#include "expr/node.h"
#include "expr/node_algorithm.h"
#include "expr/node_builder.h"
+#include "expr/proof_skolem_cache.h"
#include "options/arith_options.h"
#include "options/smt_options.h" // for incrementalSolving()
#include "preprocessing/util/ite_utilities.h"
// return safeConstructNary(nb);
}
-// Integer division axioms:
-// These concenrate the high level constructs needed to constrain the functions:
-// div, mod, div_total and mod_total.
-//
-// The high level constraint.
-// (for all ((m Int) (n Int))
-// (=> (distinct n 0)
-// (let ((q (div m n)) (r (mod m n)))
-// (and (= m (+ (* n q) r))
-// (<= 0 r (- (abs n) 1))))))
-//
-// We now add division by 0 functions.
-// (for all ((m Int) (n Int))
-// (let ((q (div m n)) (r (mod m n)))
-// (ite (= n 0)
-// (and (= q (div_0_func m)) (= r (mod_0_func m)))
-// (and (= m (+ (* n q) r))
-// (<= 0 r (- (abs n) 1)))))))
-//
-// We now express div and mod in terms of div_total and mod_total.
-// (for all ((m Int) (n Int))
-// (let ((q (div m n)) (r (mod m n)))
-// (ite (= n 0)
-// (and (= q (div_0_func m)) (= r (mod_0_func m)))
-// (and (= q (div_total m n)) (= r (mod_total m n))))))
-//
-// Alternative div_total and mod_total without the abs function:
-// (for all ((m Int) (n Int))
-// (let ((q (div_total m n)) (r (mod_total m n)))
-// (ite (= n 0)
-// (and (= q 0) (= r 0))
-// (and (r = m - n * q)
-// (ite (> n 0)
-// (n*q <= m < n*q + n)
-// (n*q <= m < n*q - n))))))
-
-
-// Returns a formula that entails that q equals the total integer division of m
-// by n.
-// (for all ((m Int) (n Int))
-// (let ((q (div_total m n)))
-// (ite (= n 0)
-// (= q 0)
-// (ite (> n 0)
-// (n*q <= m < n*q + n)
-// (n*q <= m < n*q - n)))))
-Node mkAxiomForTotalIntDivision(Node m, Node n, Node q) {
- NodeManager* nm = NodeManager::currentNM();
- Node zero = mkRationalNode(0);
- // (n*q <= m < n*q + n) is equivalent to (0 <= m - n*q < n).
- Node diff = nm->mkNode(kind::MINUS, m, mkMult(n, q));
- Node when_n_is_positive = mkInRange(diff, zero, n);
- Node when_n_is_negative = mkInRange(diff, zero, nm->mkNode(kind::UMINUS, n));
- return n.eqNode(zero).iteNode(
- q.eqNode(zero), nm->mkNode(kind::GT, n, zero)
- .iteNode(when_n_is_positive, when_n_is_negative));
-}
-
-// Returns a formula that entails that r equals the integer division total of m
-// by n assuming q is equal to (div_total m n).
-// (for all ((m Int) (n Int))
-// (let ((q (div_total m n)) (r (mod_total m n)))
-// (ite (= n 0)
-// (= r 0)
-// (= r (- m (n * q))))))
-Node mkAxiomForTotalIntMod(Node m, Node n, Node q, Node r) {
- NodeManager* nm = NodeManager::currentNM();
- Node diff = nm->mkNode(kind::MINUS, m, mkMult(n, q));
- return mkOnZeroIte(n, r, mkRationalNode(0), diff);
-}
-
-// Returns an expression that constrains a term to be the result of the
-// [total] integer division of num by den. Equivalently:
-// (and (=> (den > 0) (den*term <= num < den*term + den))
-// (=> (den < 0) (den*term <= num < den*term - den))
-// (=> (den = 0) (term = 0)))
-// static Node mkIntegerDivisionConstraint(Node term, Node num, Node den) {
-// // We actually encode:
-// // (and (=> (den > 0) (0 <= num - den*term < den))
-// // (=> (den < 0) (0 <= num - den*term < -den))
-// // (=> (den = 0) (term = 0)))
-// NodeManager* nm = NodeManager::currentNM();
-// Node zero = nm->mkConst(Rational(0));
-// Node den_is_positive = nm->mkNode(kind::GT, den, zero);
-// Node den_is_negative = nm->mkNode(kind::LT, den, zero);
-// Node diff = nm->mkNode(kind::MINUS, num, mkMult(den, term));
-// Node when_den_positive = den_positive.impNode(mkInRange(diff, zero, den));
-// Node when_den_negative = den_negative.impNode(
-// mkInRange(diff, zero, nm->mkNode(kind::UMINUS, den)));
-// Node when_den_is_zero = (den.eqNode(zero)).impNode(term.eqNode(zero));
-// return mk->mkNode(kind::AND, when_den_positive, when_den_negative,
-// when_den_is_zero);
-// }
-
void TheoryArithPrivate::setMasterEqualityEngine(eq::EqualityEngine* eq) {
d_congruenceManager.setMasterEqualityEngine(eq);
}
if(Theory::theoryOf(n) != THEORY_ARITH) {
return n;
}
+ // Eliminate operators recursively. Notice we must do this here since other
+ // theories may generate lemmas that involve non-standard operators. For
+ // example, quantifier instantiation may use TO_INTEGER terms; SyGuS may
+ // introduce non-standard arithmetic terms appearing in grammars.
