, imm */
+ && offset >= 0)
+ break;
+ return 0;
+
+ default:
+ return 0;
+ }
+ break;
+
+ /* 16-bit instructions. */
+ case MIPS_INSN16_SIZE:
+ switch (micromips_op (insn))
+ {
+ case 0x3: /* MOVE: bits 000011 */
+ sreg = b0s5_reg (insn);
+ dreg = b5s5_reg (insn);
+ if (sreg == 0 && dreg == 0)
+ /* MOVE $zero, $zero aka NOP */
+ break;
+ return 0;
+
+ case 0x11: /* POOL16C: bits 010001 */
+ if (b5s5_op (insn) == 0x18
+ /* JRADDIUSP: bits 010011 11000 */
+ || (b5s5_op (insn) == 0xd
+ /* JRC: bits 010011 01101 */
+ && b0s5_reg (insn) == MIPS_RA_REGNUM))
+ /* JRC $ra */
+ break;
+ return 0;
+
+ case 0x13: /* POOL16D: bits 010011 */
+ offset = micromips_decode_imm9 (b1s9_imm (insn));
+ if ((insn & 0x1) == 0x1
+ /* ADDIUSP: bits 010011 1 */
+ && offset > 0)
+ break;
+ return 0;
+
+ default:
+ return 0;
+ }
+ }
+ }
+
+ return 1;
+}
+
/* Check whether the PC is in a function epilogue (16-bit version).
This is a helper function for mips_in_function_epilogue_p. */
static int
{
unsigned short inst;
- inst = mips_fetch_instruction (gdbarch, pc);
+ inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
if ((inst & 0xf800) == 0xf000) /* extend */
continue;
static int
mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
- if (mips_pc_is_mips16 (pc))
+ if (mips_pc_is_mips16 (gdbarch, pc))
return mips16_in_function_epilogue_p (gdbarch, pc);
+ else if (mips_pc_is_micromips (gdbarch, pc))
+ return micromips_in_function_epilogue_p (gdbarch, pc);
else
return mips32_in_function_epilogue_p (gdbarch, pc);
}
static int
gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
{
+ struct gdbarch *gdbarch = info->application_data;
+
/* FIXME: cagney/2003-06-26: Is this even necessary? The
disassembler needs to be able to locally determine the ISA, and
not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
work. */
- if (mips_pc_is_mips16 (memaddr))
+ if (mips_pc_is_mips16 (gdbarch, memaddr))
info->mach = bfd_mach_mips16;
+ else if (mips_pc_is_micromips (gdbarch, memaddr))
+ info->mach = bfd_mach_mips_micromips;
/* Round down the instruction address to the appropriate boundary. */
- memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
+ memaddr &= (info->mach == bfd_mach_mips16
+ || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
/* Set the disassembler options. */
if (!info->disassembler_options)
mips_breakpoint_from_pc (struct gdbarch *gdbarch,
CORE_ADDR *pcptr, int *lenptr)
{
+ CORE_ADDR pc = *pcptr;
+
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
- if (mips_pc_is_mips16 (*pcptr))
+ if (mips_pc_is_mips16 (gdbarch, pc))
{
static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
- *pcptr = unmake_mips16_addr (*pcptr);
+ *pcptr = unmake_compact_addr (pc);
*lenptr = sizeof (mips16_big_breakpoint);
return mips16_big_breakpoint;
}
+ else if (mips_pc_is_micromips (gdbarch, pc))
+ {
+ static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
+ static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
+ ULONGEST insn;
+ int status;
+ int size;
+
+ insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
+ size = status ? 2
+ : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
+ *pcptr = unmake_compact_addr (pc);
+ *lenptr = size;
+ return (size == 2) ? micromips16_big_breakpoint
+ : micromips32_big_breakpoint;
+ }
else
{
/* The IDT board uses an unusual breakpoint value, and
}
else
{
- if (mips_pc_is_mips16 (*pcptr))
+ if (mips_pc_is_mips16 (gdbarch, pc))
{
static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
- *pcptr = unmake_mips16_addr (*pcptr);
+ *pcptr = unmake_compact_addr (pc);
*lenptr = sizeof (mips16_little_breakpoint);
return mips16_little_breakpoint;
}
+ else if (mips_pc_is_micromips (gdbarch, pc))
+ {
+ static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
+ static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
+ ULONGEST insn;
+ int status;
+ int size;
+
+ insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
+ size = status ? 2
+ : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
+ *pcptr = unmake_compact_addr (pc);
+ *lenptr = size;
+ return (size == 2) ? micromips16_little_breakpoint
+ : micromips32_little_breakpoint;
+ }
else
{
static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
}
}
+/* Determine the remote breakpoint kind suitable for the PC. The following
+ kinds are used:
+
+ * 2 -- 16-bit MIPS16 mode breakpoint,
+
+ * 3 -- 16-bit microMIPS mode breakpoint,
+
+ * 4 -- 32-bit standard MIPS mode breakpoint,
+
+ * 5 -- 32-bit microMIPS mode breakpoint. */
+
+static void
+mips_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
+ int *kindptr)
+{
+ CORE_ADDR pc = *pcptr;
+
+ if (mips_pc_is_mips16 (gdbarch, pc))
+ {
+ *pcptr = unmake_compact_addr (pc);
+ *kindptr = 2;
+ }
+ else if (mips_pc_is_micromips (gdbarch, pc))
+ {
+ ULONGEST insn;
+ int status;
+ int size;
+
+ insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
+ size = status ? 2 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
+ *pcptr = unmake_compact_addr (pc);
+ *kindptr = size | 1;
+ }
+ else
+ *kindptr = 4;
+}
+
/* Return non-zero if the ADDR instruction has a branch delay slot
(i.e. it is a jump or branch instruction). This function is based
on mips32_next_pc. */
static int
mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
{
- gdb_byte buf[MIPS_INSN32_SIZE];
unsigned long inst;
int status;
int op;
int rs;
int rt;
- status = target_read_memory (addr, buf, MIPS_INSN32_SIZE);
+ inst = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
if (status)
return 0;
- inst = mips_fetch_instruction (gdbarch, addr);
op = itype_op (inst);
if ((inst & 0xe0000000) != 0)
{
instruction if MUSTBE32 is set or can be any instruction otherwise,
has a branch delay slot (i.e. it is a non-compact jump instruction). */
+static int
+micromips_instruction_has_delay_slot (struct gdbarch *gdbarch,
+ CORE_ADDR addr, int mustbe32)
+{
+ ULONGEST insn;
+ int status;
+
+ insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
+ if (status)
+ return 0;
+
+ if (!mustbe32) /* 16-bit instructions. */
+ return (micromips_op (insn) == 0x11
+ /* POOL16C: bits 010001 */
+ && (b5s5_op (insn) == 0xc
+ /* JR16: bits 010001 01100 */
+ || (b5s5_op (insn) & 0x1e) == 0xe))
+ /* JALR16, JALRS16: bits 010001 0111x */
+ || (micromips_op (insn) & 0x37) == 0x23
+ /* BEQZ16, BNEZ16: bits 10x011 */
+ || micromips_op (insn) == 0x33;
+ /* B16: bits 110011 */
+
+ /* 32-bit instructions. */
+ if (micromips_op (insn) == 0x0)
+ /* POOL32A: bits 000000 */
+ {
+ insn <<= 16;
+ insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
+ if (status)
+ return 0;
+ return b0s6_op (insn) == 0x3c
+ /* POOL32Axf: bits 000000 ... 111100 */
+ && (b6s10_ext (insn) & 0x2bf) == 0x3c;
+ /* JALR, JALR.HB: 000000 000x111100 111100 */
+ /* JALRS, JALRS.HB: 000000 010x111100 111100 */
+ }
+
+ return (micromips_op (insn) == 0x10
+ /* POOL32I: bits 010000 */
+ && ((b5s5_op (insn) & 0x1c) == 0x0
+ /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
+ || (b5s5_op (insn) & 0x1d) == 0x4
+ /* BLEZ, BGTZ: bits 010000 001x0 */
