* Binning code for lines
*/
+#include "util/u_math.h"
+#include "util/u_memory.h"
+#include "lp_perf.h"
#include "lp_setup_context.h"
+#include "lp_rast.h"
+#include "lp_state_fs.h"
-static void line_nop( struct lp_setup_context *setup,
- const float (*v0)[4],
- const float (*v1)[4] )
+#define NUM_CHANNELS 4
+
+
+static const int step_scissor_minx[16] = {
+ 0, 1, 0, 1,
+ 2, 3, 2, 3,
+ 0, 1, 0, 1,
+ 2, 3, 2, 3
+};
+
+static const int step_scissor_maxx[16] = {
+ 0, -1, 0, -1,
+ -2, -3, -2, -3,
+ 0, -1, 0, -1,
+ -2, -3, -2, -3
+};
+
+static const int step_scissor_miny[16] = {
+ 0, 0, 1, 1,
+ 0, 0, 1, 1,
+ 2, 2, 3, 3,
+ 2, 2, 3, 3
+};
+
+static const int step_scissor_maxy[16] = {
+ 0, 0, -1, -1,
+ 0, 0, -1, -1,
+ -2, -2, -3, -3,
+ -2, -2, -3, -3
+};
+
+
+
+/**
+ * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
+ */
+static void constant_coef( struct lp_setup_context *setup,
+ struct lp_rast_triangle *tri,
+ unsigned slot,
+ const float value,
+ unsigned i )
+{
+ tri->inputs.a0[slot][i] = value;
+ tri->inputs.dadx[slot][i] = 0.0f;
+ tri->inputs.dady[slot][i] = 0.0f;
+}
+
+
+/**
+ * Compute a0, dadx and dady for a linearly interpolated coefficient,
+ * for a triangle.
+ */
+static void linear_coef( struct lp_setup_context *setup,
+ struct lp_rast_triangle *tri,
+ float oneoverarea,
+ unsigned slot,
+ const float (*v1)[4],
+ const float (*v2)[4],
+ unsigned vert_attr,
+ unsigned i)
+{
+ float a1 = v1[vert_attr][i];
+ float a2 = v2[vert_attr][i];
+
+ float da21 = a1 - a2;
+ float dadx = da21 * tri->dx * oneoverarea;
+ float dady = da21 * tri->dy * oneoverarea;
+
+ tri->inputs.dadx[slot][i] = dadx;
+ tri->inputs.dady[slot][i] = dady;
+
+ tri->inputs.a0[slot][i] = (a1 -
+ (dadx * (v1[0][0] - setup->pixel_offset) +
+ dady * (v1[0][1] - setup->pixel_offset)));
+}
+
+
+/**
+ * Compute a0, dadx and dady for a perspective-corrected interpolant,
+ * for a triangle.
+ * We basically multiply the vertex value by 1/w before computing
+ * the plane coefficients (a0, dadx, dady).
+ * Later, when we compute the value at a particular fragment position we'll
+ * divide the interpolated value by the interpolated W at that fragment.
+ */
+static void perspective_coef( struct lp_setup_context *setup,
+ struct lp_rast_triangle *tri,
+ float oneoverarea,
+ unsigned slot,
+ const float (*v1)[4],
+ const float (*v2)[4],
+ unsigned vert_attr,
+ unsigned i)
+{
+ /* premultiply by 1/w (v[0][3] is always 1/w):
+ */
+ float a1 = v1[vert_attr][i] * v1[0][3];
+ float a2 = v2[vert_attr][i] * v2[0][3];
+
+ float da21 = a1 - a2;
+ float dadx = da21 * tri->dx * oneoverarea;
+ float dady = da21 * tri->dy * oneoverarea;
+
+ tri->inputs.dadx[slot][i] = dadx;
+ tri->inputs.dady[slot][i] = dady;
+
+ tri->inputs.a0[slot][i] = (a1 -
+ (dadx * (v1[0][0] - setup->pixel_offset) +
+ dady * (v1[0][1] - setup->pixel_offset)));
+}
+
+/**
+ * Compute the tri->coef[] array dadx, dady, a0 values.
+ */
+static void setup_line_coefficients( struct lp_setup_context *setup,
+ struct lp_rast_triangle *tri,
+ float oneoverarea,
+ const float (*v1)[4],
+ const float (*v2)[4])
{
+ unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
+ unsigned slot;
+
+ /* setup interpolation for all the remaining attributes:
+ */
+ for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
+ unsigned vert_attr = setup->fs.input[slot].src_index;
+ unsigned usage_mask = setup->fs.input[slot].usage_mask;
+ unsigned i;
+
+ switch (setup->fs.input[slot].interp) {
+ case LP_INTERP_CONSTANT:
+ if (setup->flatshade_first) {
+ for (i = 0; i < NUM_CHANNELS; i++)
+ if (usage_mask & (1 << i))
+ constant_coef(setup, tri, slot+1, v1[vert_attr][i], i);
+ }
+ else {
+ for (i = 0; i < NUM_CHANNELS; i++)
+ if (usage_mask & (1 << i))
+ constant_coef(setup, tri, slot+1, v2[vert_attr][i], i);
+ }
+ break;
+
+ case LP_INTERP_LINEAR:
+ for (i = 0; i < NUM_CHANNELS; i++)
+ if (usage_mask & (1 << i))
+ linear_coef(setup, tri, oneoverarea, slot+1, v1, v2, vert_attr, i);
+ break;
+
+ case LP_INTERP_PERSPECTIVE:
+ for (i = 0; i < NUM_CHANNELS; i++)
+ if (usage_mask & (1 << i))
+ perspective_coef(setup, tri, oneoverarea, slot+1, v1, v2, vert_attr, i);
+ fragcoord_usage_mask |= TGSI_WRITEMASK_W;
+ break;
+
+ case LP_INTERP_POSITION:
+ /*
+ * The generated pixel interpolators will pick up the coeffs from
+ * slot 0, so all need to ensure that the usage mask is covers all
+ * usages.
+ */
+ fragcoord_usage_mask |= usage_mask;
+ break;
+
+ default:
+ assert(0);
+ }
+ }
+
+ /* The internal position input is in slot zero:
+ */
+ lp_setup_fragcoord_coef(setup, tri, oneoverarea, 0, v1, v2, v2,
+ fragcoord_usage_mask);
}
-void
-lp_setup_choose_line( struct lp_setup_context *setup )
+
+static INLINE int subpixel_snap( float a )
{
- setup->line = line_nop;
+ return util_iround(FIXED_ONE * a);
+}
+
+
+/**
+ * Print line vertex attribs (for debug).
+ */
+static void
+print_line(struct lp_setup_context *setup,
+ const float (*v1)[4],
+ const float (*v2)[4])
+{
+ uint i;
+
+ debug_printf("llvmpipe line\n");
+ for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
+ debug_printf(" v1[%d]: %f %f %f %f\n", i,
+ v1[i][0], v1[i][1], v1[i][2], v1[i][3]);
+ }
+ for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
+ debug_printf(" v2[%d]: %f %f %f %f\n", i,
+ v2[i][0], v2[i][1], v2[i][2], v2[i][3]);
+ }
+}
+
+
+static void
+lp_setup_line( struct lp_setup_context *setup,
+ const float (*v1)[4],
+ const float (*v2)[4])
+{
+ struct lp_scene *scene = lp_setup_get_current_scene(setup);
+ struct lp_rast_triangle *line;
+ float oneoverarea;
+ float half_width = setup->line_width / 2;
+ int minx, maxx, miny, maxy;
+ int ix0, ix1, iy0, iy1;
+ unsigned tri_bytes;
+ int x[4];
+ int y[4];
+ int i;
+ int nr_planes = 4;
+ boolean opaque;
+
+ if (0)
+ print_line(setup, v1, v2);
+
+ if (setup->scissor_test) {
+ nr_planes = 8;
+ }
+ else {
+ nr_planes = 4;
+ }
+
+ line = lp_setup_alloc_triangle(scene,
+ setup->fs.nr_inputs,
+ nr_planes,
+ &tri_bytes);
+ if (!line)
+ return;
+
+#ifndef DEBUG
+ line->v[0][0] = v1[0][0];
+ line->v[1][0] = v2[0][0];
+ line->v[0][1] = v1[0][1];
+ line->v[1][1] = v2[0][1];
+#endif
+
+ /* pre-calculation(based on given vertices) to determine if line is
+ * more horizontal or more vertical
+ */
+ line->dx = v1[0][0] - v2[0][0];
+ line->dy = v1[0][1] - v2[0][1];
+
+ /* x-major line */
+ if (fabsf(line->dx) >= fabsf(line->dy)) {
+ if (line->dx < 0) {
+ /* if v2 is to the right of v1, swap pointers */
+ const float (*temp)[4] = v1;
+ v1 = v2;
+ v2 = temp;
+ line->dx = -line->dx;
+ line->dy = -line->dy;
+ }
+
+ /* x/y positions in fixed point */
+ x[0] = subpixel_snap(v1[0][0] - setup->pixel_offset);
+ x[1] = subpixel_snap(v2[0][0] - setup->pixel_offset);
+ x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
+ x[3] = subpixel_snap(v1[0][0] - setup->pixel_offset);
+
+ y[0] = subpixel_snap(v1[0][1] - half_width - setup->pixel_offset);
+ y[1] = subpixel_snap(v2[0][1] - half_width - setup->pixel_offset);
+ y[2] = subpixel_snap(v2[0][1] + half_width - setup->pixel_offset);
+ y[3] = subpixel_snap(v1[0][1] + half_width - setup->pixel_offset);
+ }
+ else{
+ /* y-major line */
+ if (line->dy > 0) {
+ /* if v2 is on top of v1, swap pointers */
+ const float (*temp)[4] = v1;
+ v1 = v2;
+ v2 = temp;
+ line->dx = -line->dx;
+ line->dy = -line->dy;
+ }
+
+ x[0] = subpixel_snap(v1[0][0] - half_width - setup->pixel_offset);
+ x[1] = subpixel_snap(v2[0][0] - half_width - setup->pixel_offset);
+ x[2] = subpixel_snap(v2[0][0] + half_width - setup->pixel_offset);
+ x[3] = subpixel_snap(v1[0][0] + half_width - setup->pixel_offset);
+
+ y[0] = subpixel_snap(v1[0][1] - setup->pixel_offset);
+ y[1] = subpixel_snap(v2[0][1] - setup->pixel_offset);
+ y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
+ y[3] = subpixel_snap(v1[0][1] - setup->pixel_offset);
+ }
+
+ /* calculate the deltas */
+ line->plane[0].dcdy = x[0] - x[1];
+ line->plane[1].dcdy = x[1] - x[2];
+ line->plane[2].dcdy = x[2] - x[3];
+ line->plane[3].dcdy = x[3] - x[0];
+
+ line->plane[0].dcdx = y[0] - y[1];
+ line->plane[1].dcdx = y[1] - y[2];
+ line->plane[2].dcdx = y[2] - y[3];
+ line->plane[3].dcdx = y[3] - y[0];
+
+
+ LP_COUNT(nr_tris);
+
+
+ /* Bounding rectangle (in pixels) */
+ {
+ /* Yes this is necessary to accurately calculate bounding boxes
+ * with the two fill-conventions we support. GL (normally) ends
+ * up needing a bottom-left fill convention, which requires
+ * slightly different rounding.
+ */
+ int adj = (setup->pixel_offset != 0) ? 1 : 0;
+
+ minx = (MIN4(x[0], x[1], x[2], x[3]) + (FIXED_ONE-1)) >> FIXED_ORDER;
+ maxx = (MAX4(x[0], x[1], x[2], x[3]) + (FIXED_ONE-1)) >> FIXED_ORDER;
+ miny = (MIN4(y[0], y[1], y[3], y[3]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
+ maxy = (MAX4(y[0], y[1], y[3], y[3]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
+ }
+
+ if (setup->scissor_test) {
+ minx = MAX2(minx, setup->scissor.current.minx);
+ maxx = MIN2(maxx, setup->scissor.current.maxx);
+ miny = MAX2(miny, setup->scissor.current.miny);
+ maxy = MIN2(maxy, setup->scissor.current.maxy);
+ }
+ else {
+ minx = MAX2(minx, 0);
+ miny = MAX2(miny, 0);
+ maxx = MIN2(maxx, scene->fb.width);
+ maxy = MIN2(maxy, scene->fb.height);
+ }
+
+
+ if (miny >= maxy || minx >= maxx) {
+ lp_scene_putback_data( scene, tri_bytes );
+ return;
+ }
+
+ oneoverarea = 1.0f / (line->dx * line->dx + line->dy * line->dy);
+
+ /* Setup parameter interpolants:
+ */
+ setup_line_coefficients( setup, line, oneoverarea, v1, v2);
+
+ for (i = 0; i < 4; i++) {
+ struct lp_rast_plane *plane = &line->plane[i];
+
+ /* half-edge constants, will be interated over the whole render
+ * target.
+ */
+ plane->c = plane->dcdx * x[i] - plane->dcdy * y[i];
+
+
+ /* correct for top-left vs. bottom-left fill convention.
+ *
+ * note that we're overloading gl_rasterization_rules to mean
+ * both (0.5,0.5) pixel centers *and* bottom-left filling
+ * convention.
+ *
+ * GL actually has a top-left filling convention, but GL's
+ * notion of "top" differs from gallium's...
+ *
+ * Also, sometimes (in FBO cases) GL will render upside down
+ * to its usual method, in which case it will probably want
+ * to use the opposite, top-left convention.
+ */
+ if (plane->dcdx < 0) {
+ /* both fill conventions want this - adjust for left edges */
+ plane->c++;
+ }
+ else if (plane->dcdx == 0) {
+ if (setup->pixel_offset == 0) {
+ /* correct for top-left fill convention:
+ */
+ if (plane->dcdy > 0) plane->c++;
+ }
+ else {
+ /* correct for bottom-left fill convention:
+ */
+ if (plane->dcdy < 0) plane->c++;
+ }
+ }
+
+ plane->dcdx *= FIXED_ONE;
+ plane->dcdy *= FIXED_ONE;
+
+ /* find trivial reject offsets for each edge for a single-pixel
+ * sized block. These will be scaled up at each recursive level to
+ * match the active blocksize. Scaling in this way works best if
+ * the blocks are square.
+ */
+ plane->eo = 0;
+ if (plane->dcdx < 0) plane->eo -= plane->dcdx;
+ if (plane->dcdy > 0) plane->eo += plane->dcdy;
+
+ /* Calculate trivial accept offsets from the above.
+ */
+ plane->ei = plane->dcdy - plane->dcdx - plane->eo;
+
+ plane->step = line->step[i];
+
+ /* Fill in the inputs.step[][] arrays.
+ * We've manually unrolled some loops here.
+ */
+#define SETUP_STEP(j, x, y) \
+ line->step[i][j] = y * plane->dcdy - x * plane->dcdx
+
+ SETUP_STEP(0, 0, 0);
+ SETUP_STEP(1, 1, 0);
+ SETUP_STEP(2, 0, 1);
+ SETUP_STEP(3, 1, 1);
+
+ SETUP_STEP(4, 2, 0);
+ SETUP_STEP(5, 3, 0);
+ SETUP_STEP(6, 2, 1);
+ SETUP_STEP(7, 3, 1);
+
+ SETUP_STEP(8, 0, 2);
+ SETUP_STEP(9, 1, 2);
+ SETUP_STEP(10, 0, 3);
+ SETUP_STEP(11, 1, 3);
+
+ SETUP_STEP(12, 2, 2);
+ SETUP_STEP(13, 3, 2);
+ SETUP_STEP(14, 2, 3);
+ SETUP_STEP(15, 3, 3);
+#undef STEP
+ }
+
+
+ /*
+ * When rasterizing scissored tris, use the intersection of the
+ * triangle bounding box and the scissor rect to generate the
+ * scissor planes.
+ *
+ * This permits us to cut off the triangle "tails" that are present
+ * in the intermediate recursive levels caused when two of the
+ * triangles edges don't diverge quickly enough to trivially reject
+ * exterior blocks from the triangle.
+ *
+ * It's not really clear if it's worth worrying about these tails,
+ * but since we generate the planes for each scissored tri, it's
+ * free to trim them in this case.
+ *
+ * Note that otherwise, the scissor planes only vary in 'C' value,
+ * and even then only on state-changes. Could alternatively store
+ * these planes elsewhere.
+ */
+ if (nr_planes == 8) {
+ line->plane[4].step = step_scissor_maxx;
+ line->plane[4].dcdx = 1;
+ line->plane[4].dcdy = 0;
+ line->plane[4].c = maxx;
+ line->plane[4].ei = -1;
+ line->plane[4].eo = 0;
+
+ line->plane[5].step = step_scissor_miny;
+ line->plane[5].dcdx = 0;
+ line->plane[5].dcdy = 1;
+ line->plane[5].c = 1-miny;
+ line->plane[5].ei = 0;
+ line->plane[5].eo = 1;
+
+ line->plane[6].step = step_scissor_maxy;
+ line->plane[6].dcdx = 0;
+ line->plane[6].dcdy = -1;
+ line->plane[6].c = maxy;
+ line->plane[6].ei = -1;
+ line->plane[6].eo = 0;
+
+ line->plane[7].step = step_scissor_minx;
+ line->plane[7].dcdx = -1;
+ line->plane[7].dcdy = 0;
+ line->plane[7].c = 1-minx;
+ line->plane[7].ei = 0;
+ line->plane[7].eo = 1;
+ }
+
+
+ /*
+ * All fields of 'tri' are now set. The remaining code here is
+ * concerned with binning.
+ */
+
+ /* Convert to tile coordinates, and inclusive ranges:
+ */
+ ix0 = minx / TILE_SIZE;
+ iy0 = miny / TILE_SIZE;
+ ix1 = (maxx-1) / TILE_SIZE;
+ iy1 = (maxy-1) / TILE_SIZE;
+
+ /*
+ * Clamp to framebuffer size
+ */
+ assert(ix0 == MAX2(ix0, 0));
+ assert(iy0 == MAX2(iy0, 0));
+ assert(ix1 == MIN2(ix1, scene->tiles_x - 1));
+ assert(iy1 == MIN2(iy1, scene->tiles_y - 1));
+
+ /* Determine which tile(s) intersect the triangle's bounding box
+ */
+ if (iy0 == iy1 && ix0 == ix1)
+ {
+ /* Triangle is contained in a single tile:
+ */
+ lp_scene_bin_command( scene, ix0, iy0,
+ lp_rast_tri_tab[nr_planes],
+ lp_rast_arg_triangle(line, (1<<nr_planes)-1) );
+ }
+ else
+ {
+ int c[8];
+ int ei[8];
+ int eo[8];
+ int xstep[8];
+ int ystep[8];
+ int x, y;
+ int is_blit = -1; /* undetermined */
+
+ for (i = 0; i < nr_planes; i++) {
+ c[i] = (line->plane[i].c +
+ line->plane[i].dcdy * iy0 * TILE_SIZE -
+ line->plane[i].dcdx * ix0 * TILE_SIZE);
+
+ ei[i] = line->plane[i].ei << TILE_ORDER;
+ eo[i] = line->plane[i].eo << TILE_ORDER;
+ xstep[i] = -(line->plane[i].dcdx << TILE_ORDER);
+ ystep[i] = line->plane[i].dcdy << TILE_ORDER;
+ }
+
+
+
+ /* Test tile-sized blocks against the triangle.
+ * Discard blocks fully outside the tri. If the block is fully
+ * contained inside the tri, bin an lp_rast_shade_tile command.
+ * Else, bin a lp_rast_triangle command.
+ */
+ for (y = iy0; y <= iy1; y++)
+ {
+ boolean in = FALSE; /* are we inside the triangle? */
+ int cx[8];
+
+ for (i = 0; i < nr_planes; i++)
+ cx[i] = c[i];
+
+ for (x = ix0; x <= ix1; x++)
+ {
+ int out = 0;
+ int partial = 0;
+
+ for (i = 0; i < nr_planes; i++) {
+ int planeout = cx[i] + eo[i];
+ int planepartial = cx[i] + ei[i] - 1;
+ out |= (planeout >> 31);
+ partial |= (planepartial >> 31) & (1<<i);
+ }
+ if (out) {
+ /* do nothing */
+ if (in)
+ break; /* exiting triangle, all done with this row */
+ LP_COUNT(nr_empty_64);
+ }
+ else if (partial) {
+ /* Not trivially accepted by at least one plane -
+ * rasterize/shade partial tile
+ */
+ int count = util_bitcount(partial);
+ in = TRUE;
+ lp_scene_bin_command( scene, x, y,
+ lp_rast_tri_tab[count],
+ lp_rast_arg_triangle(line, partial) );
+
+ LP_COUNT(nr_partially_covered_64);
+ }
+ else {
+ /* triangle covers the whole tile- shade whole tile */
+ LP_COUNT(nr_fully_covered_64);
+ in = TRUE;
+ /* leverages on existing code in lp_setup_tri.c */
+ do_triangle_ccw_whole_tile(setup, scene, line, x, y,
+ opaque, &is_blit);
+ }
+
+ /* Iterate cx values across the region:
+ */
+ for (i = 0; i < nr_planes; i++)
+ cx[i] += xstep[i];
+ }
+
+ /* Iterate c values down the region:
+ */
+ for (i = 0; i < nr_planes; i++)
+ c[i] += ystep[i];
+ }
+ }
+}
+
+
+void lp_setup_choose_line( struct lp_setup_context *setup )
+{
+ setup->line = lp_setup_line;
}