--- /dev/null
+/**************************************************************************
+ *
+ * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
+ * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
+ * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ **************************************************************************/
+
+/**
+ * TGSI interpretor/executor.
+ *
+ * Flow control information:
+ *
+ * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
+ * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
+ * care since a condition may be true for some quad components but false
+ * for other components.
+ *
+ * We basically execute all statements (even if they're in the part of
+ * an IF/ELSE clause that's "not taken") and use a special mask to
+ * control writing to destination registers. This is the ExecMask.
+ * See store_dest().
+ *
+ * The ExecMask is computed from three other masks (CondMask, LoopMask and
+ * ContMask) which are controlled by the flow control instructions (namely:
+ * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
+ *
+ *
+ * Authors:
+ * Michal Krol
+ * Brian Paul
+ */
+
+#include "pipe/p_compiler.h"
+#include "pipe/p_state.h"
+#include "pipe/p_util.h"
+#include "pipe/p_shader_tokens.h"
+#include "pipe/tgsi/util/tgsi_parse.h"
+#include "pipe/tgsi/util/tgsi_util.h"
+#include "spu_exec.h"
+
+#define TILE_TOP_LEFT 0
+#define TILE_TOP_RIGHT 1
+#define TILE_BOTTOM_LEFT 2
+#define TILE_BOTTOM_RIGHT 3
+
+/*
+ * Shorthand locations of various utility registers (_I = Index, _C = Channel)
+ */
+#define TEMP_0_I TGSI_EXEC_TEMP_00000000_I
+#define TEMP_0_C TGSI_EXEC_TEMP_00000000_C
+#define TEMP_7F_I TGSI_EXEC_TEMP_7FFFFFFF_I
+#define TEMP_7F_C TGSI_EXEC_TEMP_7FFFFFFF_C
+#define TEMP_80_I TGSI_EXEC_TEMP_80000000_I
+#define TEMP_80_C TGSI_EXEC_TEMP_80000000_C
+#define TEMP_FF_I TGSI_EXEC_TEMP_FFFFFFFF_I
+#define TEMP_FF_C TGSI_EXEC_TEMP_FFFFFFFF_C
+#define TEMP_1_I TGSI_EXEC_TEMP_ONE_I
+#define TEMP_1_C TGSI_EXEC_TEMP_ONE_C
+#define TEMP_2_I TGSI_EXEC_TEMP_TWO_I
+#define TEMP_2_C TGSI_EXEC_TEMP_TWO_C
+#define TEMP_128_I TGSI_EXEC_TEMP_128_I
+#define TEMP_128_C TGSI_EXEC_TEMP_128_C
+#define TEMP_M128_I TGSI_EXEC_TEMP_MINUS_128_I
+#define TEMP_M128_C TGSI_EXEC_TEMP_MINUS_128_C
+#define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
+#define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
+#define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
+#define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
+#define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
+#define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
+#define TEMP_R0 TGSI_EXEC_TEMP_R0
+
+#define FOR_EACH_CHANNEL(CHAN)\
+ for (CHAN = 0; CHAN < 4; CHAN++)
+
+#define IS_CHANNEL_ENABLED(INST, CHAN)\
+ ((INST).FullDstRegisters[0].DstRegister.WriteMask & (1 << (CHAN)))
+
+#define IS_CHANNEL_ENABLED2(INST, CHAN)\
+ ((INST).FullDstRegisters[1].DstRegister.WriteMask & (1 << (CHAN)))
+
+#define FOR_EACH_ENABLED_CHANNEL(INST, CHAN)\
+ FOR_EACH_CHANNEL( CHAN )\
+ if (IS_CHANNEL_ENABLED( INST, CHAN ))
+
+#define FOR_EACH_ENABLED_CHANNEL2(INST, CHAN)\
+ FOR_EACH_CHANNEL( CHAN )\
+ if (IS_CHANNEL_ENABLED2( INST, CHAN ))
+
+
+/** The execution mask depends on the conditional mask and the loop mask */
+#define UPDATE_EXEC_MASK(MACH) \
+ MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->FuncMask
+
+
+#define CHAN_X 0
+#define CHAN_Y 1
+#define CHAN_Z 2
+#define CHAN_W 3
+
+
+
+/**
+ * Initialize machine state by expanding tokens to full instructions,
+ * allocating temporary storage, setting up constants, etc.
+ * After this, we can call spu_exec_machine_run() many times.
+ */
+void
+spu_exec_machine_init(struct spu_exec_machine *mach,
+ uint numSamplers,
+ struct spu_sampler *samplers,
+ unsigned processor)
+{
+ uint i;
+
+ mach->Samplers = samplers;
+ mach->Processor = processor;
+ mach->Addrs = &mach->Temps[TGSI_EXEC_NUM_TEMPS];
+
+ /* Setup constants. */
+ for( i = 0; i < 4; i++ ) {
+ mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].u[i] = 0x00000000;
+ mach->Temps[TEMP_7F_I].xyzw[TEMP_7F_C].u[i] = 0x7FFFFFFF;
+ mach->Temps[TEMP_80_I].xyzw[TEMP_80_C].u[i] = 0x80000000;
+ mach->Temps[TEMP_FF_I].xyzw[TEMP_FF_C].u[i] = 0xFFFFFFFF;
+ mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].f[i] = 1.0f;
+ mach->Temps[TEMP_2_I].xyzw[TEMP_2_C].f[i] = 2.0f;
+ mach->Temps[TEMP_128_I].xyzw[TEMP_128_C].f[i] = 128.0f;
+ mach->Temps[TEMP_M128_I].xyzw[TEMP_M128_C].f[i] = -128.0f;
+ }
+}
+
+
+static void
+micro_abs(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+ dst->f[0] = (float) fabs( (double) src->f[0] );
+ dst->f[1] = (float) fabs( (double) src->f[1] );
+ dst->f[2] = (float) fabs( (double) src->f[2] );
+ dst->f[3] = (float) fabs( (double) src->f[3] );
+}
+
+static void
+micro_add(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->f[0] = src0->f[0] + src1->f[0];
+ dst->f[1] = src0->f[1] + src1->f[1];
+ dst->f[2] = src0->f[2] + src1->f[2];
+ dst->f[3] = src0->f[3] + src1->f[3];
+}
+
+static void
+micro_iadd(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->i[0] = src0->i[0] + src1->i[0];
+ dst->i[1] = src0->i[1] + src1->i[1];
+ dst->i[2] = src0->i[2] + src1->i[2];
+ dst->i[3] = src0->i[3] + src1->i[3];
+}
+
+static void
+micro_and(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->u[0] = src0->u[0] & src1->u[0];
+ dst->u[1] = src0->u[1] & src1->u[1];
+ dst->u[2] = src0->u[2] & src1->u[2];
+ dst->u[3] = src0->u[3] & src1->u[3];
+}
+
+static void
+micro_ceil(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+#if 0
+ dst->f[0] = (float) ceil( (double) src->f[0] );
+ dst->f[1] = (float) ceil( (double) src->f[1] );
+ dst->f[2] = (float) ceil( (double) src->f[2] );
+ dst->f[3] = (float) ceil( (double) src->f[3] );
+#endif
+}
+
+static void
+micro_cos(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+#if 0
+ dst->f[0] = (float) cos( (double) src->f[0] );
+ dst->f[1] = (float) cos( (double) src->f[1] );
+ dst->f[2] = (float) cos( (double) src->f[2] );
+ dst->f[3] = (float) cos( (double) src->f[3] );
+#endif
+}
+
+static void
+micro_ddx(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+ dst->f[0] =
+ dst->f[1] =
+ dst->f[2] =
+ dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
+}
+
+static void
+micro_ddy(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+ dst->f[0] =
+ dst->f[1] =
+ dst->f[2] =
+ dst->f[3] = src->f[TILE_TOP_LEFT] - src->f[TILE_BOTTOM_LEFT];
+}
+
+static void
+micro_div(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->f[0] = src0->f[0] / src1->f[0];
+ dst->f[1] = src0->f[1] / src1->f[1];
+ dst->f[2] = src0->f[2] / src1->f[2];
+ dst->f[3] = src0->f[3] / src1->f[3];
+}
+
+static void
+micro_udiv(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->u[0] = src0->u[0] / src1->u[0];
+ dst->u[1] = src0->u[1] / src1->u[1];
+ dst->u[2] = src0->u[2] / src1->u[2];
+ dst->u[3] = src0->u[3] / src1->u[3];
+}
+
+static void
+micro_eq(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1,
+ const union spu_exec_channel *src2,
+ const union spu_exec_channel *src3 )
+{
+ dst->f[0] = src0->f[0] == src1->f[0] ? src2->f[0] : src3->f[0];
+ dst->f[1] = src0->f[1] == src1->f[1] ? src2->f[1] : src3->f[1];
+ dst->f[2] = src0->f[2] == src1->f[2] ? src2->f[2] : src3->f[2];
+ dst->f[3] = src0->f[3] == src1->f[3] ? src2->f[3] : src3->f[3];
+}
+
+static void
+micro_ieq(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1,
+ const union spu_exec_channel *src2,
+ const union spu_exec_channel *src3 )
+{
+ dst->i[0] = src0->i[0] == src1->i[0] ? src2->i[0] : src3->i[0];
+ dst->i[1] = src0->i[1] == src1->i[1] ? src2->i[1] : src3->i[1];
+ dst->i[2] = src0->i[2] == src1->i[2] ? src2->i[2] : src3->i[2];
+ dst->i[3] = src0->i[3] == src1->i[3] ? src2->i[3] : src3->i[3];
+}
+
+static void
+micro_exp2(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src)
+{
+#if 0
+ dst->f[0] = (float) pow( 2.0, (double) src->f[0] );
+ dst->f[1] = (float) pow( 2.0, (double) src->f[1] );
+ dst->f[2] = (float) pow( 2.0, (double) src->f[2] );
+ dst->f[3] = (float) pow( 2.0, (double) src->f[3] );
+#endif
+}
+
+static void
+micro_f2it(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+ dst->i[0] = (int) src->f[0];
+ dst->i[1] = (int) src->f[1];
+ dst->i[2] = (int) src->f[2];
+ dst->i[3] = (int) src->f[3];
+}
+
+static void
+micro_f2ut(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+ dst->u[0] = (uint) src->f[0];
+ dst->u[1] = (uint) src->f[1];
+ dst->u[2] = (uint) src->f[2];
+ dst->u[3] = (uint) src->f[3];
+}
+
+static void
+micro_flr(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+#if 0
+ dst->f[0] = (float) floor( (double) src->f[0] );
+ dst->f[1] = (float) floor( (double) src->f[1] );
+ dst->f[2] = (float) floor( (double) src->f[2] );
+ dst->f[3] = (float) floor( (double) src->f[3] );
+#endif
+}
+
+static void
+micro_frc(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+#if 0
+ dst->f[0] = src->f[0] - (float) floor( (double) src->f[0] );
+ dst->f[1] = src->f[1] - (float) floor( (double) src->f[1] );
+ dst->f[2] = src->f[2] - (float) floor( (double) src->f[2] );
+ dst->f[3] = src->f[3] - (float) floor( (double) src->f[3] );
+#endif
+}
+
+static void
+micro_ge(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1,
+ const union spu_exec_channel *src2,
+ const union spu_exec_channel *src3 )
+{
+ dst->f[0] = src0->f[0] >= src1->f[0] ? src2->f[0] : src3->f[0];
+ dst->f[1] = src0->f[1] >= src1->f[1] ? src2->f[1] : src3->f[1];
+ dst->f[2] = src0->f[2] >= src1->f[2] ? src2->f[2] : src3->f[2];
+ dst->f[3] = src0->f[3] >= src1->f[3] ? src2->f[3] : src3->f[3];
+}
+
+static void
+micro_i2f(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+ dst->f[0] = (float) src->i[0];
+ dst->f[1] = (float) src->i[1];
+ dst->f[2] = (float) src->i[2];
+ dst->f[3] = (float) src->i[3];
+}
+
+static void
+micro_lg2(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+#if 0
+ dst->f[0] = (float) log( (double) src->f[0] ) * 1.442695f;
+ dst->f[1] = (float) log( (double) src->f[1] ) * 1.442695f;
+ dst->f[2] = (float) log( (double) src->f[2] ) * 1.442695f;
+ dst->f[3] = (float) log( (double) src->f[3] ) * 1.442695f;
+#endif
+}
+
+static void
+micro_lt(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1,
+ const union spu_exec_channel *src2,
+ const union spu_exec_channel *src3 )
+{
+ dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
+ dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
+ dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
+ dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
+}
+
+static void
+micro_ilt(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1,
+ const union spu_exec_channel *src2,
+ const union spu_exec_channel *src3 )
+{
+ dst->i[0] = src0->i[0] < src1->i[0] ? src2->i[0] : src3->i[0];
+ dst->i[1] = src0->i[1] < src1->i[1] ? src2->i[1] : src3->i[1];
+ dst->i[2] = src0->i[2] < src1->i[2] ? src2->i[2] : src3->i[2];
+ dst->i[3] = src0->i[3] < src1->i[3] ? src2->i[3] : src3->i[3];
+}
+
+static void
+micro_ult(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1,
+ const union spu_exec_channel *src2,
+ const union spu_exec_channel *src3 )
+{
+ dst->u[0] = src0->u[0] < src1->u[0] ? src2->u[0] : src3->u[0];
+ dst->u[1] = src0->u[1] < src1->u[1] ? src2->u[1] : src3->u[1];
+ dst->u[2] = src0->u[2] < src1->u[2] ? src2->u[2] : src3->u[2];
+ dst->u[3] = src0->u[3] < src1->u[3] ? src2->u[3] : src3->u[3];
+}
+
+static void
+micro_max(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
+ dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
+ dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
+ dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
+}
+
+static void
+micro_imax(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
+ dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
+ dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
+ dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
+}
+
+static void
+micro_umax(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
+ dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
+ dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
+ dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
+}
+
+static void
+micro_min(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
+ dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
+ dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
+ dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
+}
+
+static void
+micro_imin(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
+ dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
+ dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
+ dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
+}
+
+static void
+micro_umin(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
+ dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
+ dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
+ dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
+}
+
+static void
+micro_umod(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->u[0] = src0->u[0] % src1->u[0];
+ dst->u[1] = src0->u[1] % src1->u[1];
+ dst->u[2] = src0->u[2] % src1->u[2];
+ dst->u[3] = src0->u[3] % src1->u[3];
+}
+
+static void
+micro_mul(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->f[0] = src0->f[0] * src1->f[0];
+ dst->f[1] = src0->f[1] * src1->f[1];
+ dst->f[2] = src0->f[2] * src1->f[2];
+ dst->f[3] = src0->f[3] * src1->f[3];
+}
+
+static void
+micro_imul(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->i[0] = src0->i[0] * src1->i[0];
+ dst->i[1] = src0->i[1] * src1->i[1];
+ dst->i[2] = src0->i[2] * src1->i[2];
+ dst->i[3] = src0->i[3] * src1->i[3];
+}
+
+static void
+micro_imul64(
+ union spu_exec_channel *dst0,
+ union spu_exec_channel *dst1,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst1->i[0] = src0->i[0] * src1->i[0];
+ dst1->i[1] = src0->i[1] * src1->i[1];
+ dst1->i[2] = src0->i[2] * src1->i[2];
+ dst1->i[3] = src0->i[3] * src1->i[3];
+ dst0->i[0] = 0;
+ dst0->i[1] = 0;
+ dst0->i[2] = 0;
+ dst0->i[3] = 0;
+}
+
+static void
+micro_umul64(
+ union spu_exec_channel *dst0,
+ union spu_exec_channel *dst1,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst1->u[0] = src0->u[0] * src1->u[0];
+ dst1->u[1] = src0->u[1] * src1->u[1];
+ dst1->u[2] = src0->u[2] * src1->u[2];
+ dst1->u[3] = src0->u[3] * src1->u[3];
+ dst0->u[0] = 0;
+ dst0->u[1] = 0;
+ dst0->u[2] = 0;
+ dst0->u[3] = 0;
+}
+
+static void
+micro_movc(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1,
+ const union spu_exec_channel *src2 )
+{
+ dst->u[0] = src0->u[0] ? src1->u[0] : src2->u[0];
+ dst->u[1] = src0->u[1] ? src1->u[1] : src2->u[1];
+ dst->u[2] = src0->u[2] ? src1->u[2] : src2->u[2];
+ dst->u[3] = src0->u[3] ? src1->u[3] : src2->u[3];
+}
+
+static void
+micro_neg(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+ dst->f[0] = -src->f[0];
+ dst->f[1] = -src->f[1];
+ dst->f[2] = -src->f[2];
+ dst->f[3] = -src->f[3];
+}
+
+static void
+micro_ineg(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+ dst->i[0] = -src->i[0];
+ dst->i[1] = -src->i[1];
+ dst->i[2] = -src->i[2];
+ dst->i[3] = -src->i[3];
+}
+
+static void
+micro_not(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+ dst->u[0] = ~src->u[0];
+ dst->u[1] = ~src->u[1];
+ dst->u[2] = ~src->u[2];
+ dst->u[3] = ~src->u[3];
+}
+
+static void
+micro_or(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->u[0] = src0->u[0] | src1->u[0];
+ dst->u[1] = src0->u[1] | src1->u[1];
+ dst->u[2] = src0->u[2] | src1->u[2];
+ dst->u[3] = src0->u[3] | src1->u[3];
+}
+
+static void
+micro_pow(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+#if 0
+ dst->f[0] = (float) pow( (double) src0->f[0], (double) src1->f[0] );
+ dst->f[1] = (float) pow( (double) src0->f[1], (double) src1->f[1] );
+ dst->f[2] = (float) pow( (double) src0->f[2], (double) src1->f[2] );
+ dst->f[3] = (float) pow( (double) src0->f[3], (double) src1->f[3] );
+#endif
+}
+
+static void
+micro_rnd(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+#if 0
+ dst->f[0] = (float) floor( (double) (src->f[0] + 0.5f) );
+ dst->f[1] = (float) floor( (double) (src->f[1] + 0.5f) );
+ dst->f[2] = (float) floor( (double) (src->f[2] + 0.5f) );
+ dst->f[3] = (float) floor( (double) (src->f[3] + 0.5f) );
+#endif
+}
+
+static void
+micro_shl(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->i[0] = src0->i[0] << src1->i[0];
+ dst->i[1] = src0->i[1] << src1->i[1];
+ dst->i[2] = src0->i[2] << src1->i[2];
+ dst->i[3] = src0->i[3] << src1->i[3];
+}
+
+static void
+micro_ishr(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->i[0] = src0->i[0] >> src1->i[0];
+ dst->i[1] = src0->i[1] >> src1->i[1];
+ dst->i[2] = src0->i[2] >> src1->i[2];
+ dst->i[3] = src0->i[3] >> src1->i[3];
+}
+
+static void
+micro_trunc(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0 )
+{
+ dst->f[0] = (float) (int) src0->f[0];
+ dst->f[1] = (float) (int) src0->f[1];
+ dst->f[2] = (float) (int) src0->f[2];
+ dst->f[3] = (float) (int) src0->f[3];
+}
+
+static void
+micro_ushr(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->u[0] = src0->u[0] >> src1->u[0];
+ dst->u[1] = src0->u[1] >> src1->u[1];
+ dst->u[2] = src0->u[2] >> src1->u[2];
+ dst->u[3] = src0->u[3] >> src1->u[3];
+}
+
+static void
+micro_sin(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+#if 0
+ dst->f[0] = (float) sin( (double) src->f[0] );
+ dst->f[1] = (float) sin( (double) src->f[1] );
+ dst->f[2] = (float) sin( (double) src->f[2] );
+ dst->f[3] = (float) sin( (double) src->f[3] );
+#endif
+}
+
+static void
+micro_sqrt( union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+#if 0
+ dst->f[0] = (float) sqrt( (double) src->f[0] );
+ dst->f[1] = (float) sqrt( (double) src->f[1] );
+ dst->f[2] = (float) sqrt( (double) src->f[2] );
+ dst->f[3] = (float) sqrt( (double) src->f[3] );
+#endif
+}
+
+static void
+micro_sub(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->f[0] = src0->f[0] - src1->f[0];
+ dst->f[1] = src0->f[1] - src1->f[1];
+ dst->f[2] = src0->f[2] - src1->f[2];
+ dst->f[3] = src0->f[3] - src1->f[3];
+}
+
+static void
+micro_u2f(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src )
+{
+ dst->f[0] = (float) src->u[0];
+ dst->f[1] = (float) src->u[1];
+ dst->f[2] = (float) src->u[2];
+ dst->f[3] = (float) src->u[3];
+}
+
+static void
+micro_xor(
+ union spu_exec_channel *dst,
+ const union spu_exec_channel *src0,
+ const union spu_exec_channel *src1 )
+{
+ dst->u[0] = src0->u[0] ^ src1->u[0];
+ dst->u[1] = src0->u[1] ^ src1->u[1];
+ dst->u[2] = src0->u[2] ^ src1->u[2];
+ dst->u[3] = src0->u[3] ^ src1->u[3];
+}
+
+static void
+fetch_src_file_channel(
+ const struct spu_exec_machine *mach,
+ const uint file,
+ const uint swizzle,
+ const union spu_exec_channel *index,
+ union spu_exec_channel *chan )
+{
+ switch( swizzle ) {
+ case TGSI_EXTSWIZZLE_X:
+ case TGSI_EXTSWIZZLE_Y:
+ case TGSI_EXTSWIZZLE_Z:
+ case TGSI_EXTSWIZZLE_W:
+ switch( file ) {
+ case TGSI_FILE_CONSTANT:
+ chan->f[0] = mach->Consts[index->i[0]][swizzle];
+ chan->f[1] = mach->Consts[index->i[1]][swizzle];
+ chan->f[2] = mach->Consts[index->i[2]][swizzle];
+ chan->f[3] = mach->Consts[index->i[3]][swizzle];
+ break;
+
+ case TGSI_FILE_INPUT:
+ chan->u[0] = mach->Inputs[index->i[0]].xyzw[swizzle].u[0];
+ chan->u[1] = mach->Inputs[index->i[1]].xyzw[swizzle].u[1];
+ chan->u[2] = mach->Inputs[index->i[2]].xyzw[swizzle].u[2];
+ chan->u[3] = mach->Inputs[index->i[3]].xyzw[swizzle].u[3];
+ break;
+
+ case TGSI_FILE_TEMPORARY:
+ chan->u[0] = mach->Temps[index->i[0]].xyzw[swizzle].u[0];
+ chan->u[1] = mach->Temps[index->i[1]].xyzw[swizzle].u[1];
+ chan->u[2] = mach->Temps[index->i[2]].xyzw[swizzle].u[2];
+ chan->u[3] = mach->Temps[index->i[3]].xyzw[swizzle].u[3];
+ break;
+
+ case TGSI_FILE_IMMEDIATE:
+ assert( index->i[0] < (int) mach->ImmLimit );
+ assert( index->i[1] < (int) mach->ImmLimit );
+ assert( index->i[2] < (int) mach->ImmLimit );
+ assert( index->i[3] < (int) mach->ImmLimit );
+
+ chan->f[0] = mach->Imms[index->i[0]][swizzle];
+ chan->f[1] = mach->Imms[index->i[1]][swizzle];
+ chan->f[2] = mach->Imms[index->i[2]][swizzle];
+ chan->f[3] = mach->Imms[index->i[3]][swizzle];
+ break;
+
+ case TGSI_FILE_ADDRESS:
+ chan->u[0] = mach->Addrs[index->i[0]].xyzw[swizzle].u[0];
+ chan->u[1] = mach->Addrs[index->i[1]].xyzw[swizzle].u[1];
+ chan->u[2] = mach->Addrs[index->i[2]].xyzw[swizzle].u[2];
+ chan->u[3] = mach->Addrs[index->i[3]].xyzw[swizzle].u[3];
+ break;
+
+ case TGSI_FILE_OUTPUT:
+ /* vertex/fragment output vars can be read too */
+ chan->u[0] = mach->Outputs[index->i[0]].xyzw[swizzle].u[0];
+ chan->u[1] = mach->Outputs[index->i[1]].xyzw[swizzle].u[1];
+ chan->u[2] = mach->Outputs[index->i[2]].xyzw[swizzle].u[2];
+ chan->u[3] = mach->Outputs[index->i[3]].xyzw[swizzle].u[3];
+ break;
+
+ default:
+ assert( 0 );
+ }
+ break;
+
+ case TGSI_EXTSWIZZLE_ZERO:
+ *chan = mach->Temps[TEMP_0_I].xyzw[TEMP_0_C];
+ break;
+
+ case TGSI_EXTSWIZZLE_ONE:
+ *chan = mach->Temps[TEMP_1_I].xyzw[TEMP_1_C];
+ break;
+
+ default:
+ assert( 0 );
+ }
+}
+
+static void
+fetch_source(
+ const struct spu_exec_machine *mach,
+ union spu_exec_channel *chan,
+ const struct tgsi_full_src_register *reg,
+ const uint chan_index )
+{
+ union spu_exec_channel index;
+ uint swizzle;
+
+ index.i[0] =
+ index.i[1] =
+ index.i[2] =
+ index.i[3] = reg->SrcRegister.Index;
+
+ if (reg->SrcRegister.Indirect) {
+ union spu_exec_channel index2;
+ union spu_exec_channel indir_index;
+
+ index2.i[0] =
+ index2.i[1] =
+ index2.i[2] =
+ index2.i[3] = reg->SrcRegisterInd.Index;
+
+ swizzle = tgsi_util_get_src_register_swizzle(®->SrcRegisterInd,
+ CHAN_X);
+ fetch_src_file_channel(
+ mach,
+ reg->SrcRegisterInd.File,
+ swizzle,
+ &index2,
+ &indir_index );
+
+ index.i[0] += indir_index.i[0];
+ index.i[1] += indir_index.i[1];
+ index.i[2] += indir_index.i[2];
+ index.i[3] += indir_index.i[3];
+ }
+
+ if( reg->SrcRegister.Dimension ) {
+ switch( reg->SrcRegister.File ) {
+ case TGSI_FILE_INPUT:
+ index.i[0] *= 17;
+ index.i[1] *= 17;
+ index.i[2] *= 17;
+ index.i[3] *= 17;
+ break;
+ case TGSI_FILE_CONSTANT:
+ index.i[0] *= 4096;
+ index.i[1] *= 4096;
+ index.i[2] *= 4096;
+ index.i[3] *= 4096;
+ break;
+ default:
+ assert( 0 );
+ }
+
+ index.i[0] += reg->SrcRegisterDim.Index;
+ index.i[1] += reg->SrcRegisterDim.Index;
+ index.i[2] += reg->SrcRegisterDim.Index;
+ index.i[3] += reg->SrcRegisterDim.Index;
+
+ if (reg->SrcRegisterDim.Indirect) {
+ union spu_exec_channel index2;
+ union spu_exec_channel indir_index;
+
+ index2.i[0] =
+ index2.i[1] =
+ index2.i[2] =
+ index2.i[3] = reg->SrcRegisterDimInd.Index;
+
+ swizzle = tgsi_util_get_src_register_swizzle( ®->SrcRegisterDimInd, CHAN_X );
+ fetch_src_file_channel(
+ mach,
+ reg->SrcRegisterDimInd.File,
+ swizzle,
+ &index2,
+ &indir_index );
+
+ index.i[0] += indir_index.i[0];
+ index.i[1] += indir_index.i[1];
+ index.i[2] += indir_index.i[2];
+ index.i[3] += indir_index.i[3];
+ }
+ }
+
+ swizzle = tgsi_util_get_full_src_register_extswizzle( reg, chan_index );
+ fetch_src_file_channel(
+ mach,
+ reg->SrcRegister.File,
+ swizzle,
+ &index,
+ chan );
+
+ switch (tgsi_util_get_full_src_register_sign_mode( reg, chan_index )) {
+ case TGSI_UTIL_SIGN_CLEAR:
+ micro_abs( chan, chan );
+ break;
+
+ case TGSI_UTIL_SIGN_SET:
+ micro_abs( chan, chan );
+ micro_neg( chan, chan );
+ break;
+
+ case TGSI_UTIL_SIGN_TOGGLE:
+ micro_neg( chan, chan );
+ break;
+
+ case TGSI_UTIL_SIGN_KEEP:
+ break;
+ }
+
+ if (reg->SrcRegisterExtMod.Complement) {
+ micro_sub( chan, &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], chan );
+ }
+}
+
+static void
+store_dest(
+ struct spu_exec_machine *mach,
+ const union spu_exec_channel *chan,
+ const struct tgsi_full_dst_register *reg,
+ const struct tgsi_full_instruction *inst,
+ uint chan_index )
+{
+ union spu_exec_channel *dst;
+
+ switch( reg->DstRegister.File ) {
+ case TGSI_FILE_NULL:
+ return;
+
+ case TGSI_FILE_OUTPUT:
+ dst = &mach->Outputs[mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
+ + reg->DstRegister.Index].xyzw[chan_index];
+ break;
+
+ case TGSI_FILE_TEMPORARY:
+ dst = &mach->Temps[reg->DstRegister.Index].xyzw[chan_index];
+ break;
+
+ case TGSI_FILE_ADDRESS:
+ dst = &mach->Addrs[reg->DstRegister.Index].xyzw[chan_index];
+ break;
+
+ default:
+ assert( 0 );
+ return;
+ }
+
+ switch (inst->Instruction.Saturate)
+ {
+ case TGSI_SAT_NONE:
+ if (mach->ExecMask & 0x1)
+ dst->i[0] = chan->i[0];
+ if (mach->ExecMask & 0x2)
+ dst->i[1] = chan->i[1];
+ if (mach->ExecMask & 0x4)
+ dst->i[2] = chan->i[2];
+ if (mach->ExecMask & 0x8)
+ dst->i[3] = chan->i[3];
+ break;
+
+ case TGSI_SAT_ZERO_ONE:
+ /* XXX need to obey ExecMask here */
+ micro_max(dst, chan, &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C]);
+ micro_min(dst, dst, &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C]);
+ break;
+
+ case TGSI_SAT_MINUS_PLUS_ONE:
+ assert( 0 );
+ break;
+
+ default:
+ assert( 0 );
+ }
+}
+
+#define FETCH(VAL,INDEX,CHAN)\
+ fetch_source (mach, VAL, &inst->FullSrcRegisters[INDEX], CHAN)
+
+#define STORE(VAL,INDEX,CHAN)\
+ store_dest (mach, VAL, &inst->FullDstRegisters[INDEX], inst, CHAN )
+
+
+/**
+ * Execute ARB-style KIL which is predicated by a src register.
+ * Kill fragment if any of the four values is less than zero.
+ */
+static void
+exec_kilp(struct spu_exec_machine *mach,
+ const struct tgsi_full_instruction *inst)
+{
+ uint uniquemask;
+ uint chan_index;
+ uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
+ union spu_exec_channel r[1];
+
+ /* This mask stores component bits that were already tested. Note that
+ * we test if the value is less than zero, so 1.0 and 0.0 need not to be
+ * tested. */
+ uniquemask = (1 << TGSI_EXTSWIZZLE_ZERO) | (1 << TGSI_EXTSWIZZLE_ONE);
+
+ for (chan_index = 0; chan_index < 4; chan_index++)
+ {
+ uint swizzle;
+ uint i;
+
+ /* unswizzle channel */
+ swizzle = tgsi_util_get_full_src_register_extswizzle (
+ &inst->FullSrcRegisters[0],
+ chan_index);
+
+ /* check if the component has not been already tested */
+ if (uniquemask & (1 << swizzle))
+ continue;
+ uniquemask |= 1 << swizzle;
+
+ FETCH(&r[0], 0, chan_index);
+ for (i = 0; i < 4; i++)
+ if (r[0].f[i] < 0.0f)
+ kilmask |= 1 << i;
+ }
+
+ mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
+}
+
+
+/*
+ * Fetch a texel using STR texture coordinates.
+ */
+static void
+fetch_texel( struct spu_sampler *sampler,
+ const union spu_exec_channel *s,
+ const union spu_exec_channel *t,
+ const union spu_exec_channel *p,
+ float lodbias, /* XXX should be float[4] */
+ union spu_exec_channel *r,
+ union spu_exec_channel *g,
+ union spu_exec_channel *b,
+ union spu_exec_channel *a )
+{
+ uint j;
+ float rgba[NUM_CHANNELS][QUAD_SIZE];
+
+ sampler->get_samples(sampler, s->f, t->f, p->f, lodbias, rgba);
+
+ for (j = 0; j < 4; j++) {
+ r->f[j] = rgba[0][j];
+ g->f[j] = rgba[1][j];
+ b->f[j] = rgba[2][j];
+ a->f[j] = rgba[3][j];
+ }
+}
+
+
+static void
+exec_tex(struct spu_exec_machine *mach,
+ const struct tgsi_full_instruction *inst,
+ boolean biasLod)
+{
+ const uint unit = inst->FullSrcRegisters[1].SrcRegister.Index;
+ union spu_exec_channel r[8];
+ uint chan_index;
+ float lodBias;
+
+ /* printf("Sampler %u unit %u\n", sampler, unit); */
+
+ switch (inst->InstructionExtTexture.Texture) {
+ case TGSI_TEXTURE_1D:
+
+ FETCH(&r[0], 0, CHAN_X);
+
+ switch (inst->FullSrcRegisters[0].SrcRegisterExtSwz.ExtDivide) {
+ case TGSI_EXTSWIZZLE_W:
+ FETCH(&r[1], 0, CHAN_W);
+ micro_div( &r[0], &r[0], &r[1] );
+ break;
+
+ case TGSI_EXTSWIZZLE_ONE:
+ break;
+
+ default:
+ assert (0);
+ }
+
+ if (biasLod) {
+ FETCH(&r[1], 0, CHAN_W);
+ lodBias = r[2].f[0];
+ }
+ else
+ lodBias = 0.0;
+
+ fetch_texel(&mach->Samplers[unit],
+ &r[0], NULL, NULL, lodBias, /* S, T, P, BIAS */
+ &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
+ break;
+
+ case TGSI_TEXTURE_2D:
+ case TGSI_TEXTURE_RECT:
+
+ FETCH(&r[0], 0, CHAN_X);
+ FETCH(&r[1], 0, CHAN_Y);
+ FETCH(&r[2], 0, CHAN_Z);
+
+ switch (inst->FullSrcRegisters[0].SrcRegisterExtSwz.ExtDivide) {
+ case TGSI_EXTSWIZZLE_W:
+ FETCH(&r[3], 0, CHAN_W);
+ micro_div( &r[0], &r[0], &r[3] );
+ micro_div( &r[1], &r[1], &r[3] );
+ micro_div( &r[2], &r[2], &r[3] );
+ break;
+
+ case TGSI_EXTSWIZZLE_ONE:
+ break;
+
+ default:
+ assert (0);
+ }
+
+ if (biasLod) {
+ FETCH(&r[3], 0, CHAN_W);
+ lodBias = r[3].f[0];
+ }
+ else
+ lodBias = 0.0;
+
+ fetch_texel(&mach->Samplers[unit],
+ &r[0], &r[1], &r[2], lodBias, /* inputs */
+ &r[0], &r[1], &r[2], &r[3]); /* outputs */
+ break;
+
+ case TGSI_TEXTURE_3D:
+ case TGSI_TEXTURE_CUBE:
+
+ FETCH(&r[0], 0, CHAN_X);
+ FETCH(&r[1], 0, CHAN_Y);
+ FETCH(&r[2], 0, CHAN_Z);
+
+ switch (inst->FullSrcRegisters[0].SrcRegisterExtSwz.ExtDivide) {
+ case TGSI_EXTSWIZZLE_W:
+ FETCH(&r[3], 0, CHAN_W);
+ micro_div( &r[0], &r[0], &r[3] );
+ micro_div( &r[1], &r[1], &r[3] );
+ micro_div( &r[2], &r[2], &r[3] );
+ break;
+
+ case TGSI_EXTSWIZZLE_ONE:
+ break;
+
+ default:
+ assert (0);
+ }
+
+ if (biasLod) {
+ FETCH(&r[3], 0, CHAN_W);
+ lodBias = r[3].f[0];
+ }
+ else
+ lodBias = 0.0;
+
+ fetch_texel(&mach->Samplers[unit],
+ &r[0], &r[1], &r[2], lodBias,
+ &r[0], &r[1], &r[2], &r[3]);
+ break;
+
+ default:
+ assert (0);
+ }
+
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ STORE( &r[chan_index], 0, chan_index );
+ }
+}
+
+
+
+static void
+constant_interpolation(
+ struct spu_exec_machine *mach,
+ unsigned attrib,
+ unsigned chan )
+{
+ unsigned i;
+
+ for( i = 0; i < QUAD_SIZE; i++ ) {
+ mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
+ }
+}
+
+static void
+linear_interpolation(
+ struct spu_exec_machine *mach,
+ unsigned attrib,
+ unsigned chan )
+{
+ const float x = mach->QuadPos.xyzw[0].f[0];
+ const float y = mach->QuadPos.xyzw[1].f[0];
+ const float dadx = mach->InterpCoefs[attrib].dadx[chan];
+ const float dady = mach->InterpCoefs[attrib].dady[chan];
+ const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
+ mach->Inputs[attrib].xyzw[chan].f[0] = a0;
+ mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
+ mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
+ mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
+}
+
+static void
+perspective_interpolation(
+ struct spu_exec_machine *mach,
+ unsigned attrib,
+ unsigned chan )
+{
+ const float x = mach->QuadPos.xyzw[0].f[0];
+ const float y = mach->QuadPos.xyzw[1].f[0];
+ const float dadx = mach->InterpCoefs[attrib].dadx[chan];
+ const float dady = mach->InterpCoefs[attrib].dady[chan];
+ const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
+ const float *w = mach->QuadPos.xyzw[3].f;
+ /* divide by W here */
+ mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
+ mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
+ mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
+ mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
+}
+
+
+typedef void (* interpolation_func)(
+ struct spu_exec_machine *mach,
+ unsigned attrib,
+ unsigned chan );
+
+static void
+exec_declaration(struct spu_exec_machine *mach,
+ const struct tgsi_full_declaration *decl)
+{
+ if( mach->Processor == TGSI_PROCESSOR_FRAGMENT ) {
+ if( decl->Declaration.File == TGSI_FILE_INPUT ) {
+ unsigned first, last, mask;
+ interpolation_func interp;
+
+ assert( decl->Declaration.Declare == TGSI_DECLARE_RANGE );
+
+ first = decl->u.DeclarationRange.First;
+ last = decl->u.DeclarationRange.Last;
+ mask = decl->Declaration.UsageMask;
+
+ switch( decl->Interpolation.Interpolate ) {
+ case TGSI_INTERPOLATE_CONSTANT:
+ interp = constant_interpolation;
+ break;
+
+ case TGSI_INTERPOLATE_LINEAR:
+ interp = linear_interpolation;
+ break;
+
+ case TGSI_INTERPOLATE_PERSPECTIVE:
+ interp = perspective_interpolation;
+ break;
+
+ default:
+ assert( 0 );
+ }
+
+ if( mask == TGSI_WRITEMASK_XYZW ) {
+ unsigned i, j;
+
+ for( i = first; i <= last; i++ ) {
+ for( j = 0; j < NUM_CHANNELS; j++ ) {
+ interp( mach, i, j );
+ }
+ }
+ }
+ else {
+ unsigned i, j;
+
+ for( j = 0; j < NUM_CHANNELS; j++ ) {
+ if( mask & (1 << j) ) {
+ for( i = first; i <= last; i++ ) {
+ interp( mach, i, j );
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static void
+exec_instruction(
+ struct spu_exec_machine *mach,
+ const struct tgsi_full_instruction *inst,
+ int *pc )
+{
+ uint chan_index;
+ union spu_exec_channel r[8];
+
+ (*pc)++;
+
+ switch (inst->Instruction.Opcode) {
+ case TGSI_OPCODE_ARL:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ micro_f2it( &r[0], &r[0] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_MOV:
+ /* TGSI_OPCODE_SWZ */
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_LIT:
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) {
+ STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_X );
+ }
+
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_Y ) || IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
+ FETCH( &r[0], 0, CHAN_X );
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
+ micro_max( &r[0], &r[0], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C] );
+ STORE( &r[0], 0, CHAN_Y );
+ }
+
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
+ FETCH( &r[1], 0, CHAN_Y );
+ micro_max( &r[1], &r[1], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C] );
+
+ FETCH( &r[2], 0, CHAN_W );
+ micro_min( &r[2], &r[2], &mach->Temps[TEMP_128_I].xyzw[TEMP_128_C] );
+ micro_max( &r[2], &r[2], &mach->Temps[TEMP_M128_I].xyzw[TEMP_M128_C] );
+ micro_pow( &r[1], &r[1], &r[2] );
+ micro_lt( &r[0], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], &r[0], &r[1], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C] );
+ STORE( &r[0], 0, CHAN_Z );
+ }
+ }
+
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
+ STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
+ }
+ break;
+
+ case TGSI_OPCODE_RCP:
+ /* TGSI_OPCODE_RECIP */
+ FETCH( &r[0], 0, CHAN_X );
+ micro_div( &r[0], &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], &r[0] );
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_RSQ:
+ /* TGSI_OPCODE_RECIPSQRT */
+ FETCH( &r[0], 0, CHAN_X );
+ micro_sqrt( &r[0], &r[0] );
+ micro_div( &r[0], &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], &r[0] );
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_EXP:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_LOG:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_MUL:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index )
+ {
+ FETCH(&r[0], 0, chan_index);
+ FETCH(&r[1], 1, chan_index);
+
+ micro_mul( &r[0], &r[0], &r[1] );
+
+ STORE(&r[0], 0, chan_index);
+ }
+ break;
+
+ case TGSI_OPCODE_ADD:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_add( &r[0], &r[0], &r[1] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_DP3:
+ /* TGSI_OPCODE_DOT3 */
+ FETCH( &r[0], 0, CHAN_X );
+ FETCH( &r[1], 1, CHAN_X );
+ micro_mul( &r[0], &r[0], &r[1] );
+
+ FETCH( &r[1], 0, CHAN_Y );
+ FETCH( &r[2], 1, CHAN_Y );
+ micro_mul( &r[1], &r[1], &r[2] );
+ micro_add( &r[0], &r[0], &r[1] );
+
+ FETCH( &r[1], 0, CHAN_Z );
+ FETCH( &r[2], 1, CHAN_Z );
+ micro_mul( &r[1], &r[1], &r[2] );
+ micro_add( &r[0], &r[0], &r[1] );
+
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_DP4:
+ /* TGSI_OPCODE_DOT4 */
+ FETCH(&r[0], 0, CHAN_X);
+ FETCH(&r[1], 1, CHAN_X);
+
+ micro_mul( &r[0], &r[0], &r[1] );
+
+ FETCH(&r[1], 0, CHAN_Y);
+ FETCH(&r[2], 1, CHAN_Y);
+
+ micro_mul( &r[1], &r[1], &r[2] );
+ micro_add( &r[0], &r[0], &r[1] );
+
+ FETCH(&r[1], 0, CHAN_Z);
+ FETCH(&r[2], 1, CHAN_Z);
+
+ micro_mul( &r[1], &r[1], &r[2] );
+ micro_add( &r[0], &r[0], &r[1] );
+
+ FETCH(&r[1], 0, CHAN_W);
+ FETCH(&r[2], 1, CHAN_W);
+
+ micro_mul( &r[1], &r[1], &r[2] );
+ micro_add( &r[0], &r[0], &r[1] );
+
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_DST:
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) {
+ STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_X );
+ }
+
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
+ FETCH( &r[0], 0, CHAN_Y );
+ FETCH( &r[1], 1, CHAN_Y);
+ micro_mul( &r[0], &r[0], &r[1] );
+ STORE( &r[0], 0, CHAN_Y );
+ }
+
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
+ FETCH( &r[0], 0, CHAN_Z );
+ STORE( &r[0], 0, CHAN_Z );
+ }
+
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
+ FETCH( &r[0], 1, CHAN_W );
+ STORE( &r[0], 0, CHAN_W );
+ }
+ break;
+
+ case TGSI_OPCODE_MIN:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH(&r[0], 0, chan_index);
+ FETCH(&r[1], 1, chan_index);
+
+ /* XXX use micro_min()?? */
+ micro_lt( &r[0], &r[0], &r[1], &r[0], &r[1] );
+
+ STORE(&r[0], 0, chan_index);
+ }
+ break;
+
+ case TGSI_OPCODE_MAX:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH(&r[0], 0, chan_index);
+ FETCH(&r[1], 1, chan_index);
+
+ /* XXX use micro_max()?? */
+ micro_lt( &r[0], &r[0], &r[1], &r[1], &r[0] );
+
+ STORE(&r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_SLT:
+ /* TGSI_OPCODE_SETLT */
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_lt( &r[0], &r[0], &r[1], &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_SGE:
+ /* TGSI_OPCODE_SETGE */
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_ge( &r[0], &r[0], &r[1], &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_MAD:
+ /* TGSI_OPCODE_MADD */
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_mul( &r[0], &r[0], &r[1] );
+ FETCH( &r[1], 2, chan_index );
+ micro_add( &r[0], &r[0], &r[1] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_SUB:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH(&r[0], 0, chan_index);
+ FETCH(&r[1], 1, chan_index);
+
+ micro_sub( &r[0], &r[0], &r[1] );
+
+ STORE(&r[0], 0, chan_index);
+ }
+ break;
+
+ case TGSI_OPCODE_LERP:
+ /* TGSI_OPCODE_LRP */
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH(&r[0], 0, chan_index);
+ FETCH(&r[1], 1, chan_index);
+ FETCH(&r[2], 2, chan_index);
+
+ micro_sub( &r[1], &r[1], &r[2] );
+ micro_mul( &r[0], &r[0], &r[1] );
+ micro_add( &r[0], &r[0], &r[2] );
+
+ STORE(&r[0], 0, chan_index);
+ }
+ break;
+
+ case TGSI_OPCODE_CND:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_CND0:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_DOT2ADD:
+ /* TGSI_OPCODE_DP2A */
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_INDEX:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_NEGATE:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_FRAC:
+ /* TGSI_OPCODE_FRC */
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ micro_frc( &r[0], &r[0] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_CLAMP:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_FLOOR:
+ /* TGSI_OPCODE_FLR */
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ micro_flr( &r[0], &r[0] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_ROUND:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ micro_rnd( &r[0], &r[0] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_EXPBASE2:
+ /* TGSI_OPCODE_EX2 */
+ FETCH(&r[0], 0, CHAN_X);
+
+ micro_pow( &r[0], &mach->Temps[TEMP_2_I].xyzw[TEMP_2_C], &r[0] );
+
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_LOGBASE2:
+ /* TGSI_OPCODE_LG2 */
+ FETCH( &r[0], 0, CHAN_X );
+ micro_lg2( &r[0], &r[0] );
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_POWER:
+ /* TGSI_OPCODE_POW */
+ FETCH(&r[0], 0, CHAN_X);
+ FETCH(&r[1], 1, CHAN_X);
+
+ micro_pow( &r[0], &r[0], &r[1] );
+
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_CROSSPRODUCT:
+ /* TGSI_OPCODE_XPD */
+ FETCH(&r[0], 0, CHAN_Y);
+ FETCH(&r[1], 1, CHAN_Z);
+
+ micro_mul( &r[2], &r[0], &r[1] );
+
+ FETCH(&r[3], 0, CHAN_Z);
+ FETCH(&r[4], 1, CHAN_Y);
+
+ micro_mul( &r[5], &r[3], &r[4] );
+ micro_sub( &r[2], &r[2], &r[5] );
+
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) {
+ STORE( &r[2], 0, CHAN_X );
+ }
+
+ FETCH(&r[2], 1, CHAN_X);
+
+ micro_mul( &r[3], &r[3], &r[2] );
+
+ FETCH(&r[5], 0, CHAN_X);
+
+ micro_mul( &r[1], &r[1], &r[5] );
+ micro_sub( &r[3], &r[3], &r[1] );
+
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
+ STORE( &r[3], 0, CHAN_Y );
+ }
+
+ micro_mul( &r[5], &r[5], &r[4] );
+ micro_mul( &r[0], &r[0], &r[2] );
+ micro_sub( &r[5], &r[5], &r[0] );
+
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
+ STORE( &r[5], 0, CHAN_Z );
+ }
+
+ if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
+ STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
+ }
+ break;
+
+ case TGSI_OPCODE_MULTIPLYMATRIX:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_ABS:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH(&r[0], 0, chan_index);
+
+ micro_abs( &r[0], &r[0] );
+
+ STORE(&r[0], 0, chan_index);
+ }
+ break;
+
+ case TGSI_OPCODE_RCC:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_DPH:
+ FETCH(&r[0], 0, CHAN_X);
+ FETCH(&r[1], 1, CHAN_X);
+
+ micro_mul( &r[0], &r[0], &r[1] );
+
+ FETCH(&r[1], 0, CHAN_Y);
+ FETCH(&r[2], 1, CHAN_Y);
+
+ micro_mul( &r[1], &r[1], &r[2] );
+ micro_add( &r[0], &r[0], &r[1] );
+
+ FETCH(&r[1], 0, CHAN_Z);
+ FETCH(&r[2], 1, CHAN_Z);
+
+ micro_mul( &r[1], &r[1], &r[2] );
+ micro_add( &r[0], &r[0], &r[1] );
+
+ FETCH(&r[1], 1, CHAN_W);
+
+ micro_add( &r[0], &r[0], &r[1] );
+
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_COS:
+ FETCH(&r[0], 0, CHAN_X);
+
+ micro_cos( &r[0], &r[0] );
+
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_DDX:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ micro_ddx( &r[0], &r[0] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_DDY:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ micro_ddy( &r[0], &r[0] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_KILP:
+ exec_kilp (mach, inst);
+ break;
+
+ case TGSI_OPCODE_KIL:
+ /* for enabled ExecMask bits, set the killed bit */
+ mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= mach->ExecMask;
+ break;
+
+ case TGSI_OPCODE_PK2H:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_PK2US:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_PK4B:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_PK4UB:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_RFL:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_SEQ:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_eq( &r[0], &r[0], &r[1],
+ &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C],
+ &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_SFL:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_SGT:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_lt( &r[0], &r[0], &r[1], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_SIN:
+ FETCH( &r[0], 0, CHAN_X );
+ micro_sin( &r[0], &r[0] );
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_SLE:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_ge( &r[0], &r[0], &r[1], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_SNE:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_eq( &r[0], &r[0], &r[1], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_STR:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_TEX:
+ /* simple texture lookup */
+ /* src[0] = texcoord */
+ /* src[1] = sampler unit */
+ exec_tex(mach, inst, FALSE);
+ break;
+
+ case TGSI_OPCODE_TXB:
+ /* Texture lookup with lod bias */
+ /* src[0] = texcoord (src[0].w = load bias) */
+ /* src[1] = sampler unit */
+ exec_tex(mach, inst, TRUE);
+ break;
+
+ case TGSI_OPCODE_TXD:
+ /* Texture lookup with explict partial derivatives */
+ /* src[0] = texcoord */
+ /* src[1] = d[strq]/dx */
+ /* src[2] = d[strq]/dy */
+ /* src[3] = sampler unit */
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_TXL:
+ /* Texture lookup with explit LOD */
+ /* src[0] = texcoord (src[0].w = load bias) */
+ /* src[1] = sampler unit */
+ exec_tex(mach, inst, TRUE);
+ break;
+
+ case TGSI_OPCODE_UP2H:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_UP2US:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_UP4B:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_UP4UB:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_X2D:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_ARA:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_ARR:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_BRA:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_CAL:
+ /* skip the call if no execution channels are enabled */
+ if (mach->ExecMask) {
+ /* do the call */
+
+ /* push the Cond, Loop, Cont stacks */
+ assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
+ mach->CondStack[mach->CondStackTop++] = mach->CondMask;
+ assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
+ mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
+ assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
+ mach->ContStack[mach->ContStackTop++] = mach->ContMask;
+
+ assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
+ mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
+
+ /* note that PC was already incremented above */
+ mach->CallStack[mach->CallStackTop++] = *pc;
+ *pc = inst->InstructionExtLabel.Label;
+ }
+ break;
+
+ case TGSI_OPCODE_RET:
+ mach->FuncMask &= ~mach->ExecMask;
+ UPDATE_EXEC_MASK(mach);
+
+ if (mach->ExecMask == 0x0) {
+ /* really return now (otherwise, keep executing */
+
+ if (mach->CallStackTop == 0) {
+ /* returning from main() */
+ *pc = -1;
+ return;
+ }
+ *pc = mach->CallStack[--mach->CallStackTop];
+
+ /* pop the Cond, Loop, Cont stacks */
+ assert(mach->CondStackTop > 0);
+ mach->CondMask = mach->CondStack[--mach->CondStackTop];
+ assert(mach->LoopStackTop > 0);
+ mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
+ assert(mach->ContStackTop > 0);
+ mach->ContMask = mach->ContStack[--mach->ContStackTop];
+ assert(mach->FuncStackTop > 0);
+ mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
+
+ UPDATE_EXEC_MASK(mach);
+ }
+ break;
+
+ case TGSI_OPCODE_SSG:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_CMP:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH(&r[0], 0, chan_index);
+ FETCH(&r[1], 1, chan_index);
+ FETCH(&r[2], 2, chan_index);
+
+ micro_lt( &r[0], &r[0], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], &r[1], &r[2] );
+
+ STORE(&r[0], 0, chan_index);
+ }
+ break;
+
+ case TGSI_OPCODE_SCS:
+ if( IS_CHANNEL_ENABLED( *inst, CHAN_X ) || IS_CHANNEL_ENABLED( *inst, CHAN_Y ) ) {
+ FETCH( &r[0], 0, CHAN_X );
+ }
+ if( IS_CHANNEL_ENABLED( *inst, CHAN_X ) ) {
+ micro_cos( &r[1], &r[0] );
+ STORE( &r[1], 0, CHAN_X );
+ }
+ if( IS_CHANNEL_ENABLED( *inst, CHAN_Y ) ) {
+ micro_sin( &r[1], &r[0] );
+ STORE( &r[1], 0, CHAN_Y );
+ }
+ if( IS_CHANNEL_ENABLED( *inst, CHAN_Z ) ) {
+ STORE( &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], 0, CHAN_Z );
+ }
+ if( IS_CHANNEL_ENABLED( *inst, CHAN_W ) ) {
+ STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
+ }
+ break;
+
+ case TGSI_OPCODE_NRM:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_DIV:
+ assert( 0 );
+ break;
+
+ case TGSI_OPCODE_DP2:
+ FETCH( &r[0], 0, CHAN_X );
+ FETCH( &r[1], 1, CHAN_X );
+ micro_mul( &r[0], &r[0], &r[1] );
+
+ FETCH( &r[1], 0, CHAN_Y );
+ FETCH( &r[2], 1, CHAN_Y );
+ micro_mul( &r[1], &r[1], &r[2] );
+ micro_add( &r[0], &r[0], &r[1] );
+
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_IF:
+ /* push CondMask */
+ assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
+ mach->CondStack[mach->CondStackTop++] = mach->CondMask;
+ FETCH( &r[0], 0, CHAN_X );
+ /* update CondMask */
+ if( ! r[0].u[0] ) {
+ mach->CondMask &= ~0x1;
+ }
+ if( ! r[0].u[1] ) {
+ mach->CondMask &= ~0x2;
+ }
+ if( ! r[0].u[2] ) {
+ mach->CondMask &= ~0x4;
+ }
+ if( ! r[0].u[3] ) {
+ mach->CondMask &= ~0x8;
+ }
+ UPDATE_EXEC_MASK(mach);
+ /* Todo: If CondMask==0, jump to ELSE */
+ break;
+
+ case TGSI_OPCODE_ELSE:
+ /* invert CondMask wrt previous mask */
+ {
+ uint prevMask;
+ assert(mach->CondStackTop > 0);
+ prevMask = mach->CondStack[mach->CondStackTop - 1];
+ mach->CondMask = ~mach->CondMask & prevMask;
+ UPDATE_EXEC_MASK(mach);
+ /* Todo: If CondMask==0, jump to ENDIF */
+ }
+ break;
+
+ case TGSI_OPCODE_ENDIF:
+ /* pop CondMask */
+ assert(mach->CondStackTop > 0);
+ mach->CondMask = mach->CondStack[--mach->CondStackTop];
+ UPDATE_EXEC_MASK(mach);
+ break;
+
+ case TGSI_OPCODE_END:
+ /* halt execution */
+ *pc = -1;
+ break;
+
+ case TGSI_OPCODE_REP:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_ENDREP:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_PUSHA:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_POPA:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_CEIL:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ micro_ceil( &r[0], &r[0] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_I2F:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ micro_i2f( &r[0], &r[0] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_NOT:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ micro_not( &r[0], &r[0] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_TRUNC:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ micro_trunc( &r[0], &r[0] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_SHL:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_shl( &r[0], &r[0], &r[1] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_SHR:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_ishr( &r[0], &r[0], &r[1] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_AND:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_and( &r[0], &r[0], &r[1] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_OR:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_or( &r[0], &r[0], &r[1] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_MOD:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_XOR:
+ FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
+ FETCH( &r[0], 0, chan_index );
+ FETCH( &r[1], 1, chan_index );
+ micro_xor( &r[0], &r[0], &r[1] );
+ STORE( &r[0], 0, chan_index );
+ }
+ break;
+
+ case TGSI_OPCODE_SAD:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_TXF:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_TXQ:
+ assert (0);
+ break;
+
+ case TGSI_OPCODE_EMIT:
+ mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += 16;
+ mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
+ break;
+
+ case TGSI_OPCODE_ENDPRIM:
+ mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]++;
+ mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]] = 0;
+ break;
+
+ case TGSI_OPCODE_LOOP:
+ /* fall-through (for now) */
+ case TGSI_OPCODE_BGNLOOP2:
+ /* push LoopMask and ContMasks */
+ assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
+ mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
+ assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
+ mach->ContStack[mach->ContStackTop++] = mach->ContMask;
+ break;
+
+ case TGSI_OPCODE_ENDLOOP:
+ /* fall-through (for now at least) */
+ case TGSI_OPCODE_ENDLOOP2:
+ /* Restore ContMask, but don't pop */
+ assert(mach->ContStackTop > 0);
+ mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
+ if (mach->LoopMask) {
+ /* repeat loop: jump to instruction just past BGNLOOP */
+ *pc = inst->InstructionExtLabel.Label + 1;
+ }
+ else {
+ /* exit loop: pop LoopMask */
+ assert(mach->LoopStackTop > 0);
+ mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
+ /* pop ContMask */
+ assert(mach->ContStackTop > 0);
+ mach->ContMask = mach->ContStack[--mach->ContStackTop];
+ }
+ UPDATE_EXEC_MASK(mach);
+ break;
+
+ case TGSI_OPCODE_BRK:
+ /* turn off loop channels for each enabled exec channel */
+ mach->LoopMask &= ~mach->ExecMask;
+ /* Todo: if mach->LoopMask == 0, jump to end of loop */
+ UPDATE_EXEC_MASK(mach);
+ break;
+
+ case TGSI_OPCODE_CONT:
+ /* turn off cont channels for each enabled exec channel */
+ mach->ContMask &= ~mach->ExecMask;
+ /* Todo: if mach->LoopMask == 0, jump to end of loop */
+ UPDATE_EXEC_MASK(mach);
+ break;
+
+ case TGSI_OPCODE_BGNSUB:
+ /* no-op */
+ break;
+
+ case TGSI_OPCODE_ENDSUB:
+ /* no-op */
+ break;
+
+ case TGSI_OPCODE_NOISE1:
+ assert( 0 );
+ break;
+
+ case TGSI_OPCODE_NOISE2:
+ assert( 0 );
+ break;
+
+ case TGSI_OPCODE_NOISE3:
+ assert( 0 );
+ break;
+
+ case TGSI_OPCODE_NOISE4:
+ assert( 0 );
+ break;
+
+ case TGSI_OPCODE_NOP:
+ break;
+
+ default:
+ assert( 0 );
+ }
+}
+
+
+/**
+ * Run TGSI interpreter.
+ * \return bitmask of "alive" quad components
+ */
+uint
+spu_exec_machine_run( struct spu_exec_machine *mach )
+{
+ uint i;
+ int pc = 0;
+
+ mach->CondMask = 0xf;
+ mach->LoopMask = 0xf;
+ mach->ContMask = 0xf;
+ mach->FuncMask = 0xf;
+ mach->ExecMask = 0xf;
+
+ mach->CondStackTop = 0; /* temporarily subvert this assertion */
+ assert(mach->CondStackTop == 0);
+ assert(mach->LoopStackTop == 0);
+ assert(mach->ContStackTop == 0);
+ assert(mach->CallStackTop == 0);
+
+ mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
+ mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
+
+ if( mach->Processor == TGSI_PROCESSOR_GEOMETRY ) {
+ mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
+ mach->Primitives[0] = 0;
+ }
+
+
+ /* execute declarations (interpolants) */
+ for (i = 0; i < mach->NumDeclarations; i++) {
+ exec_declaration( mach, mach->Declarations+i );
+ }
+
+ /* execute instructions, until pc is set to -1 */
+ while (pc != -1) {
+ assert(pc < mach->NumInstructions);
+ exec_instruction( mach, mach->Instructions + pc, &pc );
+ }
+
+#if 0
+ /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
+ if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
+ /*
+ * Scale back depth component.
+ */
+ for (i = 0; i < 4; i++)
+ mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
+ }
+#endif
+
+ return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
+}
+
+
--- /dev/null
+/**************************************************************************
+ *
+ * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
+ * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
+ * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ **************************************************************************/
+
+ /*
+ * Authors:
+ * Keith Whitwell <keith@tungstengraphics.com>
+ */
+
+#include "pipe/p_util.h"
+#include "pipe/p_state.h"
+#include "pipe/p_shader_tokens.h"
+#include "spu_exec.h"
+#include "spu_vertex_shader.h"
+
+
+#define DRAW_DBG 0
+
+
+/**
+ * Fetch a float[4] vertex attribute from memory, doing format/type
+ * conversion as needed.
+ *
+ * This is probably needed/dupliocated elsewhere, eg format
+ * conversion, texture sampling etc.
+ */
+#define FETCH_ATTRIB( NAME, SZ, CVT ) \
+static void \
+fetch_##NAME(const void *ptr, float *attrib) \
+{ \
+ static const float defaults[4] = { 0,0,0,1 }; \
+ int i; \
+ \
+ for (i = 0; i < SZ; i++) { \
+ attrib[i] = CVT; \
+ } \
+ \
+ for (; i < 4; i++) { \
+ attrib[i] = defaults[i]; \
+ } \
+}
+
+#define CVT_64_FLOAT (float) ((double *) ptr)[i]
+#define CVT_32_FLOAT ((float *) ptr)[i]
+
+#define CVT_8_USCALED (float) ((unsigned char *) ptr)[i]
+#define CVT_16_USCALED (float) ((unsigned short *) ptr)[i]
+#define CVT_32_USCALED (float) ((unsigned int *) ptr)[i]
+
+#define CVT_8_SSCALED (float) ((char *) ptr)[i]
+#define CVT_16_SSCALED (float) ((short *) ptr)[i]
+#define CVT_32_SSCALED (float) ((int *) ptr)[i]
+
+#define CVT_8_UNORM (float) ((unsigned char *) ptr)[i] / 255.0f
+#define CVT_16_UNORM (float) ((unsigned short *) ptr)[i] / 65535.0f
+#define CVT_32_UNORM (float) ((unsigned int *) ptr)[i] / 4294967295.0f
+
+#define CVT_8_SNORM (float) ((char *) ptr)[i] / 127.0f
+#define CVT_16_SNORM (float) ((short *) ptr)[i] / 32767.0f
+#define CVT_32_SNORM (float) ((int *) ptr)[i] / 2147483647.0f
+
+FETCH_ATTRIB( R64G64B64A64_FLOAT, 4, CVT_64_FLOAT )
+FETCH_ATTRIB( R64G64B64_FLOAT, 3, CVT_64_FLOAT )
+FETCH_ATTRIB( R64G64_FLOAT, 2, CVT_64_FLOAT )
+FETCH_ATTRIB( R64_FLOAT, 1, CVT_64_FLOAT )
+
+FETCH_ATTRIB( R32G32B32A32_FLOAT, 4, CVT_32_FLOAT )
+FETCH_ATTRIB( R32G32B32_FLOAT, 3, CVT_32_FLOAT )
+FETCH_ATTRIB( R32G32_FLOAT, 2, CVT_32_FLOAT )
+FETCH_ATTRIB( R32_FLOAT, 1, CVT_32_FLOAT )
+
+FETCH_ATTRIB( R32G32B32A32_USCALED, 4, CVT_32_USCALED )
+FETCH_ATTRIB( R32G32B32_USCALED, 3, CVT_32_USCALED )
+FETCH_ATTRIB( R32G32_USCALED, 2, CVT_32_USCALED )
+FETCH_ATTRIB( R32_USCALED, 1, CVT_32_USCALED )
+
+FETCH_ATTRIB( R32G32B32A32_SSCALED, 4, CVT_32_SSCALED )
+FETCH_ATTRIB( R32G32B32_SSCALED, 3, CVT_32_SSCALED )
+FETCH_ATTRIB( R32G32_SSCALED, 2, CVT_32_SSCALED )
+FETCH_ATTRIB( R32_SSCALED, 1, CVT_32_SSCALED )
+
+FETCH_ATTRIB( R32G32B32A32_UNORM, 4, CVT_32_UNORM )
+FETCH_ATTRIB( R32G32B32_UNORM, 3, CVT_32_UNORM )
+FETCH_ATTRIB( R32G32_UNORM, 2, CVT_32_UNORM )
+FETCH_ATTRIB( R32_UNORM, 1, CVT_32_UNORM )
+
+FETCH_ATTRIB( R32G32B32A32_SNORM, 4, CVT_32_SNORM )
+FETCH_ATTRIB( R32G32B32_SNORM, 3, CVT_32_SNORM )
+FETCH_ATTRIB( R32G32_SNORM, 2, CVT_32_SNORM )
+FETCH_ATTRIB( R32_SNORM, 1, CVT_32_SNORM )
+
+FETCH_ATTRIB( R16G16B16A16_USCALED, 4, CVT_16_USCALED )
+FETCH_ATTRIB( R16G16B16_USCALED, 3, CVT_16_USCALED )
+FETCH_ATTRIB( R16G16_USCALED, 2, CVT_16_USCALED )
+FETCH_ATTRIB( R16_USCALED, 1, CVT_16_USCALED )
+
+FETCH_ATTRIB( R16G16B16A16_SSCALED, 4, CVT_16_SSCALED )
+FETCH_ATTRIB( R16G16B16_SSCALED, 3, CVT_16_SSCALED )
+FETCH_ATTRIB( R16G16_SSCALED, 2, CVT_16_SSCALED )
+FETCH_ATTRIB( R16_SSCALED, 1, CVT_16_SSCALED )
+
+FETCH_ATTRIB( R16G16B16A16_UNORM, 4, CVT_16_UNORM )
+FETCH_ATTRIB( R16G16B16_UNORM, 3, CVT_16_UNORM )
+FETCH_ATTRIB( R16G16_UNORM, 2, CVT_16_UNORM )
+FETCH_ATTRIB( R16_UNORM, 1, CVT_16_UNORM )
+
+FETCH_ATTRIB( R16G16B16A16_SNORM, 4, CVT_16_SNORM )
+FETCH_ATTRIB( R16G16B16_SNORM, 3, CVT_16_SNORM )
+FETCH_ATTRIB( R16G16_SNORM, 2, CVT_16_SNORM )
+FETCH_ATTRIB( R16_SNORM, 1, CVT_16_SNORM )
+
+FETCH_ATTRIB( R8G8B8A8_USCALED, 4, CVT_8_USCALED )
+FETCH_ATTRIB( R8G8B8_USCALED, 3, CVT_8_USCALED )
+FETCH_ATTRIB( R8G8_USCALED, 2, CVT_8_USCALED )
+FETCH_ATTRIB( R8_USCALED, 1, CVT_8_USCALED )
+
+FETCH_ATTRIB( R8G8B8A8_SSCALED, 4, CVT_8_SSCALED )
+FETCH_ATTRIB( R8G8B8_SSCALED, 3, CVT_8_SSCALED )
+FETCH_ATTRIB( R8G8_SSCALED, 2, CVT_8_SSCALED )
+FETCH_ATTRIB( R8_SSCALED, 1, CVT_8_SSCALED )
+
+FETCH_ATTRIB( R8G8B8A8_UNORM, 4, CVT_8_UNORM )
+FETCH_ATTRIB( R8G8B8_UNORM, 3, CVT_8_UNORM )
+FETCH_ATTRIB( R8G8_UNORM, 2, CVT_8_UNORM )
+FETCH_ATTRIB( R8_UNORM, 1, CVT_8_UNORM )
+
+FETCH_ATTRIB( R8G8B8A8_SNORM, 4, CVT_8_SNORM )
+FETCH_ATTRIB( R8G8B8_SNORM, 3, CVT_8_SNORM )
+FETCH_ATTRIB( R8G8_SNORM, 2, CVT_8_SNORM )
+FETCH_ATTRIB( R8_SNORM, 1, CVT_8_SNORM )
+
+FETCH_ATTRIB( A8R8G8B8_UNORM, 4, CVT_8_UNORM )
+//FETCH_ATTRIB( R8G8B8A8_UNORM, 4, CVT_8_UNORM )
+
+
+
+static spu_fetch_func get_fetch_func( enum pipe_format format )
+{
+#if 0
+ {
+ char tmp[80];
+ pf_sprint_name(tmp, format);
+ _mesa_printf("%s: %s\n", __FUNCTION__, tmp);
+ }
+#endif
+
+ switch (format) {
+ case PIPE_FORMAT_R64_FLOAT:
+ return fetch_R64_FLOAT;
+ case PIPE_FORMAT_R64G64_FLOAT:
+ return fetch_R64G64_FLOAT;
+ case PIPE_FORMAT_R64G64B64_FLOAT:
+ return fetch_R64G64B64_FLOAT;
+ case PIPE_FORMAT_R64G64B64A64_FLOAT:
+ return fetch_R64G64B64A64_FLOAT;
+
+ case PIPE_FORMAT_R32_FLOAT:
+ return fetch_R32_FLOAT;
+ case PIPE_FORMAT_R32G32_FLOAT:
+ return fetch_R32G32_FLOAT;
+ case PIPE_FORMAT_R32G32B32_FLOAT:
+ return fetch_R32G32B32_FLOAT;
+ case PIPE_FORMAT_R32G32B32A32_FLOAT:
+ return fetch_R32G32B32A32_FLOAT;
+
+ case PIPE_FORMAT_R32_UNORM:
+ return fetch_R32_UNORM;
+ case PIPE_FORMAT_R32G32_UNORM:
+ return fetch_R32G32_UNORM;
+ case PIPE_FORMAT_R32G32B32_UNORM:
+ return fetch_R32G32B32_UNORM;
+ case PIPE_FORMAT_R32G32B32A32_UNORM:
+ return fetch_R32G32B32A32_UNORM;
+
+ case PIPE_FORMAT_R32_USCALED:
+ return fetch_R32_USCALED;
+ case PIPE_FORMAT_R32G32_USCALED:
+ return fetch_R32G32_USCALED;
+ case PIPE_FORMAT_R32G32B32_USCALED:
+ return fetch_R32G32B32_USCALED;
+ case PIPE_FORMAT_R32G32B32A32_USCALED:
+ return fetch_R32G32B32A32_USCALED;
+
+ case PIPE_FORMAT_R32_SNORM:
+ return fetch_R32_SNORM;
+ case PIPE_FORMAT_R32G32_SNORM:
+ return fetch_R32G32_SNORM;
+ case PIPE_FORMAT_R32G32B32_SNORM:
+ return fetch_R32G32B32_SNORM;
+ case PIPE_FORMAT_R32G32B32A32_SNORM:
+ return fetch_R32G32B32A32_SNORM;
+
+ case PIPE_FORMAT_R32_SSCALED:
+ return fetch_R32_SSCALED;
+ case PIPE_FORMAT_R32G32_SSCALED:
+ return fetch_R32G32_SSCALED;
+ case PIPE_FORMAT_R32G32B32_SSCALED:
+ return fetch_R32G32B32_SSCALED;
+ case PIPE_FORMAT_R32G32B32A32_SSCALED:
+ return fetch_R32G32B32A32_SSCALED;
+
+ case PIPE_FORMAT_R16_UNORM:
+ return fetch_R16_UNORM;
+ case PIPE_FORMAT_R16G16_UNORM:
+ return fetch_R16G16_UNORM;
+ case PIPE_FORMAT_R16G16B16_UNORM:
+ return fetch_R16G16B16_UNORM;
+ case PIPE_FORMAT_R16G16B16A16_UNORM:
+ return fetch_R16G16B16A16_UNORM;
+
+ case PIPE_FORMAT_R16_USCALED:
+ return fetch_R16_USCALED;
+ case PIPE_FORMAT_R16G16_USCALED:
+ return fetch_R16G16_USCALED;
+ case PIPE_FORMAT_R16G16B16_USCALED:
+ return fetch_R16G16B16_USCALED;
+ case PIPE_FORMAT_R16G16B16A16_USCALED:
+ return fetch_R16G16B16A16_USCALED;
+
+ case PIPE_FORMAT_R16_SNORM:
+ return fetch_R16_SNORM;
+ case PIPE_FORMAT_R16G16_SNORM:
+ return fetch_R16G16_SNORM;
+ case PIPE_FORMAT_R16G16B16_SNORM:
+ return fetch_R16G16B16_SNORM;
+ case PIPE_FORMAT_R16G16B16A16_SNORM:
+ return fetch_R16G16B16A16_SNORM;
+
+ case PIPE_FORMAT_R16_SSCALED:
+ return fetch_R16_SSCALED;
+ case PIPE_FORMAT_R16G16_SSCALED:
+ return fetch_R16G16_SSCALED;
+ case PIPE_FORMAT_R16G16B16_SSCALED:
+ return fetch_R16G16B16_SSCALED;
+ case PIPE_FORMAT_R16G16B16A16_SSCALED:
+ return fetch_R16G16B16A16_SSCALED;
+
+ case PIPE_FORMAT_R8_UNORM:
+ return fetch_R8_UNORM;
+ case PIPE_FORMAT_R8G8_UNORM:
+ return fetch_R8G8_UNORM;
+ case PIPE_FORMAT_R8G8B8_UNORM:
+ return fetch_R8G8B8_UNORM;
+ case PIPE_FORMAT_R8G8B8A8_UNORM:
+ return fetch_R8G8B8A8_UNORM;
+
+ case PIPE_FORMAT_R8_USCALED:
+ return fetch_R8_USCALED;
+ case PIPE_FORMAT_R8G8_USCALED:
+ return fetch_R8G8_USCALED;
+ case PIPE_FORMAT_R8G8B8_USCALED:
+ return fetch_R8G8B8_USCALED;
+ case PIPE_FORMAT_R8G8B8A8_USCALED:
+ return fetch_R8G8B8A8_USCALED;
+
+ case PIPE_FORMAT_R8_SNORM:
+ return fetch_R8_SNORM;
+ case PIPE_FORMAT_R8G8_SNORM:
+ return fetch_R8G8_SNORM;
+ case PIPE_FORMAT_R8G8B8_SNORM:
+ return fetch_R8G8B8_SNORM;
+ case PIPE_FORMAT_R8G8B8A8_SNORM:
+ return fetch_R8G8B8A8_SNORM;
+
+ case PIPE_FORMAT_R8_SSCALED:
+ return fetch_R8_SSCALED;
+ case PIPE_FORMAT_R8G8_SSCALED:
+ return fetch_R8G8_SSCALED;
+ case PIPE_FORMAT_R8G8B8_SSCALED:
+ return fetch_R8G8B8_SSCALED;
+ case PIPE_FORMAT_R8G8B8A8_SSCALED:
+ return fetch_R8G8B8A8_SSCALED;
+
+ case PIPE_FORMAT_A8R8G8B8_UNORM:
+ return fetch_A8R8G8B8_UNORM;
+
+ case 0:
+ return NULL; /* not sure why this is needed */
+
+ default:
+ assert(0);
+ return NULL;
+ }
+}
+
+
+static void
+transpose_4x4( float *out, const float *in )
+{
+ /* This can be achieved in 12 sse instructions, plus the final
+ * stores I guess. This is probably a bit more than that - maybe
+ * 32 or so?
+ */
+ out[0] = in[0]; out[1] = in[4]; out[2] = in[8]; out[3] = in[12];
+ out[4] = in[1]; out[5] = in[5]; out[6] = in[9]; out[7] = in[13];
+ out[8] = in[2]; out[9] = in[6]; out[10] = in[10]; out[11] = in[14];
+ out[12] = in[3]; out[13] = in[7]; out[14] = in[11]; out[15] = in[15];
+}
+
+
+
+static void fetch_xyz_rgb( struct spu_vs_context *draw,
+ struct spu_exec_machine *machine,
+ const unsigned *elts,
+ unsigned count )
+{
+ assert(count <= 4);
+
+// _mesa_printf("%s\n", __FUNCTION__);
+
+ /* loop over vertex attributes (vertex shader inputs)
+ */
+
+ const unsigned *pitch = draw->vertex_fetch.pitch;
+ const ubyte **src = draw->vertex_fetch.src_ptr;
+ int i;
+
+ for (i = 0; i < 4; i++) {
+ {
+ const float *in = (const float *)(src[0] + elts[i] * pitch[0]);
+ float *out = &machine->Inputs[0].xyzw[0].f[i];
+ out[0] = in[0];
+ out[4] = in[1];
+ out[8] = in[2];
+ out[12] = 1.0f;
+ }
+
+ {
+ const float *in = (const float *)(src[1] + elts[i] * pitch[1]);
+ float *out = &machine->Inputs[1].xyzw[0].f[i];
+ out[0] = in[0];
+ out[4] = in[1];
+ out[8] = in[2];
+ out[12] = 1.0f;
+ }
+ }
+}
+
+
+
+
+static void fetch_xyz_rgb_st( struct spu_vs_context *draw,
+ struct spu_exec_machine *machine,
+ const unsigned *elts,
+ unsigned count )
+{
+ assert(count <= 4);
+
+ /* loop over vertex attributes (vertex shader inputs)
+ */
+
+ const unsigned *pitch = draw->vertex_fetch.pitch;
+ const ubyte **src = draw->vertex_fetch.src_ptr;
+ int i;
+
+ for (i = 0; i < 4; i++) {
+ {
+ const float *in = (const float *)(src[0] + elts[i] * pitch[0]);
+ float *out = &machine->Inputs[0].xyzw[0].f[i];
+ out[0] = in[0];
+ out[4] = in[1];
+ out[8] = in[2];
+ out[12] = 1.0f;
+ }
+
+ {
+ const float *in = (const float *)(src[1] + elts[i] * pitch[1]);
+ float *out = &machine->Inputs[1].xyzw[0].f[i];
+ out[0] = in[0];
+ out[4] = in[1];
+ out[8] = in[2];
+ out[12] = 1.0f;
+ }
+
+ {
+ const float *in = (const float *)(src[2] + elts[i] * pitch[2]);
+ float *out = &machine->Inputs[1].xyzw[0].f[i];
+ out[0] = in[0];
+ out[4] = in[1];
+ out[8] = 0.0f;
+ out[12] = 1.0f;
+ }
+ }
+}
+
+
+
+
+/**
+ * Fetch vertex attributes for 'count' vertices.
+ */
+static void generic_vertex_fetch( struct spu_vs_context *draw,
+ struct spu_exec_machine *machine,
+ const unsigned *elts,
+ unsigned count )
+{
+ unsigned nr_attrs = draw->vertex_fetch.nr_attrs;
+ unsigned attr;
+
+ assert(count <= 4);
+
+// _mesa_printf("%s %d\n", __FUNCTION__, count);
+
+ /* loop over vertex attributes (vertex shader inputs)
+ */
+ for (attr = 0; attr < nr_attrs; attr++) {
+
+ const unsigned pitch = draw->vertex_fetch.pitch[attr];
+ const ubyte *src = draw->vertex_fetch.src_ptr[attr];
+ const spu_fetch_func fetch = draw->vertex_fetch.fetch[attr];
+ unsigned i;
+ float p[4][4];
+
+
+ /* Fetch four attributes for four vertices.
+ *
+ * Could fetch directly into AOS format, but this is meant to be
+ * a prototype for an sse implementation, which would have
+ * difficulties doing that.
+ */
+ for (i = 0; i < count; i++)
+ fetch( src + elts[i] * pitch, p[i] );
+
+ /* Be nice and zero out any missing vertices:
+ */
+ for (/* empty */; i < 4; i++)
+ p[i][0] = p[i][1] = p[i][2] = p[i][3] = 0;
+
+ /* Transpose/swizzle into sse-friendly format. Currently
+ * assuming that all vertex shader inputs are float[4], but this
+ * isn't true -- if the vertex shader only wants tex0.xy, we
+ * could optimize for that.
+ *
+ * To do so fully without codegen would probably require an
+ * excessive number of fetch functions, but we could at least
+ * minimize the transpose step:
+ */
+ transpose_4x4( (float *)&machine->Inputs[attr].xyzw[0].f[0], (float *)p );
+ }
+}
+
+
+void spu_update_vertex_fetch( struct spu_vs_context *draw )
+{
+ unsigned i;
+
+
+ for (i = 0; i < draw->vertex_fetch.nr_attrs; i++) {
+ draw->vertex_fetch.fetch[i] =
+ get_fetch_func(draw->vertex_fetch.format[i]);
+ }
+
+ draw->vertex_fetch.fetch_func = generic_vertex_fetch;
+
+ switch (draw->vertex_fetch.nr_attrs) {
+ case 2:
+ if (draw->vertex_fetch.format[0] == PIPE_FORMAT_R32G32B32_FLOAT &&
+ draw->vertex_fetch.format[1] == PIPE_FORMAT_R32G32B32_FLOAT)
+ draw->vertex_fetch.fetch_func = fetch_xyz_rgb;
+ break;
+ case 3:
+ if (draw->vertex_fetch.format[0] == PIPE_FORMAT_R32G32B32_FLOAT &&
+ draw->vertex_fetch.format[1] == PIPE_FORMAT_R32G32B32_FLOAT &&
+ draw->vertex_fetch.format[2] == PIPE_FORMAT_R32G32_FLOAT)
+ draw->vertex_fetch.fetch_func = fetch_xyz_rgb_st;
+ break;
+ default:
+ break;
+ }
+}