+ || (b5s5_op (insn) & 0x1d) == 0x11
+ /* BLTZALS, BGEZALS: bits 010000 100x1 */
+ || ((b5s5_op (insn) & 0x1e) == 0x14
+ && (insn & 0x3) == 0x0)
+ /* BC2F, BC2T: bits 010000 1010x xxx00 */
+ || (b5s5_op (insn) & 0x1e) == 0x1a
+ /* BPOSGE64, BPOSGE32: bits 010000 1101x */
+ || ((b5s5_op (insn) & 0x1e) == 0x1c
+ && (insn & 0x3) == 0x0)
+ /* BC1F, BC1T: bits 010000 1110x xxx00 */
+ || ((b5s5_op (insn) & 0x1c) == 0x1c
+ && (insn & 0x3) == 0x1)))
+ /* BC1ANY*: bits 010000 111xx xxx01 */
+ || (micromips_op (insn) & 0x1f) == 0x1d
+ /* JALS, JAL: bits x11101 */
+ || (micromips_op (insn) & 0x37) == 0x25
+ /* BEQ, BNE: bits 10x101 */
+ || micromips_op (insn) == 0x35
+ /* J: bits 110101 */
+ || micromips_op (insn) == 0x3c;
+ /* JALX: bits 111100 */
+}
+
static int
mips16_instruction_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr,
int mustbe32)
{
- gdb_byte buf[MIPS_INSN16_SIZE];
unsigned short inst;
int status;
- status = target_read_memory (addr, buf, MIPS_INSN16_SIZE);
+ inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
if (status)
return 0;
- inst = mips_fetch_instruction (gdbarch, addr);
if (!mustbe32)
return (inst & 0xf89f) == 0xe800; /* JR/JALR (16-bit instruction) */
return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
&& func_addr > boundary && func_addr <= bpaddr)
boundary = func_addr;
- if (!mips_pc_is_mips16 (bpaddr))
+ if (mips_pc_is_mips (bpaddr))
{
if (bpaddr == boundary)
return bpaddr;
}
else
{
+ int (*instruction_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
CORE_ADDR addr, jmpaddr;
int i;
- boundary = unmake_mips16_addr (boundary);
+ boundary = unmake_compact_addr (boundary);
/* The only MIPS16 instructions with delay slots are JAL, JALX,
JALR and JR. An absolute JAL/JALX is always 4 bytes long,
so try for that first, then try the 2 byte JALR/JR.
+ The microMIPS ASE has a whole range of jumps and branches
+ with delay slots, some of which take 4 bytes and some take
+ 2 bytes, so the idea is the same.
FIXME: We have to assume that bpaddr is not the second half
of an extended instruction. */
+ instruction_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
+ ? micromips_instruction_has_delay_slot
+ : mips16_instruction_has_delay_slot);
jmpaddr = 0;
addr = bpaddr;
for (i = 1; i < 4; i++)
{
- if (unmake_mips16_addr (addr) == boundary)
+ if (unmake_compact_addr (addr) == boundary)
break;
- addr -= 2;
- if (i == 1 && mips16_instruction_has_delay_slot (gdbarch, addr, 0))
+ addr -= MIPS_INSN16_SIZE;
+ if (i == 1 && instruction_has_delay_slot (gdbarch, addr, 0))
/* Looks like a JR/JALR at [target-1], but it could be
the second word of a previous JAL/JALX, so record it
and check back one more. */
jmpaddr = addr;
- else if (i > 1
- && mips16_instruction_has_delay_slot (gdbarch, addr, 1))
+ else if (i > 1 && instruction_has_delay_slot (gdbarch, addr, 1))
{
if (i == 2)
/* Looks like a JAL/JALX at [target-2], but it could also
status == 0 && target_pc == 0 && i < 20;
i++, pc += MIPS_INSN32_SIZE)
{
- ULONGEST inst = mips_fetch_instruction (gdbarch, pc);
+ ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
CORE_ADDR imm;
int rt;
int rs;
if (new_pc)
{
pc = new_pc;
- if (is_mips16_addr (pc))
- pc = unmake_mips16_addr (pc);
+ if (is_compact_addr (pc))
+ pc = unmake_compact_addr (pc);
}
new_pc = find_solib_trampoline_target (frame, pc);
if (new_pc)
{
pc = new_pc;
- if (is_mips16_addr (pc))
- pc = unmake_mips16_addr (pc);
+ if (is_compact_addr (pc))
+ pc = unmake_compact_addr (pc);
}
new_pc = mips_skip_pic_trampoline_code (frame, pc);
if (new_pc)
{
pc = new_pc;
- if (is_mips16_addr (pc))
- pc = unmake_mips16_addr (pc);
+ if (is_compact_addr (pc))
+ pc = unmake_compact_addr (pc);
}
}
while (pc != target_pc);
internal_error (__FILE__, __LINE__, _("unknown ABI string"));
}
+/* Return the default compressed instruction set, either of MIPS16
+ or microMIPS, selected when none could have been determined from
+ the ELF header of the binary being executed (or no binary has been
+ selected. */
+
+static enum mips_isa
+global_mips_compression (void)
+{
+ int i;
+
+ for (i = 0; mips_compression_strings[i] != NULL; i++)
+ if (mips_compression_strings[i] == mips_compression_string)
+ return (enum mips_isa) i;
+
+ internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
+}
+
static void
mips_register_g_packet_guesses (struct gdbarch *gdbarch)
{
int elf_fpu_type = 0;
const char **reg_names;
struct mips_regnum mips_regnum, *regnum;
+ enum mips_isa mips_isa;
int dspacc;
int dspctl;
fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
mips_abi);
+ /* Determine the default compressed ISA. */
+ if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
+ && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
+ mips_isa = ISA_MICROMIPS;
+ else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
+ && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
+ mips_isa = ISA_MIPS16;
+ else
+ mips_isa = global_mips_compression ();
+ mips_compression_string = mips_compression_strings[mips_isa];
+
/* Also used when doing an architecture lookup. */
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog,
tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
tdep->found_abi = found_abi;
tdep->mips_abi = mips_abi;
+ tdep->mips_isa = mips_isa;
tdep->mips_fpu_type = fpu_type;
tdep->register_size_valid_p = 0;
tdep->register_size = 0;
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
+ set_gdbarch_remote_breakpoint_from_pc (gdbarch,
+ mips_remote_breakpoint_from_pc);
set_gdbarch_adjust_breakpoint_address (gdbarch,
mips_adjust_breakpoint_address);
dwarf2_append_unwinders (gdbarch);
frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
+ frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
+ frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
if (tdesc_data)
}
}
+/* Print out which MIPS compressed ISA encoding is used. */
+
+static void
+show_mips_compression (struct ui_file *file, int from_tty,
+ struct cmd_list_element *c, const char *value)
+{
+ fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
+ value);
+}
+
static void
mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
show_mips_abi,
&setmipscmdlist, &showmipscmdlist);
+ /* Allow the user to set the ISA to assume for compressed code if ELF
+ file flags don't tell or there is no program file selected. This
+ setting is updated whenever unambiguous ELF file flags are interpreted,
+ and carried over to subsequent sessions. */
+ add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
+ &mips_compression_string, _("\
+Set the compressed ISA encoding used by MIPS code."), _("\
+Show the compressed ISA encoding used by MIPS code."), _("\
+Select the compressed ISA encoding used in functions that have no symbol\n\
+information available. The encoding can be set to either of:\n\
+ mips16\n\
+ micromips\n\
+and is updated automatically from ELF file flags if available."),
+ mips_abi_update,
+ show_mips_compression,
+ &setmipscmdlist, &showmipscmdlist);
+
/* Let the user turn off floating point and set the fence post for
heuristic_proc_start. */