+ // call eliminate operators
+ Node nn = eliminateOperators(n);
+ if (nn != n)
+ {
+ // since elimination may introduce new operators to eliminate, we must
+ // recursively eliminate result
+ return eliminateOperatorsRec(nn);
+ }
+ return n;
+}
+
+void TheoryArithPrivate::checkNonLinearLogic(Node term)
+{
+ if (getLogicInfo().isLinear())
+ {
+ Trace("arith-logic") << "ERROR: Non-linear term in linear logic: " << term
+ << std::endl;
+ std::stringstream serr;
+ serr << "A non-linear fact was asserted to arithmetic in a linear logic."
+ << std::endl;
+ serr << "The fact in question: " << term << endl;
+ throw LogicException(serr.str());
+ }
+}
+
+struct ArithElimOpAttributeId
+{
+};
+typedef expr::Attribute<ArithElimOpAttributeId, Node> ArithElimOpAttribute;
+
+Node TheoryArithPrivate::eliminateOperatorsRec(Node n)
+{
+ ArithElimOpAttribute aeoa;
+ Trace("arith-elim") << "Begin elim: " << n << std::endl;
+ NodeManager* nm = NodeManager::currentNM();
+ std::unordered_map<Node, Node, TNodeHashFunction> visited;
+ std::unordered_map<Node, Node, TNodeHashFunction>::iterator it;
+ std::vector<Node> visit;
+ Node cur;
+ visit.push_back(n);
+ do
+ {
+ cur = visit.back();
+ visit.pop_back();
+ it = visited.find(cur);
+ if (Theory::theoryOf(cur) != THEORY_ARITH)
+ {
+ visited[cur] = cur;
+ }
+ else if (it == visited.end())
+ {
+ if (cur.hasAttribute(aeoa))
+ {
+ visited[cur] = cur.getAttribute(aeoa);
+ }
+ else
+ {
+ visited[cur] = Node::null();
+ visit.push_back(cur);
+ for (const Node& cn : cur)
+ {
+ visit.push_back(cn);
+ }
+ }
+ }
+ else if (it->second.isNull())
+ {
+ Node ret = cur;
+ bool childChanged = false;
+ std::vector<Node> children;
+ if (cur.getMetaKind() == metakind::PARAMETERIZED)
+ {
+ children.push_back(cur.getOperator());
+ }
+ for (const Node& cn : cur)
+ {
+ it = visited.find(cn);
+ Assert(it != visited.end());
+ Assert(!it->second.isNull());
+ childChanged = childChanged || cn != it->second;
+ children.push_back(it->second);
+ }
+ if (childChanged)
+ {
+ ret = nm->mkNode(cur.getKind(), children);
+ }
+ Node retElim = eliminateOperators(ret);
+ if (retElim != ret)
+ {
+ // recursively eliminate operators in result, since some eliminations
+ // are defined in terms of other non-standard operators.
