+2020-04-07 Fritz Reese <foreese@gcc.gnu.org>
+ Steven G. Kargl <kargl@gcc.gnu.org>
+
+ PR fortran/93871
+ * gfortran.h (GFC_ISYM_ACOSD, GFC_ISYM_ASIND, GFC_ISYM_ATAN2D,
+ GFC_ISYM_ATAND, GFC_ISYM_COSD, GFC_ISYM_COTAND, GFC_ISYM_SIND,
+ GFC_ISYM_TAND): New.
+ * intrinsic.c (add_functions): Remove check for flag_dec_math.
+ Give degree trig functions simplification and name resolution
+ functions (e.g, gfc_simplify_atrigd () and gfc_resolve_atrigd ()).
+ (do_simplify): Remove special casing of degree trig functions.
+ * intrinsic.h (gfc_simplify_acosd, gfc_simplify_asind,
+ gfc_simplify_atand, gfc_simplify_cosd, gfc_simplify_cotand,
+ gfc_simplify_sind, gfc_simplify_tand, gfc_resolve_trigd2): Add new
+ prototypes.
+ (gfc_simplify_atrigd, gfc_simplify_trigd, gfc_resolve_cotan,
+ resolve_atrigd): Remove prototypes of deleted functions.
+ * iresolve.c (is_trig_resolved, copy_replace_function_shallow,
+ gfc_resolve_cotan, get_radians, get_degrees, resolve_trig_call,
+ gfc_resolve_atrigd, gfc_resolve_atan2d): Delete functions.
+ (gfc_resolve_trigd, gfc_resolve_trigd2): Resolve to library functions.
+ * simplify.c (rad2deg, deg2rad, gfc_simplify_acosd, gfc_simplify_asind,
+ gfc_simplify_atand, gfc_simplify_atan2d, gfc_simplify_cosd,
+ gfc_simplify_sind, gfc_simplify_tand, gfc_simplify_cotand): New
+ functions.
+ (gfc_simplify_atan2): Fix error message.
+ (simplify_trig_call, gfc_simplify_trigd, gfc_simplify_atrigd,
+ radians_f): Delete functions.
+ * trans-intrinsic.c: Add LIB_FUNCTION decls for sind, cosd, tand.
+ (rad2deg, gfc_conv_intrinsic_atrigd, gfc_conv_intrinsic_cotan,
+ gfc_conv_intrinsic_cotand, gfc_conv_intrinsic_atan2d): New functions.
+ (gfc_conv_intrinsic_function): Handle ACOSD, ASIND, ATAND, COTAN,
+ COTAND, ATAN2D.
+ * trigd_fe.inc: New file. Included by simplify.c to implement
+ simplify_sind, simplify_cosd, simplify_tand with code common to the
+ libgfortran implementation.
+
2020-04-06 Steven G. Kargl <kargl@gcc.gnu.org>
PR fortran/93686
GFC_ISYM_ACCESS,
GFC_ISYM_ACHAR,
GFC_ISYM_ACOS,
+ GFC_ISYM_ACOSD,
GFC_ISYM_ACOSH,
GFC_ISYM_ADJUSTL,
GFC_ISYM_ADJUSTR,
GFC_ISYM_ANINT,
GFC_ISYM_ANY,
GFC_ISYM_ASIN,
+ GFC_ISYM_ASIND,
GFC_ISYM_ASINH,
GFC_ISYM_ASSOCIATED,
GFC_ISYM_ATAN,
GFC_ISYM_ATAN2,
+ GFC_ISYM_ATAN2D,
+ GFC_ISYM_ATAND,
GFC_ISYM_ATANH,
GFC_ISYM_ATOMIC_ADD,
GFC_ISYM_ATOMIC_AND,
GFC_ISYM_CONJG,
GFC_ISYM_CONVERSION,
GFC_ISYM_COS,
+ GFC_ISYM_COSD,
GFC_ISYM_COSH,
GFC_ISYM_COTAN,
+ GFC_ISYM_COTAND,
GFC_ISYM_COUNT,
GFC_ISYM_CPU_TIME,
GFC_ISYM_CSHIFT,
GFC_ISYM_SIGNAL,
GFC_ISYM_SI_KIND,
GFC_ISYM_SIN,
+ GFC_ISYM_SIND,
GFC_ISYM_SINH,
GFC_ISYM_SIZE,
GFC_ISYM_SLEEP,
GFC_ISYM_SYSTEM,
GFC_ISYM_SYSTEM_CLOCK,
GFC_ISYM_TAN,
+ GFC_ISYM_TAND,
GFC_ISYM_TANH,
GFC_ISYM_TEAM_NUMBER,
GFC_ISYM_THIS_IMAGE,
make_generic ("loc", GFC_ISYM_LOC, GFC_STD_GNU);
- if (flag_dec_math)
- {
- add_sym_1 ("acosd", GFC_ISYM_ACOS, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dr, GFC_STD_GNU,
- gfc_check_fn_r, gfc_simplify_atrigd, gfc_resolve_atrigd,
- x, BT_REAL, dr, REQUIRED);
-
- add_sym_1 ("dacosd", GFC_ISYM_ACOS, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dd, GFC_STD_GNU,
- gfc_check_fn_d, gfc_simplify_atrigd, gfc_resolve_atrigd,
- x, BT_REAL, dd, REQUIRED);
- make_generic ("acosd", GFC_ISYM_ACOS, GFC_STD_GNU);
+ /* The next of intrinsic subprogram are the degree trignometric functions.
