def FRSP(FRB, FPSCR):
if ((FRB)[1:11] <u 897) & ((FRB)[1:63] >u 0) then
- if FPSCR['UE'] = 0 then
+ if FPSCR[UE] = 0 then
return FRSP_Disabled_Exponent_Underflow(FRB, FPSCR)
- if FPSCR['UE'] = 1 then
+ if FPSCR[UE] = 1 then
return FRSP_Enabled_Exponent_Underflow(FRB, FPSCR)
if ((FRB)[1:11] >u 1150) & ((FRB)[1:11] <u 2047) then
- if FPSCR['OE'] = 0 then
+ if FPSCR[OE] = 0 then
return FRSP_Disabled_Exponent_Overflow(FRB, FPSCR)
- if FPSCR['OE'] = 1 then
+ if FPSCR[OE] = 1 then
return FRSP_Enabled_Exponent_Overflow(FRB, FPSCR)
if ((FRB)[1:11] >u 896) & ((FRB)[1:11] <u 1151) then
G <- frac[52]
frac[0:52] <- 0b0 || frac[0:51]
- FPSCR['UX'] <- (frac[24:52] || G || R || X) >u 0
+ FPSCR[UX] <- (frac[24:52] || G || R || X) >u 0
exp, frac, FPSCR <- Round_Single(sign, exp, frac[0:52], G, R, X, FPSCR)
- FPSCR['XX'] <- FPSCR['XX'] | FPSCR['FI']
+ FPSCR[XX] <- FPSCR[XX] | FPSCR[FI]
FRT <- [0b0] * 64
if frac[0:52] = 0 then
FRT[0] <- sign
FRT[1:63] <- 0
- if sign = 0 then FPSCR['FPRF'] <- '+ zero'
- if sign = 1 then FPSCR['FPRF'] <- '- zero'
+ if sign = 0 then FPSCR[FPRF] <- '+ zero'
+ if sign = 1 then FPSCR[FPRF] <- '- zero'
if frac[0:52] >u 0 then
if frac[0] = 1 then
- if sign = 0 then FPSCR['FPRF'] <- '+ normal number'
- if sign = 1 then FPSCR['FPRF'] <- '- normal number'
+ if sign = 0 then FPSCR[FPRF] <- '+ normal number'
+ if sign = 1 then FPSCR[FPRF] <- '- normal number'
if frac[0] = 0 then
- if sign = 0 then FPSCR['FPRF'] <- '+ denormalized number'
- if sign = 1 then FPSCR['FPRF'] <- '- denormalized number'
+ if sign = 0 then FPSCR[FPRF] <- '+ denormalized number'
+ if sign = 1 then FPSCR[FPRF] <- '- denormalized number'
# Normalize operand:
do while frac[0] = 0
return FRT, FPSCR
def FRSP_Enabled_Exponent_Underflow(FRB, FPSCR):
- FPSCR['UX'] <- 1
+ FPSCR[UX] <- 1
sign <- (FRB)[0]
frac <- [0b0] * 53
exp <- 0
frac[0:52] <- frac[1:52] || 0b0
exp, frac, FPSCR <- Round_Single(sign, exp, frac[0:52], 0b0, 0b0, 0b0, FPSCR)
- FPSCR['XX'] <- FPSCR['XX'] | FPSCR['FI']
+ FPSCR[XX] <- FPSCR[XX] | FPSCR[FI]
exp <- exp + 192
FRT <- [0b0] * 64
FRT[0] <- sign
FRT[1:11] <- exp + 1023
FRT[12:63] <- frac[1:52]
- if sign = 0 then FPSCR['FPRF'] <- '+ normal number'
- if sign = 1 then FPSCR['FPRF'] <- '- normal number'
+ if sign = 0 then FPSCR[FPRF] <- '+ normal number'
+ if sign = 1 then FPSCR[FPRF] <- '- normal number'
return FRT, FPSCR
def FRSP_Disabled_Exponent_Overflow(FRB, FPSCR):
- FPSCR['OX'] <- 1
+ FPSCR[OX] <- 1
FRT <- [0b0] * 64
- if FPSCR['RN'] = 0b00 then # Round to Nearest
+ if FPSCR[RN] = 0b00 then # Round to Nearest
if (FRB)[0] = 0 then FRT <- 0x7FF0_0000_0000_0000
if (FRB)[0] = 1 then FRT <- 0xFFF0_0000_0000_0000
- if (FRB)[0] = 0 then FPSCR['FPRF'] <- '+ infinity'
