// Public Methods
Time getTime() const { return curTick/m_clock; }
+ Tick getClock() const { return m_clock; }
void scheduleEvent(Consumer* consumer, Time timeDelta);
void scheduleEventAbsolute(Consumer* consumer, Time timeAbs);
void print(ostream& out) const;
}
Sequencer::Sequencer(const Params *p)
- : RubyPort(p)
+ : RubyPort(p), deadlockCheckEvent(this)
{
m_store_waiting_on_load_cycles = 0;
m_store_waiting_on_store_cycles = 0;
m_load_waiting_on_store_cycles = 0;
m_load_waiting_on_load_cycles = 0;
- m_deadlock_check_scheduled = false;
m_outstanding_count = 0;
m_max_outstanding_requests = 0;
assert(m_outstanding_count == total_outstanding);
if (m_outstanding_count > 0) { // If there are still outstanding requests, keep checking
- g_eventQueue_ptr->scheduleEvent(this, m_deadlock_threshold);
- } else {
- m_deadlock_check_scheduled = false;
+ schedule(deadlockCheckEvent,
+ (m_deadlock_threshold * g_eventQueue_ptr->getClock()) + curTick);
}
}
assert(m_outstanding_count == total_outstanding);
// See if we should schedule a deadlock check
- if (m_deadlock_check_scheduled == false) {
- g_eventQueue_ptr->scheduleEvent(this, m_deadlock_threshold);
- m_deadlock_check_scheduled = true;
+ if (deadlockCheckEvent.scheduled() == false) {
+ schedule(deadlockCheckEvent, m_deadlock_threshold);
}
Address line_addr(request->ruby_request.paddr);
int m_store_waiting_on_store_cycles;
int m_load_waiting_on_store_cycles;
int m_load_waiting_on_load_cycles;
+
+ class SequencerWakeupEvent : public Event
+ {
+ Sequencer *m_sequencer_ptr;
+
+ public:
+ SequencerWakeupEvent(Sequencer *_seq) : m_sequencer_ptr(_seq) {}
+ void process() { m_sequencer_ptr->wakeup(); }
+ const char *description() const { return "Sequencer deadlock check"; }
+ };
+
+ SequencerWakeupEvent deadlockCheckEvent;
};
// Output operator declaration