1, /* cond_not_taken_branch_cost. */
};
+struct processor_costs bdver2_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (4), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (4), /* SI */
+ COSTS_N_INSNS (6), /* DI */
+ COSTS_N_INSNS (6)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (35), /* HI */
+ COSTS_N_INSNS (51), /* SI */
+ COSTS_N_INSNS (83), /* DI */
+ COSTS_N_INSNS (83)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 9, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {5, 5, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {4, 4, 4}, /* cost of storing integer registers */
+ 2, /* cost of reg,reg fld/fst */
+ {5, 5, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {4, 4, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {4, 4}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {4, 4}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 4, 4}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 4, 4}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 2, /* MMX or SSE register to integer */
+ /* On K8:
+ MOVD reg64, xmmreg Double FSTORE 4
+ MOVD reg32, xmmreg Double FSTORE 4
+ On AMDFAM10:
+ MOVD reg64, xmmreg Double FADD 3
+ 1/1 1/1
+ MOVD reg32, xmmreg Double FADD 3
+ 1/1 1/1 */
+ 16, /* size of l1 cache. */
+ 2048, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ /* New AMD processors never drop prefetches; if they cannot be performed
+ immediately, they are queued. We set number of simultaneous prefetches
+ to a large constant to reflect this (it probably is not a good idea not
+ to limit number of prefetches at all, as their execution also takes some
+ time). */
+ 100, /* number of parallel prefetches */
+ 2, /* Branch cost */
+ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (6), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (42), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (52), /* cost of FSQRT instruction. */
+
+ /* BDVER2 has optimized REP instruction for medium sized blocks, but for
+ very small blocks it is better to use loop. For large blocks, libcall
+ can do nontemporary accesses and beat inline considerably. */
+ {{libcall, {{6, loop}, {14, unrolled_loop}, {-1, rep_prefix_4_byte}}},
+ {libcall, {{16, loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}},
+ {{libcall, {{8, loop}, {24, unrolled_loop},
+ {2048, rep_prefix_4_byte}, {-1, libcall}}},
+ {libcall, {{48, unrolled_loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}},
+ 6, /* scalar_stmt_cost. */
+ 4, /* scalar load_cost. */
+ 4, /* scalar_store_cost. */
+ 6, /* vec_stmt_cost. */
+ 0, /* vec_to_scalar_cost. */
+ 2, /* scalar_to_vec_cost. */
+ 4, /* vec_align_load_cost. */
+ 4, /* vec_unalign_load_cost. */
+ 4, /* vec_store_cost. */
+ 2, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
struct processor_costs btver1_cost = {
COSTS_N_INSNS (1), /* cost of an add instruction */
COSTS_N_INSNS (2), /* cost of a lea instruction */
#define m_ATHLON_K8 (m_K8 | m_ATHLON)
#define m_AMDFAM10 (1<<PROCESSOR_AMDFAM10)
#define m_BDVER1 (1<<PROCESSOR_BDVER1)
+#define m_BDVER2 (1<<PROCESSOR_BDVER2)
#define m_BTVER1 (1<<PROCESSOR_BTVER1)
-#define m_AMD_MULTIPLE (m_K8 | m_ATHLON | m_AMDFAM10 | m_BDVER1 | m_BTVER1)
+#define m_BDVER (m_BDVER1 | m_BDVER2)
+#define m_AMD_MULTIPLE (m_ATHLON_K8 | m_AMDFAM10 | m_BDVER | m_BTVER1)
#define m_GENERIC32 (1<<PROCESSOR_GENERIC32)
#define m_GENERIC64 (1<<PROCESSOR_GENERIC64)
~m_386,
/* X86_TUNE_USE_SAHF */
- m_ATOM | m_PPRO | m_K6_GEODE | m_K8 | m_AMDFAM10 | m_BDVER1 | m_BTVER1
+ m_ATOM | m_PPRO | m_K6_GEODE | m_K8 | m_AMDFAM10 | m_BDVER | m_BTVER1
| m_PENT4 | m_NOCONA | m_CORE2I7 | m_GENERIC,
/* X86_TUNE_MOVX: Enable to zero extend integer registers to avoid
shows that disabling this option on P4 brings over 20% SPECfp regression,