- if (FRB)[0] = 1 then FPSCR['FPRF'] <- '- infinity'
- if FPSCR['RN'] = 0b01 then # Round toward Zero
+ if (FRB)[0] = 0 then FPSCR[FPRF] <- '+ infinity'
+ if (FRB)[0] = 1 then FPSCR[FPRF] <- '- infinity'
+ if FPSCR[RN] = 0b01 then # Round toward Zero
if (FRB)[0] = 0 then FRT <- 0x47EF_FFFF_E000_0000
if (FRB)[0] = 1 then FRT <- 0xC7EF_FFFF_E000_0000
- if (FRB)[0] = 0 then FPSCR['FPRF'] <- '+ normal number'
- if (FRB)[0] = 1 then FPSCR['FPRF'] <- '- normal number'
- if FPSCR['RN'] = 0b10 then # Round toward +Infinity
+ if (FRB)[0] = 0 then FPSCR[FPRF] <- '+ normal number'
+ if (FRB)[0] = 1 then FPSCR[FPRF] <- '- normal number'
+ if FPSCR[RN] = 0b10 then # Round toward +Infinity
if (FRB)[0] = 0 then FRT <- 0x7FF0_0000_0000_0000
if (FRB)[0] = 1 then FRT <- 0xC7EF_FFFF_E000_0000
- if (FRB)[0] = 0 then FPSCR['FPRF'] <- '+ infinity'
- if (FRB)[0] = 1 then FPSCR['FPRF'] <- '- normal number'
- if FPSCR['RN'] = 0b11 then # Round toward -Infinity
+ if (FRB)[0] = 0 then FPSCR[FPRF] <- '+ infinity'
+ if (FRB)[0] = 1 then FPSCR[FPRF] <- '- normal number'
+ if FPSCR[RN] = 0b11 then # Round toward -Infinity
if (FRB)[0] = 0 then FRT <- 0x47EF_FFFF_E000_0000
if (FRB)[0] = 1 then FRT <- 0xFFF0_0000_0000_0000
- if (FRB)[0] = 0 then FPSCR['FPRF'] <- '+ normal number'
- if (FRB)[0] = 1 then FPSCR['FPRF'] <- '- infinity'
- FPSCR['FR'] <- undefined(0) # FIXME: figure out what values POWER9 uses
- FPSCR['FI'] <- 1
- FPSCR['XX'] <- 1
+ if (FRB)[0] = 0 then FPSCR[FPRF] <- '+ normal number'
+ if (FRB)[0] = 1 then FPSCR[FPRF] <- '- infinity'
+ FPSCR[FR] <- undefined(0) # FIXME: figure out what values POWER9 uses
+ FPSCR[FI] <- 1
+ FPSCR[XX] <- 1
return FRT, FPSCR
def FRSP_Enabled_Exponent_Overflow(FRB, FPSCR):
frac <- [0b0] * 53
frac[0:52] <- 0b1 || (FRB)[12:63]
exp, frac, FPSCR <- Round_Single(sign, exp, frac[0:52], 0b0, 0b0, 0b0, FPSCR)
- FPSCR['XX'] <- FPSCR['XX'] | FPSCR['FI']
+ FPSCR[XX] <- FPSCR[XX] | FPSCR[FI]
# Enabled Overflow:
- FPSCR['OX'] <- 1
+ FPSCR[OX] <- 1
exp <- exp - 192
FRT <- [0b0] * 64
FRT[0] <- sign
FRT[1:11] <- exp + 1023
FRT[12:63] <- frac[1:52]
- if sign = 0 then FPSCR['FPRF'] <- '+ normal number'
- if sign = 1 then FPSCR['FPRF'] <- '- normal number'
+ if sign = 0 then FPSCR[FPRF] <- '+ normal number'
+ if sign = 1 then FPSCR[FPRF] <- '- normal number'
return FRT, FPSCR
def FRSP_Zero_Operand(FRB, FPSCR):
FRT <- (FRB)
- if (FRB)[0] = 0 then FPSCR['FPRF'] <- '+ zero'
- if (FRB)[0] = 1 then FPSCR['FPRF'] <- '- zero'
- FPSCR['FRFI'] <- 0b00
+ if (FRB)[0] = 0 then FPSCR[FPRF] <- '+ zero'
+ if (FRB)[0] = 1 then FPSCR[FPRF] <- '- zero'
+ FPSCR[FRFI] <- 0b00
return FRT, FPSCR
def FRSP_Infinity_Operand(FRB, FPSCR):
FRT <- (FRB)
- if (FRB)[0] = 0 then FPSCR['FPRF'] <- '+ infinity'
- if (FRB)[0] = 1 then FPSCR['FPRF'] <- '- infinity'
- FPSCR['FRFI'] <- 0b00
+ if (FRB)[0] = 0 then FPSCR[FPRF] <- '+ infinity'
+ if (FRB)[0] = 1 then FPSCR[FPRF] <- '- infinity'
+ FPSCR[FRFI] <- 0b00
return FRT, FPSCR
def FRSP_QNaN_Operand(FRB, FPSCR):
FRT <- (FRB)[0:34] || [0b0] * 29
- FPSCR['FPRF'] <- 'QNaN'
- FPSCR['FR'] <- 0b0
- FPSCR['FI'] <- 0b0
+ FPSCR[FPRF] <- 'QNaN'
+ FPSCR[FR] <- 0b0
+ FPSCR[FI] <- 0b0
return FRT, FPSCR
def FRSP_SNaN_Operand(FRB, FPSCR):
- FPSCR['VXSNAN'] <- 1
+ FPSCR[VXSNAN] <- 1
FRT <- [0b0] * 64
- if FPSCR['VE'] = 0 then
+ if FPSCR[VE] = 0 then
FRT[0:11] <- (FRB)[0:11]
FRT[12] <- 1
FRT[13:63] <- (FRB)[13:34] || [0b0] * 29
- FPSCR['FPRF'] <- 'QNaN'
- FPSCR['FR'] <- 0b0
- FPSCR['FI'] <- 0b0
+ FPSCR[FPRF] <- 'QNaN'
+ FPSCR[FR] <- 0b0
+ FPSCR[FI] <- 0b0
return FRT, FPSCR
def FRSP_Normal_Operand(FRB, FPSCR):
frac <- [0b0] * 53
frac[0:52] <- 0b1 || (FRB)[12:63]
exp, frac, FPSCR <- Round_Single(sign, exp, frac[0:52], 0b0, 0b0, 0b0, FPSCR)
- FPSCR['XX'] <- FPSCR['XX'] | FPSCR['FI']
- if (exp > 127) & (FPSCR['OE'] = 0) then
+ FPSCR[XX] <- FPSCR[XX] | FPSCR[FI]
+ if (exp > 127) & (FPSCR[OE] = 0) then
return FRSP_Disabled_Exponent_Overflow(FRB, FPSCR)
- if (exp > 127) & (FPSCR['OE'] = 1) then
+ if (exp > 127) & (FPSCR[OE] = 1) then
return FRSP_Enabled_Overflow(FRB, FPSCR)
FRT <- [0b0] * 64
FRT[0] <- sign
FRT[1:11] <- exp + 1023
FRT[12:63] <- frac[1:52]
- if sign = 0 then FPSCR['FPRF'] <- '+ normal number'
- if sign = 1 then FPSCR['FPRF'] <- '- normal number'
+ if sign = 0 then FPSCR[FPRF] <- '+ normal number'
+ if sign = 1 then FPSCR[FPRF] <- '- normal number'
return FRT, FPSCR
def Round_Single(sign, exp, frac, G, R, X, FPSCR):
gbit <- frac[24]
rbit <- frac[25]
xbit <- (frac[26:52]||G||R||X) != 0
- if FPSCR['RN'] = 0b00 then # Round to Nearest
+ if FPSCR[RN] = 0b00 then # Round to Nearest
# comparisons ignore u bits
if (lsb || gbit) = 0b11 then inc <- 1
if (lsb || gbit || rbit) = 0b011 then inc <- 1
if (lsb || gbit || xbit) = 0b011 then inc <- 1
- if FPSCR['RN'] = 0b10 then # Round toward + Infinity
+ if FPSCR[RN] = 0b10 then # Round toward + Infinity
# comparisons ignore u bits
if (sign || gbit) = 0b01 then inc <- 1
if (sign || rbit) = 0b01 then inc <- 1
if (sign || xbit) = 0b01 then inc <- 1
- if FPSCR['RN'] = 0b11 then # Round toward - Infinity
+ if FPSCR[RN] = 0b11 then # Round toward - Infinity
# comparisons ignore u bits
if (sign || gbit) = 0b11 then inc <- 1
if (sign || rbit) = 0b11 then inc <- 1
frac[0:23] <- 0b1 || frac[0:22]
exp <- exp + 1
frac[24:52] <- [0b0] * 29
- FPSCR['FR'] <- inc
- FPSCR['FI'] <- gbit | rbit | xbit
+ FPSCR[FR] <- inc
+ FPSCR[FI] <- gbit | rbit | xbit
return exp, frac, FPSCR
<!-- Power ISA v3.0B p140 section 4.6.2 -->