+ These were hidden behind the -fdec-math option, but are now simply
+ included as extensions to the set of intrinsic subprograms. */
- add_sym_1 ("asind", GFC_ISYM_ASIN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dr, GFC_STD_GNU,
- gfc_check_fn_r, gfc_simplify_atrigd, gfc_resolve_atrigd,
- x, BT_REAL, dr, REQUIRED);
+ add_sym_1 ("acosd", GFC_ISYM_ACOSD, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dr, GFC_STD_GNU,
+ gfc_check_fn_r, gfc_simplify_acosd, gfc_resolve_trigd,
+ x, BT_REAL, dr, REQUIRED);
- add_sym_1 ("dasind", GFC_ISYM_ASIN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dd, GFC_STD_GNU,
- gfc_check_fn_d, gfc_simplify_atrigd, gfc_resolve_atrigd,
- x, BT_REAL, dd, REQUIRED);
+ add_sym_1 ("dacosd", GFC_ISYM_ACOSD, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dd, GFC_STD_GNU,
+ gfc_check_fn_d, gfc_simplify_acosd, gfc_resolve_trigd,
+ x, BT_REAL, dd, REQUIRED);
- make_generic ("asind", GFC_ISYM_ASIN, GFC_STD_GNU);
+ make_generic ("acosd", GFC_ISYM_ACOSD, GFC_STD_GNU);
- add_sym_1 ("atand", GFC_ISYM_ATAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dr, GFC_STD_GNU,
- gfc_check_fn_r, gfc_simplify_atrigd, gfc_resolve_atrigd,
- x, BT_REAL, dr, REQUIRED);
+ add_sym_1 ("asind", GFC_ISYM_ASIND, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dr, GFC_STD_GNU,
+ gfc_check_fn_r, gfc_simplify_asind, gfc_resolve_trigd,
+ x, BT_REAL, dr, REQUIRED);
- add_sym_1 ("datand", GFC_ISYM_ATAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dd, GFC_STD_GNU,
- gfc_check_fn_d, gfc_simplify_atrigd, gfc_resolve_atrigd,
- x, BT_REAL, dd, REQUIRED);
+ add_sym_1 ("dasind", GFC_ISYM_ASIND, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dd, GFC_STD_GNU,
+ gfc_check_fn_d, gfc_simplify_asind, gfc_resolve_trigd,
+ x, BT_REAL, dd, REQUIRED);
- make_generic ("atand", GFC_ISYM_ATAN, GFC_STD_GNU);
+ make_generic ("asind", GFC_ISYM_ASIND, GFC_STD_GNU);
- add_sym_2 ("atan2d",GFC_ISYM_ATAN2,CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dr, GFC_STD_GNU,
- gfc_check_atan2, gfc_simplify_atan2d, gfc_resolve_atan2d,
- y, BT_REAL, dr, REQUIRED, x, BT_REAL, dr, REQUIRED);
+ add_sym_1 ("atand", GFC_ISYM_ATAND, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dr, GFC_STD_GNU,
+ gfc_check_fn_r, gfc_simplify_atand, gfc_resolve_trigd,
+ x, BT_REAL, dr, REQUIRED);
- add_sym_2 ("datan2d",GFC_ISYM_ATAN2,CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dd, GFC_STD_GNU,
- gfc_check_datan2, gfc_simplify_atan2d, gfc_resolve_atan2d,
- y, BT_REAL, dd, REQUIRED, x, BT_REAL, dd, REQUIRED);
+ add_sym_1 ("datand", GFC_ISYM_ATAND, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dd, GFC_STD_GNU,
+ gfc_check_fn_d, gfc_simplify_atand, gfc_resolve_trigd,
+ x, BT_REAL, dd, REQUIRED);
- make_generic ("atan2d", GFC_ISYM_ATAN2, GFC_STD_GNU);
+ make_generic ("atand", GFC_ISYM_ATAND, GFC_STD_GNU);
- add_sym_1 ("cosd", GFC_ISYM_COS, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dr, GFC_STD_GNU,
- gfc_check_fn_r, gfc_simplify_trigd, gfc_resolve_trigd,
- x, BT_REAL, dr, REQUIRED);
+ add_sym_2 ("atan2d", GFC_ISYM_ATAN2D, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dr, GFC_STD_GNU,
+ gfc_check_atan2, gfc_simplify_atan2d, gfc_resolve_trigd2,
+ y, BT_REAL, dr, REQUIRED,
+ x, BT_REAL, dr, REQUIRED);
- add_sym_1 ("dcosd", GFC_ISYM_COS, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dd, GFC_STD_GNU,
- gfc_check_fn_d, gfc_simplify_trigd, gfc_resolve_trigd,
- x, BT_REAL, dd, REQUIRED);
+ add_sym_2 ("datan2d", GFC_ISYM_ATAN2D, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dd, GFC_STD_GNU,
+ gfc_check_datan2, gfc_simplify_atan2d, gfc_resolve_trigd2,
+ y, BT_REAL, dd, REQUIRED,
+ x, BT_REAL, dd, REQUIRED);
- make_generic ("cosd", GFC_ISYM_COS, GFC_STD_GNU);
+ make_generic ("atan2d", GFC_ISYM_ATAN2D, GFC_STD_GNU);
- add_sym_1 ("cotan", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dr, GFC_STD_GNU,
- gfc_check_fn_rc2008, gfc_simplify_cotan, gfc_resolve_cotan,
- x, BT_REAL, dr, REQUIRED);
+ add_sym_1 ("cosd", GFC_ISYM_COSD, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dr, GFC_STD_GNU,
+ gfc_check_fn_r, gfc_simplify_cosd, gfc_resolve_trigd,
+ x, BT_REAL, dr, REQUIRED);
- add_sym_1 ("dcotan", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dd, GFC_STD_GNU,
- gfc_check_fn_d, gfc_simplify_cotan, gfc_resolve_cotan,
- x, BT_REAL, dd, REQUIRED);
+ add_sym_1 ("dcosd", GFC_ISYM_COSD, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dd, GFC_STD_GNU,
+ gfc_check_fn_d, gfc_simplify_cosd, gfc_resolve_trigd,
+ x, BT_REAL, dd, REQUIRED);
- make_generic ("cotan", GFC_ISYM_COTAN, GFC_STD_GNU);
+ make_generic ("cosd", GFC_ISYM_COSD, GFC_STD_GNU);
- add_sym_1 ("cotand", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dr, GFC_STD_GNU,
- gfc_check_fn_r, gfc_simplify_trigd, gfc_resolve_trigd,
- x, BT_REAL, dr, REQUIRED);
+ add_sym_1 ("cotan", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dr, GFC_STD_GNU,
+ gfc_check_fn_rc2008, gfc_simplify_cotan, gfc_resolve_trigd,
+ x, BT_REAL, dr, REQUIRED);
- add_sym_1 ("dcotand",GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dd, GFC_STD_GNU,
- gfc_check_fn_d, gfc_simplify_trigd, gfc_resolve_trigd,
- x, BT_REAL, dd, REQUIRED);
+ add_sym_1 ("dcotan", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dd, GFC_STD_GNU,
+ gfc_check_fn_d, gfc_simplify_cotan, gfc_resolve_trigd,
+ x, BT_REAL, dd, REQUIRED);
- make_generic ("cotand", GFC_ISYM_COTAN, GFC_STD_GNU);
+ add_sym_1 ("ccotan", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_COMPLEX, dz, GFC_STD_GNU,
+ NULL, gfc_simplify_cotan, gfc_resolve_trigd,
+ x, BT_COMPLEX, dz, REQUIRED);
- add_sym_1 ("sind", GFC_ISYM_SIN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dr, GFC_STD_GNU,
- gfc_check_fn_r, gfc_simplify_trigd, gfc_resolve_trigd,
- x, BT_REAL, dr, REQUIRED);
+ add_sym_1 ("zcotan", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_COMPLEX, dd, GFC_STD_GNU,
+ NULL, gfc_simplify_cotan, gfc_resolve_trigd,
+ x, BT_COMPLEX, dd, REQUIRED);
- add_sym_1 ("dsind", GFC_ISYM_SIN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dd, GFC_STD_GNU,
- gfc_check_fn_d, gfc_simplify_trigd, gfc_resolve_trigd,
- x, BT_REAL, dd, REQUIRED);
+ make_generic ("cotan", GFC_ISYM_COTAN, GFC_STD_GNU);
- make_generic ("sind", GFC_ISYM_SIN, GFC_STD_GNU);
+ add_sym_1 ("cotand", GFC_ISYM_COTAND, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dr, GFC_STD_GNU,
+ gfc_check_fn_r, gfc_simplify_cotand, gfc_resolve_trigd,
+ x, BT_REAL, dr, REQUIRED);
- add_sym_1 ("tand", GFC_ISYM_TAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dr, GFC_STD_GNU,
- gfc_check_fn_r, gfc_simplify_trigd, gfc_resolve_trigd,
- x, BT_REAL, dr, REQUIRED);
+ add_sym_1 ("dcotand", GFC_ISYM_COTAND, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dd, GFC_STD_GNU,
+ gfc_check_fn_d, gfc_simplify_cotand, gfc_resolve_trigd,
+ x, BT_REAL, dd, REQUIRED);
- add_sym_1 ("dtand", GFC_ISYM_TAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL,
- dd, GFC_STD_GNU,
- gfc_check_fn_d, gfc_simplify_trigd, gfc_resolve_trigd,
- x, BT_REAL, dd, REQUIRED);
+ make_generic ("cotand", GFC_ISYM_COTAND, GFC_STD_GNU);
- make_generic ("tand", GFC_ISYM_TAN, GFC_STD_GNU);
- }
+ add_sym_1 ("sind", GFC_ISYM_SIND, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dr, GFC_STD_GNU,
+ gfc_check_fn_r, gfc_simplify_sind, gfc_resolve_trigd,
+ x, BT_REAL, dr, REQUIRED);
+
+ add_sym_1 ("dsind", GFC_ISYM_SIND, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dd, GFC_STD_GNU,
+ gfc_check_fn_d, gfc_simplify_sind, gfc_resolve_trigd,
+ x, BT_REAL, dd, REQUIRED);
+
+ make_generic ("sind", GFC_ISYM_SIND, GFC_STD_GNU);
+
+ add_sym_1 ("tand", GFC_ISYM_TAND, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dr, GFC_STD_GNU,
+ gfc_check_fn_r, gfc_simplify_tand, gfc_resolve_trigd,
+ x, BT_REAL, dr, REQUIRED);
+
+ add_sym_1 ("dtand", GFC_ISYM_TAND, CLASS_ELEMENTAL, ACTUAL_YES,
+ BT_REAL, dd, GFC_STD_GNU,
+ gfc_check_fn_d, gfc_simplify_tand, gfc_resolve_trigd,
+ x, BT_REAL, dd, REQUIRED);
+
+ make_generic ("tand", GFC_ISYM_TAND, GFC_STD_GNU);
/* The following function is internally used for coarray libray functions.
"make_from_module" makes it inaccessible for external users. */
goto finish;
}
- /* Some math intrinsics need to wrap the original expression. */
- if (specific->simplify.f1 == gfc_simplify_trigd
- || specific->simplify.f1 == gfc_simplify_atrigd
- || specific->simplify.f1 == gfc_simplify_cotan)
- {
- result = (*specific->simplify.f1) (e);
- goto finish;
- }
-
if (specific->simplify.f1 == NULL)
{
result = NULL;
gfc_expr *gfc_simplify_abs (gfc_expr *);
gfc_expr *gfc_simplify_achar (gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_acos (gfc_expr *);
+gfc_expr *gfc_simplify_acosd (gfc_expr *);
gfc_expr *gfc_simplify_acosh (gfc_expr *);
gfc_expr *gfc_simplify_adjustl (gfc_expr *);
gfc_expr *gfc_simplify_adjustr (gfc_expr *);
gfc_expr *gfc_simplify_aimag (gfc_expr *);
gfc_expr *gfc_simplify_aint (gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_all (gfc_expr *, gfc_expr *);
-gfc_expr *gfc_simplify_atrigd (gfc_expr *);
+gfc_expr *gfc_simplify_asind (gfc_expr *);
gfc_expr *gfc_simplify_dint (gfc_expr *);
gfc_expr *gfc_simplify_anint (gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_dnint (gfc_expr *);
gfc_expr *gfc_simplify_asin (gfc_expr *);
gfc_expr *gfc_simplify_asinh (gfc_expr *);
gfc_expr *gfc_simplify_atan (gfc_expr *);
+gfc_expr *gfc_simplify_atand (gfc_expr *);
gfc_expr *gfc_simplify_atanh (gfc_expr *);
gfc_expr *gfc_simplify_atan2 (gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_atan2d (gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_complex (gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_conjg (gfc_expr *);
gfc_expr *gfc_simplify_cos (gfc_expr *);
+gfc_expr *gfc_simplify_cosd (gfc_expr *);
gfc_expr *gfc_simplify_cosh (gfc_expr *);
gfc_expr *gfc_simplify_cotan (gfc_expr *);
+gfc_expr *gfc_simplify_cotand (gfc_expr *);
gfc_expr *gfc_simplify_count (gfc_expr *, gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_cshift (gfc_expr *, gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_dcmplx (gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_shiftl (gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_shiftr (gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_sin (gfc_expr *);
+gfc_expr *gfc_simplify_sind (gfc_expr *);
gfc_expr *gfc_simplify_sinh (gfc_expr *);
gfc_expr *gfc_simplify_size (gfc_expr *, gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_sizeof (gfc_expr *);
gfc_expr *gfc_simplify_sqrt (gfc_expr *);
gfc_expr *gfc_simplify_sum (gfc_expr *, gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_tan (gfc_expr *);
+gfc_expr *gfc_simplify_tand (gfc_expr *);
gfc_expr *gfc_simplify_tanh (gfc_expr *);
gfc_expr *gfc_simplify_this_image (gfc_expr *, gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_tiny (gfc_expr *);
gfc_expr *gfc_simplify_trailz (gfc_expr *);
gfc_expr *gfc_simplify_transfer (gfc_expr *, gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_transpose (gfc_expr *);
-gfc_expr *gfc_simplify_trigd (gfc_expr *);
gfc_expr *gfc_simplify_trim (gfc_expr *);
gfc_expr *gfc_simplify_ubound (gfc_expr *, gfc_expr *, gfc_expr *);
gfc_expr *gfc_simplify_ucobound (gfc_expr *, gfc_expr *, gfc_expr *);
void gfc_resolve_cos (gfc_expr *, gfc_expr *);
void gfc_resolve_cosh (gfc_expr *, gfc_expr *);
void gfc_resolve_count (gfc_expr *, gfc_expr *, gfc_expr *, gfc_expr *);
-void gfc_resolve_cotan (gfc_expr *, gfc_expr *);
void gfc_resolve_cshift (gfc_expr *, gfc_expr *, gfc_expr *, gfc_expr *);
void gfc_resolve_ctime (gfc_expr *, gfc_expr *);
void gfc_resolve_dble (gfc_expr *, gfc_expr *);
void gfc_resolve_transfer (gfc_expr *, gfc_expr *, gfc_expr *, gfc_expr *);
void gfc_resolve_transpose (gfc_expr *, gfc_expr *);
void gfc_resolve_trigd (gfc_expr *, gfc_expr *);
-void gfc_resolve_atrigd (gfc_expr *, gfc_expr *);
+void gfc_resolve_trigd2 (gfc_expr *, gfc_expr *, gfc_expr *);
void gfc_resolve_trim (gfc_expr *, gfc_expr *);
void gfc_resolve_ttynam (gfc_expr *, gfc_expr *);
void gfc_resolve_ubound (gfc_expr *, gfc_expr *, gfc_expr *, gfc_expr *);
}
-/* Our replacement of elements of a trig call with an EXPR_OP (e.g.
- multiplying the result or operands by a factor to convert to/from degrees)
- will cause the resolve_* function to be invoked again when resolving the
- freshly created EXPR_OP. See gfc_resolve_trigd, gfc_resolve_atrigd,
- gfc_resolve_cotan. We must observe this and avoid recursively creating
- layers of nested EXPR_OP expressions. */
-
-static bool
-is_trig_resolved (gfc_expr *f)
-{
- /* We know we've already resolved the function if we see the lib call
- starting with '__'. */
- return (f->value.function.name != NULL
- && gfc_str_startswith (f->value.function.name, "__"));
-}
-
-/* Return a shallow copy of the function expression f. The original expression
- has its pointers cleared so that it may be freed without affecting the
- shallow copy. This is similar to gfc_copy_expr, but doesn't perform a deep
- copy of the argument list, allowing it to be reused somewhere else,
- setting the expression up nicely for gfc_replace_expr. */
-
-static gfc_expr *
-copy_replace_function_shallow (gfc_expr *f)
-{
- gfc_expr *fcopy;
- gfc_actual_arglist *args;
-
- /* The only thing deep-copied in gfc_copy_expr is args. */
- args = f->value.function.actual;
- f->value.function.actual = NULL;
- fcopy = gfc_copy_expr (f);
- fcopy->value.function.actual = args;
-
- /* Clear the old function so the shallow copy is not affected if the old
- expression is freed. */
- f->value.function.name = NULL;
- f->value.function.isym = NULL;
- f->value.function.actual = NULL;
- f->value.function.esym = NULL;
- f->shape = NULL;
- f->ref = NULL;
-
- return fcopy;
-}
-
-
-/* Resolve cotan = cos / sin. */
-
-void
-gfc_resolve_cotan (gfc_expr *f, gfc_expr *x)
-{
- gfc_expr *result, *fcopy, *sin;
- gfc_actual_arglist *sin_args;
-
- if (is_trig_resolved (f))
- return;
-
- /* Compute cotan (x) = cos (x) / sin (x). */
- f->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_COS);
- gfc_resolve_cos (f, x);
-
- sin_args = gfc_get_actual_arglist ();
- sin_args->expr = gfc_copy_expr (x);
-
- sin = gfc_get_expr ();
- sin->ts = f->ts;
- sin->where = f->where;
- sin->expr_type = EXPR_FUNCTION;
- sin->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_SIN);
- sin->value.function.actual = sin_args;
- gfc_resolve_sin (sin, sin_args->expr);
-
- /* Replace f with cos/sin - we do this in place in f for the caller. */
- fcopy = copy_replace_function_shallow (f);
- result = gfc_divide (fcopy, sin);
- gfc_replace_expr (f, result);
-}
-
-
void
gfc_resolve_count (gfc_expr *f, gfc_expr *mask, gfc_expr *dim, gfc_expr *kind)
{
}
-/* Build an expression for converting degrees to radians. */
-
-static gfc_expr *
-get_radians (gfc_expr *deg)
-{
- gfc_expr *result, *factor;
- gfc_actual_arglist *mod_args;
-
- gcc_assert (deg->ts.type == BT_REAL);
-
- /* Set deg = deg % 360 to avoid offsets from large angles. */
- factor = gfc_get_constant_expr (deg->ts.type, deg->ts.kind, °->where);
- mpfr_set_d (factor->value.real, 360.0, GFC_RND_MODE);
-
- mod_args = gfc_get_actual_arglist ();
- mod_args->expr = deg;
- mod_args->next = gfc_get_actual_arglist ();
- mod_args->next->expr = factor;
-
- result = gfc_get_expr ();
- result->ts = deg->ts;
- result->where = deg->where;
- result->expr_type = EXPR_FUNCTION;
- result->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_MOD);
- result->value.function.actual = mod_args;
-
- /* Set factor = pi / 180. */
- factor = gfc_get_constant_expr (deg->ts.type, deg->ts.kind, °->where);
- mpfr_const_pi (factor->value.real, GFC_RND_MODE);
- mpfr_div_ui (factor->value.real, factor->value.real, 180, GFC_RND_MODE);
-
- /* Result is rad = (deg % 360) * (pi / 180). */
- result = gfc_multiply (result, factor);
- return result;
-}
-
-
-/* Build an expression for converting radians to degrees. */
-
-static gfc_expr *
-get_degrees (gfc_expr *rad)
-{
- gfc_expr *result, *factor;
- gfc_actual_arglist *mod_args;
- mpfr_t tmp;
-
- gcc_assert (rad->ts.type == BT_REAL);
-
- /* Set rad = rad % 2pi to avoid offsets from large angles. */
- factor = gfc_get_constant_expr (rad->ts.type, rad->ts.kind, &rad->where);
- mpfr_const_pi (factor->value.real, GFC_RND_MODE);
- mpfr_mul_ui (factor->value.real, factor->value.real, 2, GFC_RND_MODE);
-
- mod_args = gfc_get_actual_arglist ();
- mod_args->expr = rad;
- mod_args->next = gfc_get_actual_arglist ();
- mod_args->next->expr = factor;
-
- result = gfc_get_expr ();
- result->ts = rad->ts;
- result->where = rad->where;
- result->expr_type = EXPR_FUNCTION;
- result->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_MOD);
- result->value.function.actual = mod_args;
-
- /* Set factor = 180 / pi. */
- factor = gfc_get_constant_expr (rad->ts.type, rad->ts.kind, &rad->where);
- mpfr_set_ui (factor->value.real, 180, GFC_RND_MODE);
- mpfr_init (tmp);
- mpfr_const_pi (tmp, GFC_RND_MODE);
- mpfr_div (factor->value.real, factor->value.real, tmp, GFC_RND_MODE);
- mpfr_clear (tmp);
-
- /* Result is deg = (rad % 2pi) * (180 / pi). */
- result = gfc_multiply (result, factor);
- return result;
-}
-
-
-/* Resolve a call to a trig function. */
-
-static void
-resolve_trig_call (gfc_expr *f, gfc_expr *x)
-{
- switch (f->value.function.isym->id)
- {
- case GFC_ISYM_ACOS:
- return gfc_resolve_acos (f, x);
- case GFC_ISYM_ASIN:
- return gfc_resolve_asin (f, x);
- case GFC_ISYM_ATAN:
- return gfc_resolve_atan (f, x);
- case GFC_ISYM_ATAN2:
- /* NB. arg3 is unused for atan2 */
- return gfc_resolve_atan2 (f, x, NULL);
- case GFC_ISYM_COS:
- return gfc_resolve_cos (f, x);
- case GFC_ISYM_COTAN:
- return gfc_resolve_cotan (f, x);
- case GFC_ISYM_SIN:
- return gfc_resolve_sin (f, x);
- case GFC_ISYM_TAN:
- return gfc_resolve_tan (f, x);
- default:
- gcc_unreachable ();
- }
-}
-
-/* Resolve degree trig function as trigd (x) = trig (radians (x)). */
-
-void
-gfc_resolve_trigd (gfc_expr *f, gfc_expr *x)
-{
- if (is_trig_resolved (f))
- return;
-
- x = get_radians (x);
- f->value.function.actual->expr = x;
-
- resolve_trig_call (f, x);
-}
-
-
-/* Resolve degree inverse trig function as atrigd (x) = degrees (atrig (x)). */
-
-void
-gfc_resolve_atrigd (gfc_expr *f, gfc_expr *x)
-{
- gfc_expr *result, *fcopy;
-
- if (is_trig_resolved (f))
- return;
-
- resolve_trig_call (f, x);
-
- fcopy = copy_replace_function_shallow (f);
- result = get_degrees (fcopy);
- gfc_replace_expr (f, result);
-}
-
-
-/* Resolve atan2d(x) = degrees(atan2(x)). */
-
-void
-gfc_resolve_atan2d (gfc_expr *f, gfc_expr *x, gfc_expr *y ATTRIBUTE_UNUSED)
-{
- /* Note that we lose the second arg here - that's okay because it is
- unused in gfc_resolve_atan2 anyway. */
- gfc_resolve_atrigd (f, x);
-}
-
-
/* Resolve failed_images (team, kind). */
void
}
+/* Resolve the degree trignometric functions. This amounts to setting
+ the function return type-spec from its argument and building a
+ library function names of the form _gfortran_sind_r4. */
+
+void
+gfc_resolve_trigd (gfc_expr *f, gfc_expr *x)
+{
+ f->ts = x->ts;
+ f->value.function.name
+ = gfc_get_string (PREFIX ("%s_%c%d"), f->value.function.isym->name,
+ gfc_type_letter (x->ts.type), x->ts.kind);
+}
+
+
+void
+gfc_resolve_trigd2 (gfc_expr *f, gfc_expr *y, gfc_expr *x)
+{
+ f->ts = y->ts;
+ f->value.function.name
+ = gfc_get_string (PREFIX ("%s_%d"), f->value.function.isym->name,
+ x->ts.kind);
+}
+
+
void
gfc_resolve_ubound (gfc_expr *f, gfc_expr *array, gfc_expr *dim, gfc_expr *kind)
{
}
+/* Convert radians to degrees, i.e., x * 180 / pi. */
+
+static void
+rad2deg (mpfr_t x)
+{
+ mpfr_t tmp;
+
+ mpfr_init (tmp);
+ mpfr_const_pi (tmp, GFC_RND_MODE);
+ mpfr_mul_ui (x, x, 180, GFC_RND_MODE);
+ mpfr_div (x, x, tmp, GFC_RND_MODE);
+ mpfr_clear (tmp);
+}
+
+
+/* Simplify ACOSD(X) where the returned value has units of degree. */
+
+gfc_expr *
+gfc_simplify_acosd (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (mpfr_cmp_si (x->value.real, 1) > 0
+ || mpfr_cmp_si (x->value.real, -1) < 0)
+ {
+ gfc_error ("Argument of ACOSD at %L must be between -1 and 1",
+ &x->where);
+ return &gfc_bad_expr;
+ }
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_acos (result->value.real, x->value.real, GFC_RND_MODE);
+ rad2deg (result->value.real);
+
+ return range_check (result, "ACOSD");
+}
+
+
+/* Simplify asind (x) where the returned value has units of degree. */
+
+gfc_expr *
+gfc_simplify_asind (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (mpfr_cmp_si (x->value.real, 1) > 0
+ || mpfr_cmp_si (x->value.real, -1) < 0)
+ {
+ gfc_error ("Argument of ASIND at %L must be between -1 and 1",
+ &x->where);
+ return &gfc_bad_expr;
+ }
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_asin (result->value.real, x->value.real, GFC_RND_MODE);
+ rad2deg (result->value.real);
+
+ return range_check (result, "ASIND");
+}
+
+
+/* Simplify atand (x) where the returned value has units of degree. */
+
+gfc_expr *
+gfc_simplify_atand (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_atan (result->value.real, x->value.real, GFC_RND_MODE);
+ rad2deg (result->value.real);
+
+ return range_check (result, "ATAND");
+}
+
+
gfc_expr *
gfc_simplify_asinh (gfc_expr *x)
{
if (mpfr_zero_p (y->value.real) && mpfr_zero_p (x->value.real))
{
- gfc_error ("If first argument of ATAN2 %L is zero, then the "
- "second argument must not be zero", &x->where);
+ gfc_error ("If first argument of ATAN2 at %L is zero, then the "
+ "second argument must not be zero", &y->where);
return &gfc_bad_expr;
}
return range_check (result, "CONJG");
}
-/* Return the simplification of the constant expression in icall, or NULL
- if the expression is not constant. */
-static gfc_expr *
-simplify_trig_call (gfc_expr *icall)
-{
- gfc_isym_id func = icall->value.function.isym->id;
- gfc_expr *x = icall->value.function.actual->expr;
-
- /* The actual simplifiers will return NULL for non-constant x. */
- switch (func)
- {
- case GFC_ISYM_ACOS:
- return gfc_simplify_acos (x);
- case GFC_ISYM_ASIN:
- return gfc_simplify_asin (x);
- case GFC_ISYM_ATAN:
- return gfc_simplify_atan (x);
- case GFC_ISYM_COS:
- return gfc_simplify_cos (x);
- case GFC_ISYM_COTAN:
- return gfc_simplify_cotan (x);
- case GFC_ISYM_SIN:
- return gfc_simplify_sin (x);
- case GFC_ISYM_TAN:
- return gfc_simplify_tan (x);
- default:
- gfc_internal_error ("in simplify_trig_call(): Bad intrinsic");
+/* Simplify atan2d (x) where the unit is degree. */
+
+gfc_expr *
+gfc_simplify_atan2d (gfc_expr *y, gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (mpfr_zero_p (y->value.real) && mpfr_zero_p (x->value.real))
+ {
+ gfc_error ("If first argument of ATAN2D at %L is zero, then the "
+ "second argument must not be zero", &y->where);
+ return &gfc_bad_expr;
}
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_atan2 (result->value.real, y->value.real, x->value.real, GFC_RND_MODE);
+ rad2deg (result->value.real);
+
+ return range_check (result, "ATAN2D");
}
-/* Convert a floating-point number from radians to degrees. */
-static void
-degrees_f (mpfr_t x, mpfr_rnd_t rnd_mode)