+ ret = eliminateOperatorsRec(retElim);
+ }
+ cur.setAttribute(aeoa, ret);
+ visited[cur] = ret;
+ }
+ } while (!visit.empty());
+ Assert(visited.find(n) != visited.end());
+ Assert(!visited.find(n)->second.isNull());
+ return visited[n];
+}
+Node TheoryArithPrivate::eliminateOperators(Node node)
+{
NodeManager* nm = NodeManager::currentNM();
- switch(Kind k = n.getKind()) {
-
- case kind::TO_INTEGER:
- case kind::IS_INTEGER: {
- Node toIntSkolem;
- NodeMap::const_iterator it = d_to_int_skolem.find( n[0] );
- if( it==d_to_int_skolem.end() ){
- toIntSkolem = nm->mkSkolem("toInt", nm->integerType(),
- "a conversion of a Real term to its Integer part");
- d_to_int_skolem[n[0]] = toIntSkolem;
- // n[0] - 1 < toIntSkolem <= n[0]
- // -1 < toIntSkolem - n[0] <= 0
- // 0 <= n[0] - toIntSkolem < 1
- Node one = mkRationalNode(1);
- Node lem = mkAxiomForTotalIntDivision(n[0], one, toIntSkolem);
- outputLemma(lem);
- }else{
- toIntSkolem = (*it).second;
+ Kind k = node.getKind();
+ switch (k)
+ {
+ case kind::TANGENT:
+ case kind::COSECANT:
+ case kind::SECANT:
+ case kind::COTANGENT:
+ {
+ // these are eliminated by rewriting
+ return Rewriter::rewrite(node);
+ break;
}
- if(k == kind::IS_INTEGER) {
- return nm->mkNode(kind::EQUAL, n[0], toIntSkolem);
+ case kind::TO_INTEGER:
+ case kind::IS_INTEGER:
+ {
+ Node toIntSkolem;
+ NodeMap::const_iterator it = d_to_int_skolem.find(node[0]);
+ if (it == d_to_int_skolem.end())
+ {
+ // node[0] - 1 < toIntSkolem <= node[0]
+ // -1 < toIntSkolem - node[0] <= 0
+ // 0 <= node[0] - toIntSkolem < 1
+ Node v = nm->mkBoundVar(nm->integerType());
+ Node one = mkRationalNode(1);
+ Node zero = mkRationalNode(0);
+ Node diff = nm->mkNode(kind::MINUS, node[0], v);
+ Node lem = mkInRange(diff, zero, one);
+ toIntSkolem = ProofSkolemCache::mkSkolem(
+ v, lem, "toInt", "a conversion of a Real term to its Integer part");
+ toIntSkolem = ProofSkolemCache::getWitnessForm(toIntSkolem);
+ d_to_int_skolem[node[0]] = toIntSkolem;
+ }
+ else
+ {
+ toIntSkolem = (*it).second;
+ }
+ if (k == kind::IS_INTEGER)
+ {
+ return nm->mkNode(kind::EQUAL, node[0], toIntSkolem);
+ }
+ Assert(k == kind::TO_INTEGER);
+ return toIntSkolem;
}
- Assert(k == kind::TO_INTEGER);
- return toIntSkolem;
- }
- case kind::INTS_DIVISION:
- case kind::INTS_MODULUS:
- case kind::DIVISION:
- // these should be removed during expand definitions
- Assert(false);
- break;
-
- case kind::INTS_DIVISION_TOTAL:
- case kind::INTS_MODULUS_TOTAL: {
- Node den = Rewriter::rewrite(n[1]);
- if(!options::rewriteDivk() && den.isConst()) {
- return n;
- }
- Node num = Rewriter::rewrite(n[0]);
- Node intVar;
- Node rw = nm->mkNode(k, num, den);
- NodeMap::const_iterator it = d_int_div_skolem.find( rw );
- if( it==d_int_div_skolem.end() ){
- intVar = nm->mkSkolem("linearIntDiv", nm->integerType(), "the result of an intdiv-by-k term");
- d_int_div_skolem[rw] = intVar;
- Node lem;
- if (den.isConst()) {
- const Rational& rat = den.getConst<Rational>();
- Assert(!num.isConst());
- if(rat != 0) {
- if(rat > 0) {
- lem = nm->mkNode(kind::AND, nm->mkNode(kind::LEQ, nm->mkNode(kind::MULT, den, intVar), num),
- nm->mkNode(kind::LT, num, nm->mkNode(kind::MULT, den, nm->mkNode(kind::PLUS, intVar, nm->mkConst(Rational(1))))));
- } else {
- lem = nm->mkNode(kind::AND, nm->mkNode(kind::LEQ, nm->mkNode(kind::MULT, den, intVar), num),
- nm->mkNode(kind::LT, num, nm->mkNode(kind::MULT, den, nm->mkNode(kind::PLUS, intVar, nm->mkConst(Rational(-1))))));
+
+ case kind::INTS_DIVISION_TOTAL:
+ case kind::INTS_MODULUS_TOTAL:
+ {
+ Node den = Rewriter::rewrite(node[1]);
+ Node num = Rewriter::rewrite(node[0]);
+ Node intVar;
+ Node rw = nm->mkNode(k, num, den);
+ NodeMap::const_iterator it = d_int_div_skolem.find(rw);
+ if (it == d_int_div_skolem.end())
+ {
+ Node v = nm->mkBoundVar(nm->integerType());
+ Node lem;
+ Node leqNum = nm->mkNode(LEQ, nm->mkNode(MULT, den, v), num);
+ if (den.isConst())
+ {
+ const Rational& rat = den.getConst<Rational>();
+ if (num.isConst() || rat == 0)
+ {
+ // just rewrite
+ return Rewriter::rewrite(node);
+ }
+ if (rat > 0)
+ {
+ lem = nm->mkNode(
+ AND,
+ leqNum,
+ nm->mkNode(
+ LT,
+ num,
+ nm->mkNode(MULT,
+ den,
+ nm->mkNode(PLUS, v, nm->mkConst(Rational(1))))));
+ }
+ else
+ {
+ lem = nm->mkNode(
+ AND,
+ leqNum,
+ nm->mkNode(
+ LT,
+ num,
+ nm->mkNode(
+ MULT,
+ den,
+ nm->mkNode(PLUS, v, nm->mkConst(Rational(-1))))));
}
}
- }else{
- lem = nm->mkNode(kind::AND,
- nm->mkNode(kind::IMPLIES, NodeManager::currentNM()->mkNode( kind::GT, den, nm->mkConst(Rational(0)) ),
- nm->mkNode(kind::AND, nm->mkNode(kind::LEQ, nm->mkNode(kind::MULT, den, intVar), num),
- nm->mkNode(kind::LT, num, nm->mkNode(kind::MULT, den, nm->mkNode(kind::PLUS, intVar, nm->mkConst(Rational(1))))))),
- nm->mkNode(kind::IMPLIES, NodeManager::currentNM()->mkNode( kind::LT, den, nm->mkConst(Rational(0)) ),
- nm->mkNode(kind::AND, nm->mkNode(kind::LEQ, nm->mkNode(kind::MULT, den, intVar), num),
- nm->mkNode(kind::LT, num, nm->mkNode(kind::MULT, den, nm->mkNode(kind::PLUS, intVar, nm->mkConst(Rational(-1))))))));
- }
- if( !lem.isNull() ){
- outputLemma(lem);
+ else
+ {
+ checkNonLinearLogic(node);
+ lem = nm->mkNode(
+ AND,
+ nm->mkNode(
+ IMPLIES,
+ nm->mkNode(GT, den, nm->mkConst(Rational(0))),
+ nm->mkNode(
+ AND,
+ leqNum,
+ nm->mkNode(
+ LT,
+ num,
+ nm->mkNode(
+ MULT,
+ den,
+ nm->mkNode(PLUS, v, nm->mkConst(Rational(1))))))),
+ nm->mkNode(
+ IMPLIES,
+ nm->mkNode(LT, den, nm->mkConst(Rational(0))),
+ nm->mkNode(
+ AND,
+ leqNum,
+ nm->mkNode(
+ LT,
+ num,
+ nm->mkNode(
+ MULT,
+ den,
+ nm->mkNode(
+ PLUS, v, nm->mkConst(Rational(-1))))))));
+ }
+ intVar = ProofSkolemCache::mkSkolem(
+ v, lem, "linearIntDiv", "the result of an intdiv-by-k term");
+ intVar = ProofSkolemCache::getWitnessForm(intVar);
+ d_int_div_skolem[rw] = intVar;
}
- }else{
- intVar = (*it).second;
+ else
+ {
+ intVar = (*it).second;
+ }
+ if (k == kind::INTS_MODULUS_TOTAL)
+ {
+ Node nn =
+ nm->mkNode(kind::MINUS, num, nm->mkNode(kind::MULT, den, intVar));
+ return nn;
+ }
+ else
+ {
+ return intVar;
+ }
+ break;
}
- if( k==kind::INTS_MODULUS_TOTAL ){
- Node node = nm->mkNode(kind::MINUS, num, nm->mkNode(kind::MULT, den, intVar));
- return node;
- }else{
- return intVar;
+ case kind::DIVISION_TOTAL:
+ {
+ Node num = Rewriter::rewrite(node[0]);
+ Node den = Rewriter::rewrite(node[1]);
+ if (den.isConst())
+ {
+ // No need to eliminate here, can eliminate via rewriting later.
+ // Moreover, rewriting may change the type of this node from real to
+ // int, which impacts certain issues with subtyping.
+ return node;
+ }
+ checkNonLinearLogic(node);
+ Node var;
+ Node rw = nm->mkNode(k, num, den);
+ NodeMap::const_iterator it = d_div_skolem.find(rw);
+ if (it == d_div_skolem.end())
+ {
+ Node v = nm->mkBoundVar(nm->realType());
+ Node lem = nm->mkNode(IMPLIES,
+ den.eqNode(nm->mkConst(Rational(0))).negate(),
+ nm->mkNode(MULT, den, v).eqNode(num));
+ var = ProofSkolemCache::mkSkolem(
+ v, lem, "nonlinearDiv", "the result of a non-linear div term");
+ var = ProofSkolemCache::getWitnessForm(var);
+ d_div_skolem[rw] = var;
+ }
+ else
+ {
+ var = (*it).second;
+ }
+ return var;
+ break;
}
- break;
- }
- case kind::DIVISION_TOTAL: {
- Node num = Rewriter::rewrite(n[0]);
- Node den = Rewriter::rewrite(n[1]);
- Assert(!den.isConst());
- Node var;
- Node rw = nm->mkNode(k, num, den);
- NodeMap::const_iterator it = d_div_skolem.find( rw );
- if( it==d_div_skolem.end() ){
- var = nm->mkSkolem("nonlinearDiv", nm->realType(), "the result of a non-linear div term");
- d_div_skolem[rw] = var;
- outputLemma(nm->mkNode(kind::IMPLIES, den.eqNode(nm->mkConst(Rational(0))).negate(), nm->mkNode(kind::MULT, den, var).eqNode(num)));
- }else{
- var = (*it).second;
+ case kind::DIVISION:
+ {
+ Node num = Rewriter::rewrite(node[0]);
+ Node den = Rewriter::rewrite(node[1]);
+ Node ret = nm->mkNode(kind::DIVISION_TOTAL, num, den);
+ if (!den.isConst() || den.getConst<Rational>().sgn() == 0)
+ {
+ checkNonLinearLogic(node);
+ Node divByZeroNum = getArithSkolemApp(num, ArithSkolemId::DIV_BY_ZERO);
+ Node denEq0 = nm->mkNode(kind::EQUAL, den, nm->mkConst(Rational(0)));
+ ret = nm->mkNode(kind::ITE, denEq0, divByZeroNum, ret);
+ }
+ return ret;
+ break;
}
- return var;
- break;
- }
- default:
- break;
- }
- for(TNode::const_iterator i = n.begin(); i != n.end(); ++i) {
- Node rewritten = ppRewriteTerms(*i);
- if(rewritten != *i) {
- NodeBuilder<> b(n.getKind());
- b.append(n.begin(), i);
- b << rewritten;
- for(++i; i != n.end(); ++i) {
- b << ppRewriteTerms(*i);
+ case kind::INTS_DIVISION:
+ {
+ // partial function: integer div
+ Node num = Rewriter::rewrite(node[0]);
+ Node den = Rewriter::rewrite(node[1]);
+ Node ret = nm->mkNode(kind::INTS_DIVISION_TOTAL, num, den);
+ if (!den.isConst() || den.getConst<Rational>().sgn() == 0)
+ {
+ checkNonLinearLogic(node);
+ Node intDivByZeroNum =
+ getArithSkolemApp(num, ArithSkolemId::INT_DIV_BY_ZERO);
+ Node denEq0 = nm->mkNode(kind::EQUAL, den, nm->mkConst(Rational(0)));
+ ret = nm->mkNode(kind::ITE, denEq0, intDivByZeroNum, ret);
}
- rewritten = b;
- return rewritten;
+ return ret;
+ break;
}
- }
- return n;
+ case kind::INTS_MODULUS:
+ {
+ // partial function: mod
+ Node num = Rewriter::rewrite(node[0]);
+ Node den = Rewriter::rewrite(node[1]);
+ Node ret = nm->mkNode(kind::INTS_MODULUS_TOTAL, num, den);
+ if (!den.isConst() || den.getConst<Rational>().sgn() == 0)
+ {
+ checkNonLinearLogic(node);
+ Node modZeroNum = getArithSkolemApp(num, ArithSkolemId::MOD_BY_ZERO);
+ Node denEq0 = nm->mkNode(kind::EQUAL, den, nm->mkConst(Rational(0)));
+ ret = nm->mkNode(kind::ITE, denEq0, modZeroNum, ret);
+ }
+ return ret;
+ break;
+ }
+
+ case kind::ABS:
+ {
+ return nm->mkNode(kind::ITE,
+ nm->mkNode(kind::LT, node[0], nm->mkConst(Rational(0))),
+ nm->mkNode(kind::UMINUS, node[0]),
+ node[0]);
+ break;
+ }
+ case kind::SQRT:
+ case kind::ARCSINE:
+ case kind::ARCCOSINE:
+ case kind::ARCTANGENT:
+ case kind::ARCCOSECANT:
+ case kind::ARCSECANT:
+ case kind::ARCCOTANGENT:
+ {
+ checkNonLinearLogic(node);
+ // eliminate inverse functions here
+ NodeMap::const_iterator it = d_nlin_inverse_skolem.find(node);
+ if (it == d_nlin_inverse_skolem.end())
+ {
+ Node var = nm->mkBoundVar(nm->realType());
+ Node lem;
+ if (k == kind::SQRT)
+ {
+ Node skolemApp = getArithSkolemApp(node[0], ArithSkolemId::SQRT);
+ Node uf = skolemApp.eqNode(var);
+ Node nonNeg = nm->mkNode(
+ kind::AND, nm->mkNode(kind::MULT, var, var).eqNode(node[0]), uf);
+
+ // sqrt(x) reduces to:
+ // witness y. ite(x >= 0.0, y * y = x ^ y = Uf(x), y = Uf(x))
+ //
+ // Uf(x) makes sure that the reduction still behaves like a function,
+ // otherwise the reduction of (x = 1) ^ (sqrt(x) != sqrt(1)) would be
+ // satisfiable. On the original formula, this would require that we
+ // simultaneously interpret sqrt(1) as 1 and -1, which is not a valid
+ // model.
+ lem = nm->mkNode(
+ kind::ITE,
+ nm->mkNode(kind::GEQ, node[0], nm->mkConst(Rational(0))),
+ nonNeg,
+ uf);
+ }
+ else
+ {
+ Node pi = mkPi();
+
+ // range of the skolem
+ Node rlem;
+ if (k == kind::ARCSINE || k == ARCTANGENT || k == ARCCOSECANT)
+ {
+ Node half = nm->mkConst(Rational(1) / Rational(2));
+ Node pi2 = nm->mkNode(kind::MULT, half, pi);
+ Node npi2 = nm->mkNode(kind::MULT, nm->mkConst(Rational(-1)), pi2);
+ // -pi/2 < var <= pi/2
+ rlem = nm->mkNode(
+ AND, nm->mkNode(LT, npi2, var), nm->mkNode(LEQ, var, pi2));
+ }
+ else
+ {
+ // 0 <= var < pi
+ rlem = nm->mkNode(AND,
+ nm->mkNode(LEQ, nm->mkConst(Rational(0)), var),
+ nm->mkNode(LT, var, pi));
+ }
+
+ Kind rk = k == kind::ARCSINE
+ ? kind::SINE
+ : (k == kind::ARCCOSINE
+ ? kind::COSINE
+ : (k == kind::ARCTANGENT
+ ? kind::TANGENT
+ : (k == kind::ARCCOSECANT
+ ? kind::COSECANT
+ : (k == kind::ARCSECANT
+ ? kind::SECANT
+ : kind::COTANGENT))));
+ Node invTerm = nm->mkNode(rk, var);
+ lem = nm->mkNode(AND, rlem, invTerm.eqNode(node[0]));
+ }
+ Assert(!lem.isNull());
+ Node ret = ProofSkolemCache::mkSkolem(
+ var,
+ lem,
+ "tfk",
+ "Skolem to eliminate a non-standard transcendental function");
+ ret = ProofSkolemCache::getWitnessForm(ret);
+ d_nlin_inverse_skolem[node] = ret;
+ return ret;
+ }
+ return (*it).second;
+ break;
+ }
+
+ default: break;
+ }
+ return node;
}
Node TheoryArithPrivate::ppRewrite(TNode atom) {
Node rewritten = Rewriter::rewrite(leq.andNode(geq));
Debug("arith::preprocess")
<< "arith::preprocess() : returning " << rewritten << endl;
+ // don't need to rewrite terms since rewritten is not a non-standard op