while enabling it on K8 brings roughly 2.4% regression that can be partly
masked by careful scheduling of moves. */
- m_ATOM | m_PENT4 | m_NOCONA | m_PPRO | m_CORE2I7 | m_GENERIC
- | m_AMDFAM10 | m_BDVER1,
+ m_ATOM | m_PENT4 | m_NOCONA | m_PPRO | m_CORE2I7 | m_GENERIC | m_AMDFAM10
+ | m_BDVER,
/* X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL */
- m_AMDFAM10 | m_BDVER1 | m_BTVER1 | m_COREI7,
+ m_AMDFAM10 | m_BDVER | m_BTVER1 | m_COREI7,
/* X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL */
- m_BDVER1 | m_COREI7,
+ m_BDVER | m_COREI7,
/* X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL */
- m_BDVER1,
+ m_BDVER ,
/* X86_TUNE_SSE_SPLIT_REGS: Set for machines where the type and dependencies
are resolved on SSE register parts instead of whole registers, so we may
~(m_AMD_MULTIPLE | m_GENERIC),
/* X86_TUNE_INTER_UNIT_CONVERSIONS */
- ~(m_AMDFAM10 | m_BDVER1),
+ ~(m_AMDFAM10 | m_BDVER ),
/* X86_TUNE_FOUR_JUMP_LIMIT: Some CPU cores are not able to predict more
than 4 branch instructions in the 16 byte window. */
/* X86_TUNE_SLOW_IMUL_IMM32_MEM: Imul of 32-bit constant and memory is
vector path on AMD machines. */
- m_K8 | m_CORE2I7_64 | m_GENERIC64 | m_AMDFAM10 | m_BDVER1 | m_BTVER1,
+ m_K8 | m_CORE2I7_64 | m_GENERIC64 | m_AMDFAM10 | m_BDVER | m_BTVER1,
/* X86_TUNE_SLOW_IMUL_IMM8: Imul of 8-bit constant is vector path on AMD
machines. */
- m_K8 | m_CORE2I7_64 | m_GENERIC64 | m_AMDFAM10 | m_BDVER1 | m_BTVER1,
+ m_K8 | m_CORE2I7_64 | m_GENERIC64 | m_AMDFAM10 | m_BDVER | m_BTVER1,
/* X86_TUNE_MOVE_M1_VIA_OR: On pentiums, it is faster to load -1 via OR
than a MOV. */
/* X86_TUNE_FUSE_CMP_AND_BRANCH: Fuse a compare or test instruction
with a subsequent conditional jump instruction into a single
compare-and-branch uop. */
- m_BDVER1,
+ m_BDVER ,
/* X86_TUNE_OPT_AGU: Optimize for Address Generation Unit. This flag
will impact LEA instruction selection. */
/* X86_TUNE_AVX128_OPTIMAL: Enable 128-bit AVX instruction generation for
the auto-vectorizer. */
- m_BDVER1
+ m_BDVER
};
/* Feature tests against the various architecture variations. */
= m_COREI7 | m_GENERIC;
static const unsigned int x86_avx256_split_unaligned_store
- = m_COREI7 | m_BDVER1 | m_GENERIC;
+ = m_COREI7 | m_BDVER | m_GENERIC;
/* In case the average insn count for single function invocation is
lower than this constant, emit fast (but longer) prologue and
{&generic64_cost, 16, 10, 16, 10, 16},
{&amdfam10_cost, 32, 24, 32, 7, 32},
{&bdver1_cost, 32, 24, 32, 7, 32},
+ {&bdver2_cost, 32, 24, 32, 7, 32},
{&btver1_cost, 32, 24, 32, 7, 32},
{&atom_cost, 16, 7, 16, 7, 16}
};
"k8",
"amdfam10",
"bdver1",
+ "bdver2",
"btver1"
};
\f
| PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1
| PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_FMA4
| PTA_XOP | PTA_LWP},
+ {"bdver2", PROCESSOR_BDVER2, CPU_BDVER2,
+ PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3
+ | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1
+ | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX
+ | PTA_XOP | PTA_LWP | PTA_BMI | PTA_TBM | PTA_F16C
+ | PTA_FMA},
{"btver1", PROCESSOR_BTVER1, CPU_GENERIC64,
PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3
| PTA_SSSE3 | PTA_SSE4A |PTA_ABM | PTA_CX16},
case PROCESSOR_GENERIC32:
case PROCESSOR_GENERIC64:
case PROCESSOR_BDVER1:
+ case PROCESSOR_BDVER2:
case PROCESSOR_BTVER1:
return 3;
case PROCESSOR_K8:
case PROCESSOR_AMDFAM10:
case PROCESSOR_BDVER1:
+ case PROCESSOR_BDVER2:
case PROCESSOR_BTVER1:
case PROCESSOR_ATOM:
case PROCESSOR_GENERIC32:
static bool
has_dispatch (rtx insn, int action)
{
- if (ix86_tune == PROCESSOR_BDVER1 && flag_dispatch_scheduler)
+ if ((ix86_tune == PROCESSOR_BDVER1 || ix86_tune == PROCESSOR_BDVER2)
+ && flag_dispatch_scheduler)
switch (action)
{
default: