initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
- always @* if (R == !IS_R_INVERTED) $nextQ = 1'b0; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = \$currQ ;
+ always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
always @* Q = \$nextQ ;
`else
- assign $currQ = Q;
+ assign \$currQ = Q;
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) Q <= \$nextQ ;
1'b1: always @(negedge C) Q <= \$nextQ ;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
- always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else $nextQ = \$currQ ;
+ always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
always @* Q = \$nextQ ;
`else
- assign $currQ = Q;
+ assign \$currQ = Q;
always @(negedge C) Q <= \$nextQ ;
`endif
endmodule
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
- always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = \$currQ ;
+ always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
always @* Q = \$nextQ ;
`else
- assign $currQ = Q;
+ assign \$currQ = Q;
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
- always @* if (CE) Q <= D; else $nextQ = \$currQ ;
+ always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
always @* Q = \$nextQ ;
`else
- assign $currQ = Q;
+ assign \$currQ = Q;
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ;
`endif
endmodule
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
- always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = \$currQ ;
+ always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
always @* Q = \$nextQ ;
`else
- assign $currQ = Q;
+ assign \$currQ = Q;
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
- always @* if (CE) Q <= D; else $nextQ = \$currQ ;
+ always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
always @* Q = \$nextQ ;
`else
- assign $currQ = Q;
+ assign \$currQ = Q;
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
`endif
endmodule
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
- always @* if (S == !IS_S_INVERTED) $nextQ = 1'b1; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = \$currQ ;
+ always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
always @* Q = \$nextQ ;
`else
- assign $currQ = Q;
+ assign \$currQ = Q;
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) Q <= \$nextQ ;
1'b1: always @(negedge C) Q <= \$nextQ ;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
- always @* if (S) $nextQ = 1'b1; else if (CE) $nextQ = D; else $nextQ = \$currQ ;
+ always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
always @* Q = \$nextQ ;
`else
- assign $currQ = Q;
+ assign \$currQ = Q;
always @(negedge C) Q <= \$nextQ ;
`endif
endmodule