return rewritten;
}
}
//setupInitialValue(varN);
markSetup(n);
-
- if(x.isDivLike()){
- setupDivLike(x);
- }
-
}
void TheoryArithPrivate::setupVariableList(const VarList& vl){
}
}
-void TheoryArithPrivate::setupDivLike(const Variable& v){
- Assert(v.isDivLike());
-
- if(getLogicInfo().isLinear()){
- throw LogicException(
- "A non-linear fact (involving div/mod/divisibility) was asserted to "
- "arithmetic in a linear logic;\nif you only use division (or modulus) "
- "by a constant value, or if you only use the divisibility-by-k "
- "predicate, try using the --rewrite-divk option.");
- }
-
- Node vnode = v.getNode();
- Assert(
- isSetup(vnode)); // Otherwise there is some invariant breaking recursion
- Polynomial m = Polynomial::parsePolynomial(vnode[0]);
- Polynomial n = Polynomial::parsePolynomial(vnode[1]);
-
- cautiousSetupPolynomial(m);
- cautiousSetupPolynomial(n);
-
- Node lem;
- switch(vnode.getKind()){
- case DIVISION:
- case INTS_DIVISION:
- case INTS_MODULUS:
- // these should be removed during expand definitions
- Assert(false);
- break;
- case DIVISION_TOTAL:
- lem = axiomIteForTotalDivision(vnode);
- break;
- case INTS_DIVISION_TOTAL:
- case INTS_MODULUS_TOTAL:
- lem = axiomIteForTotalIntDivision(vnode);
- break;
- default:
- /* intentionally blank */
- break;
- }
-
- if(!lem.isNull()){
- Debug("arith::div") << lem << endl;
- outputLemma(lem);
- }
-}
-
Node TheoryArithPrivate::axiomIteForTotalDivision(Node div_tot){
Assert(div_tot.getKind() == DIVISION_TOTAL);
Node TheoryArithPrivate::expandDefinition(Node node)
{
- NodeManager* nm = NodeManager::currentNM();
-
- // eliminate here since the rewritten form of these may introduce division
- Kind k = node.getKind();
- if (k == kind::TANGENT || k == kind::COSECANT || k == kind::SECANT
- || k == kind::COTANGENT)
+ // call eliminate operators
+ Node nn = eliminateOperators(node);
+ if (nn != node)
{
- node = Rewriter::rewrite(node);
- k = node.getKind();
+ // since elimination may introduce new operators to eliminate, we must
+ // recursively eliminate result
+ return eliminateOperatorsRec(nn);
}
-
- switch (k)
- {
- case kind::DIVISION:
- {
- TNode num = node[0], den = node[1];
- Node ret = nm->mkNode(kind::DIVISION_TOTAL, num, den);
- if (!den.isConst() || den.getConst<Rational>().sgn() == 0)
- {
- Node divByZeroNum = getArithSkolemApp(num, ArithSkolemId::DIV_BY_ZERO);
- Node denEq0 = nm->mkNode(kind::EQUAL, den, nm->mkConst(Rational(0)));
- ret = nm->mkNode(kind::ITE, denEq0, divByZeroNum, ret);
- }
- return ret;
- break;
- }
-
- case kind::INTS_DIVISION:
- {
- // partial function: integer div
- TNode num = node[0], den = node[1];
- Node ret = nm->mkNode(kind::INTS_DIVISION_TOTAL, num, den);
- if (!den.isConst() || den.getConst<Rational>().sgn() == 0)
- {
- Node intDivByZeroNum =
- getArithSkolemApp(num, ArithSkolemId::INT_DIV_BY_ZERO);
- Node denEq0 = nm->mkNode(kind::EQUAL, den, nm->mkConst(Rational(0)));
- ret = nm->mkNode(kind::ITE, denEq0, intDivByZeroNum, ret);
