constant actions_type_init : actions_type :=
(e => Execute1ToWritebackInit, new_msr => (others => '0'), others => '0');
- signal r, rin : reg_type;
+ signal ex1, ex1in : reg_type;
signal actions : actions_type;
signal a_in, b_in, c_in : std_ulogic_vector(63 downto 0);
end generate;
dbg_ctrl_out <= ctrl;
- log_rd_addr <= r.log_addr_spr;
+ log_rd_addr <= ex1.log_addr_spr;
a_in <= e_in.read_data1;
b_in <= e_in.read_data2;
dtlb_miss_resolved => dc_events.dtlb_miss_resolved,
icache_miss => ic_events.icache_miss,
itlb_miss_resolved => ic_events.itlb_miss_resolved,
- no_instr_avail => r.no_instr_avail,
- dispatch => r.instr_dispatch,
- ext_interrupt => r.ext_interrupt,
- br_taken_complete => r.taken_branch_event,
- br_mispredict => r.br_mispredict,
+ no_instr_avail => ex1.no_instr_avail,
+ dispatch => ex1.instr_dispatch,
+ ext_interrupt => ex1.ext_interrupt,
+ br_taken_complete => ex1.taken_branch_event,
+ br_mispredict => ex1.br_mispredict,
others => '0');
x_to_pmu.nia <= e_in.nia;
x_to_pmu.addr <= (others => '0');
-- (SO, OV[32] and CA[32]) are only modified by instructions that are
-- handled here, we can just forward the result being sent to
-- writeback.
- xerc_in <= r.e.xerc when (r.e.write_xerc_enable and r.e.valid) = '1' else e_in.xerc;
+ xerc_in <= ex1.e.xerc when (ex1.e.write_xerc_enable and ex1.e.valid) = '1' else e_in.xerc;
with e_in.unit select busy_out <=
- l_in.busy or r.busy or fp_in.busy when LDST,
- l_in.busy or l_in.in_progress or r.busy or fp_in.busy when others;
+ l_in.busy or ex1.busy or fp_in.busy when LDST,
+ l_in.busy or l_in.in_progress or ex1.busy or fp_in.busy when others;
valid_in <= e_in.valid and not busy_out and not flush_in;
- terminate_out <= r.terminate;
+ terminate_out <= ex1.terminate;
-- Slow SPR read mux
with e_in.spr_select.sel select spr_result <=
32x"0" & ctrl.tb(63 downto 32) when SPRSEL_TBU,
ctrl.dec when SPRSEL_DEC,
32x"0" & PVR_MICROWATT when SPRSEL_PVR,
- log_wr_addr & r.log_addr_spr when SPRSEL_LOGA,
+ log_wr_addr & ex1.log_addr_spr when SPRSEL_LOGA,
log_rd_data when SPRSEL_LOGD,
ctrl.cfar when SPRSEL_CFAR,
assemble_xer(xerc_in, ctrl.xer_low) when others;
begin
if rising_edge(clk) then
if rst = '1' then
- r <= reg_type_init;
+ ex1 <= reg_type_init;
ctrl <= ctrl_t_init;
ctrl.msr <= (MSR_SF => '1', MSR_LE => '1', others => '0');
else
- r <= rin;
+ ex1 <= ex1in;
ctrl <= ctrl_tmp;
if valid_in = '1' then
report "execute " & to_hstring(e_in.nia) & " op=" & insn_type_t'image(e_in.insn_type) &
- " wr=" & to_hstring(rin.e.write_reg) & " we=" & std_ulogic'image(rin.e.write_enable) &
- " tag=" & integer'image(rin.e.instr_tag.tag) & std_ulogic'image(rin.e.instr_tag.valid);
+ " wr=" & to_hstring(ex1in.e.write_reg) & " we=" & std_ulogic'image(ex1in.e.write_enable) &
+ " tag=" & integer'image(ex1in.e.instr_tag.tag) & std_ulogic'image(ex1in.e.instr_tag.valid);
end if;
end if;
end if;
end if;
shortmul_result <= std_ulogic_vector(resize(signed(mshort_p), 64));
- case r.mul_select is
+ case ex1.mul_select is
when "00" =>
muldiv_result <= multiply_to_x.result(63 downto 0);
when "01" =>
-- v.trap also means we want to generate an interrupt, but doesn't
-- cancel instruction execution (hence we need to avoid setting any
-- side-effect flags or write enables when generating a trap).
- -- With v.trap = 1 we will assert both r.e.valid and r.e.interrupt
+ -- With v.trap = 1 we will assert both ex1.e.valid and ex1.e.interrupt
-- to writeback, and it will complete the instruction and take
-- and interrupt. It is OK for v.trap to depend on operand data.
if e_in.second = '0' then
v.take_branch := ppc_bc_taken(bo, bi, cr_in, a_in);
else
- v.take_branch := r.br_taken;
+ v.take_branch := ex1.br_taken;
end if;
if v.take_branch = '1' then
v.e.br_offset := b_in;
if e_in.second = '0' then
v.take_branch := ppc_bc_taken(bo, bi, cr_in, a_in);
else
- v.take_branch := r.br_taken;
+ v.take_branch := ex1.br_taken;
end if;
if v.take_branch = '1' then
v.e.br_offset := b_in;
variable fv : Execute1ToFPUType;
variable go : std_ulogic;
begin
- v := r;
- if r.busy = '0' then
+ v := ex1;
+ if ex1.busy = '0' then
v.e := actions.e;
v.oe := e_in.oe;
v.mul_select := e_in.sub_select(1 downto 0);
do_popcnt <= '1' when e_in.insn_type = OP_POPCNT else '0';
- if r.intr_pending = '1' then
- v.e.srr1 := r.e.srr1;
- v.e.intr_vec := r.e.intr_vec;
+ if ex1.intr_pending = '1' then
+ v.e.srr1 := ex1.e.srr1;
+ v.e.intr_vec := ex1.e.intr_vec;
end if;
if valid_in = '1' then
-- Determine if there is any interrupt to be taken
-- before/instead of executing this instruction
- exception := r.intr_pending or (valid_in and actions.exception);
- if valid_in = '1' and e_in.second = '0' and r.intr_pending = '0' then
- if HAS_FPU and r.fp_exception_next = '1' then
+ exception := ex1.intr_pending or (valid_in and actions.exception);
+ if valid_in = '1' and e_in.second = '0' and ex1.intr_pending = '0' then
+ if HAS_FPU and ex1.fp_exception_next = '1' then
-- This is used for FP-type program interrupts that
-- become pending due to MSR[FE0,FE1] changing from 00 to non-zero.
exception := '1';
v.e.srr1 := (others => '0');
v.e.srr1(47 - 43) := '1';
v.e.srr1(47 - 47) := '1';
- elsif r.trace_next = '1' then
+ elsif ex1.trace_next = '1' then
-- Generate a trace interrupt rather than executing the next instruction
-- or taking any asynchronous interrupt
exception := '1';
v.e.intr_vec := 16#d00#;
v.e.srr1 := (others => '0');
v.e.srr1(47 - 33) := '1';
- if r.prev_op = OP_LOAD or r.prev_op = OP_ICBI or r.prev_op = OP_ICBT or
- r.prev_op = OP_DCBT or r.prev_op = OP_DCBST or r.prev_op = OP_DCBF then
+ if ex1.prev_op = OP_LOAD or ex1.prev_op = OP_ICBI or ex1.prev_op = OP_ICBT or
+ ex1.prev_op = OP_DCBT or ex1.prev_op = OP_DCBST or ex1.prev_op = OP_DCBF then
v.e.srr1(47 - 35) := '1';
- elsif r.prev_op = OP_STORE or r.prev_op = OP_DCBZ or r.prev_op = OP_DCBTST then
+ elsif ex1.prev_op = OP_STORE or ex1.prev_op = OP_DCBZ or
+ ex1.prev_op = OP_DCBTST then
v.e.srr1(47 - 36) := '1';
end if;
v.busy := '1';
end if;
- v.no_instr_avail := not (e_in.valid or l_in.busy or l_in.in_progress or r.busy or fp_in.busy);
+ v.no_instr_avail := not (e_in.valid or l_in.busy or l_in.in_progress or ex1.busy or fp_in.busy);
go := valid_in and not exception;
v.instr_dispatch := go;
if actions.write_loga = '1' then
v.log_addr_spr := c_in(31 downto 0);
elsif actions.inc_loga = '1' then
- v.log_addr_spr := std_ulogic_vector(unsigned(r.log_addr_spr) + 1);
+ v.log_addr_spr := std_ulogic_vector(unsigned(ex1.log_addr_spr) + 1);
end if;
x_to_pmu.mtspr <= actions.write_pmuspr;
icache_inval <= actions.icache_inval;
end if;
end if;
- -- The following cases all occur when r.busy = 1 and therefore
+ -- The following cases all occur when ex1.busy = 1 and therefore
-- valid_in = 0. Hence they don't happen in the same cycle as any of
-- the cases above which depend on valid_in = 1.
- if r.cntz_in_progress = '1' then
+ if ex1.cntz_in_progress = '1' then
-- cnt[lt]z and popcnt* always take two cycles
v.e.valid := '1';
v.e.write_data := countbits_result;
end if;
- if r.div_in_progress = '1' then
+ if ex1.div_in_progress = '1' then
if divider_to_x.valid = '1' then
v.e.write_data := muldiv_result;
overflow := divider_to_x.overflow;
-- We must test oe because the RC update code in writeback
-- will use the xerc value to set CR0:SO so we must not clobber
-- xerc if OE wasn't set.
- if r.oe = '1' then
+ if ex1.oe = '1' then
v.e.xerc.ov := overflow;
v.e.xerc.ov32 := overflow;
if overflow = '1' then
v.div_in_progress := '1';
end if;
end if;
- if r.mul_in_progress = '1' then
+ if ex1.mul_in_progress = '1' then
if multiply_to_x.valid = '1' then
v.e.write_data := muldiv_result;
- if r.oe = '1' then
+ if ex1.oe = '1' then
-- have to wait until next cycle for overflow indication
v.mul_finish := '1';
v.busy := '1';
v.mul_in_progress := '1';
end if;
end if;
- if r.mul_finish = '1' then
+ if ex1.mul_finish = '1' then
v.e.xerc.ov := multiply_to_x.overflow;
v.e.xerc.ov32 := multiply_to_x.overflow;
if multiply_to_x.overflow = '1' then
fv.out_cr := e_in.output_cr;
-- Update registers
- rin <= v;
+ ex1in <= v;
-- update outputs
l_out <= lv;
- e_out <= r.e;
- if r.e.valid = '0' then
+ e_out <= ex1.e;
+ if ex1.e.valid = '0' then
e_out.write_enable <= '0';
e_out.write_cr_enable <= '0';
e_out.write_xerc_enable <= '0';
irq_valid_log &
interrupt_in &
"000" &
- r.e.write_enable &
- r.e.valid &
- ((r.e.redirect and r.e.valid) or r.e.interrupt) &
- r.busy &
+ ex1.e.write_enable &
+ ex1.e.valid &
+ ((ex1.e.redirect and ex1.e.valid) or ex1.e.interrupt) &
+ ex1.busy &
flush_in;
end if;
end process;