- }
- return ret;
- break;
- }
-
- case kind::INTS_MODULUS:
- {
- // partial function: mod
- TNode num = node[0], den = node[1];
- Node ret = nm->mkNode(kind::INTS_MODULUS_TOTAL, num, den);
- if (!den.isConst() || den.getConst<Rational>().sgn() == 0)
- {
- Node modZeroNum = getArithSkolemApp(num, ArithSkolemId::MOD_BY_ZERO);
- Node denEq0 = nm->mkNode(kind::EQUAL, den, nm->mkConst(Rational(0)));
- ret = nm->mkNode(kind::ITE, denEq0, modZeroNum, ret);
- }
- return ret;
- break;
- }
-
- case kind::ABS:
- {
- return nm->mkNode(kind::ITE,
- nm->mkNode(kind::LT, node[0], nm->mkConst(Rational(0))),
- nm->mkNode(kind::UMINUS, node[0]),
- node[0]);
- break;
- }
- case kind::SQRT:
- case kind::ARCSINE:
- case kind::ARCCOSINE:
- case kind::ARCTANGENT:
- case kind::ARCCOSECANT:
- case kind::ARCSECANT:
- case kind::ARCCOTANGENT:
- {
- // eliminate inverse functions here
- NodeMap::const_iterator it = d_nlin_inverse_skolem.find(node);
- if (it == d_nlin_inverse_skolem.end())
- {
- Node var = nm->mkBoundVar(nm->realType());
- Node lem;
- if (k == kind::SQRT)
- {
- Node skolemApp = getArithSkolemApp(node[0], ArithSkolemId::SQRT);
- Node uf = skolemApp.eqNode(var);
- Node nonNeg = nm->mkNode(
- kind::AND, nm->mkNode(kind::MULT, var, var).eqNode(node[0]), uf);
-
- // sqrt(x) reduces to:
- // witness y. ite(x >= 0.0, y * y = x ^ Uf(x), Uf(x))
- //
- // Uf(x) makes sure that the reduction still behaves like a function,
- // otherwise the reduction of (x = 1) ^ (sqrt(x) != sqrt(1)) would be
- // satisfiable. On the original formula, this would require that we
- // simultaneously interpret sqrt(1) as 1 and -1, which is not a valid
- // model.
- lem = nm->mkNode(
- kind::ITE,
- nm->mkNode(kind::GEQ, node[0], nm->mkConst(Rational(0))),
- nonNeg,
- uf);
- }
- else
- {
- Node pi = mkPi();
-
- // range of the skolem
- Node rlem;
- if (k == kind::ARCSINE || k == ARCTANGENT || k == ARCCOSECANT)
- {
- Node half = nm->mkConst(Rational(1) / Rational(2));
- Node pi2 = nm->mkNode(kind::MULT, half, pi);
- Node npi2 = nm->mkNode(kind::MULT, nm->mkConst(Rational(-1)), pi2);
- // -pi/2 < var <= pi/2
- rlem = nm->mkNode(
- AND, nm->mkNode(LT, npi2, var), nm->mkNode(LEQ, var, pi2));
- }
- else
- {
- // 0 <= var < pi
- rlem = nm->mkNode(AND,
- nm->mkNode(LEQ, nm->mkConst(Rational(0)), var),
- nm->mkNode(LT, var, pi));
- }
-
- Kind rk = k == kind::ARCSINE
- ? kind::SINE
- : (k == kind::ARCCOSINE
- ? kind::COSINE
- : (k == kind::ARCTANGENT
- ? kind::TANGENT
- : (k == kind::ARCCOSECANT
- ? kind::COSECANT
- : (k == kind::ARCSECANT
- ? kind::SECANT
- : kind::COTANGENT))));
- Node invTerm = nm->mkNode(rk, var);
- lem = nm->mkNode(AND, rlem, invTerm.eqNode(node[0]));
- }
- Assert(!lem.isNull());
- Node ret = nm->mkNode(WITNESS, nm->mkNode(BOUND_VAR_LIST, var), lem);
- d_nlin_inverse_skolem[node] = ret;
- return ret;
- }
- return (*it).second;
- break;
- }
-
- default: return node; break;
- }
-
- Unreachable();
+ return node;
}
Node TheoryArithPrivate::getArithSkolem(ArithSkolemId asi)