+gfc_expr *
+gfc_simplify_cos (gfc_expr *x)
{
- mpfr_t tmp;
- mpfr_init (tmp);
+ gfc_expr *result;
- /* Set x = x * 180. */
- mpfr_mul_ui (x, x, 180, rnd_mode);
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
- /* Set x = x / pi. */
- mpfr_const_pi (tmp, rnd_mode);
- mpfr_div (x, x, tmp, rnd_mode);
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
- mpfr_clear (tmp);
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ mpfr_cos (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ gfc_set_model_kind (x->ts.kind);
+ mpc_cos (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("in gfc_simplify_cos(): Bad type");
+ }
+
+ return range_check (result, "COS");
}
-/* Convert a floating-point number from degrees to radians. */
static void
-radians_f (mpfr_t x, mpfr_rnd_t rnd_mode)
+deg2rad (mpfr_t x)
{
- mpfr_t tmp;
- mpfr_init (tmp);
+ mpfr_t d2r;
- /* Set x = x % 360 to avoid offsets with large angles. */
- mpfr_set_ui (tmp, 360, rnd_mode);
- mpfr_fmod (tmp, x, tmp, rnd_mode);
+ mpfr_init (d2r);
+ mpfr_const_pi (d2r, GFC_RND_MODE);
+ mpfr_div_ui (d2r, d2r, 180, GFC_RND_MODE);
+ mpfr_mul (x, x, d2r, GFC_RND_MODE);
+ mpfr_clear (d2r);
+}
- /* Set x = x * pi. */
- mpfr_const_pi (tmp, rnd_mode);
- mpfr_mul (x, x, tmp, rnd_mode);
- /* Set x = x / 180. */
- mpfr_div_ui (x, x, 180, rnd_mode);
-
- mpfr_clear (tmp);
-}
+/* Simplification routines for SIND, COSD, TAND. */
+#include "trigd_fe.inc"
-/* Convert argument to radians before calling a trig function. */
+/* Simplify COSD(X) where X has the unit of degree. */
gfc_expr *
-gfc_simplify_trigd (gfc_expr *icall)
+gfc_simplify_cosd (gfc_expr *x)
{
- gfc_expr *arg;
-
- arg = icall->value.function.actual->expr;
+ gfc_expr *result;
- if (arg->ts.type != BT_REAL)
- gfc_internal_error ("in gfc_simplify_trigd(): Bad type");
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
- if (arg->expr_type == EXPR_CONSTANT)
- /* Convert constant to radians before passing off to simplifier. */
- radians_f (arg->value.real, GFC_RND_MODE);
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_set (result->value.real, x->value.real, GFC_RND_MODE);
+ simplify_cosd (result->value.real);
- /* Let the usual simplifier take over - we just simplified the arg. */
- return simplify_trig_call (icall);
+ return range_check (result, "COSD");
}
-/* Convert result of an inverse trig function to degrees. */
+
+/* Simplify SIND(X) where X has the unit of degree. */
gfc_expr *
-gfc_simplify_atrigd (gfc_expr *icall)
+gfc_simplify_sind (gfc_expr *x)
{
gfc_expr *result;
- if (icall->value.function.actual->expr->ts.type != BT_REAL)
- gfc_internal_error ("in gfc_simplify_atrigd(): Bad type");
-
- /* See if another simplifier has work to do first. */
- result = simplify_trig_call (icall);
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
- if (result && result->expr_type == EXPR_CONSTANT)
- {
- /* Convert constant to degrees after passing off to actual simplifier. */
- degrees_f (result->value.real, GFC_RND_MODE);
- return result;
- }
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_set (result->value.real, x->value.real, GFC_RND_MODE);
+ simplify_sind (result->value.real);
- /* Let gfc_resolve_atrigd take care of the non-constant case. */
- return NULL;
+ return range_check (result, "SIND");
}
-/* Convert the result of atan2 to degrees. */
+
+/* Simplify TAND(X) where X has the unit of degree. */
gfc_expr *
-gfc_simplify_atan2d (gfc_expr *y, gfc_expr *x)
+gfc_simplify_tand (gfc_expr *x)
{
gfc_expr *result;
- if (x->ts.type != BT_REAL || y->ts.type != BT_REAL)
- gfc_internal_error ("in gfc_simplify_atan2d(): Bad type");
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
- if (x->expr_type == EXPR_CONSTANT && y->expr_type == EXPR_CONSTANT)
- {
- result = gfc_simplify_atan2 (y, x);
- if (result != NULL)
- {
- degrees_f (result->value.real, GFC_RND_MODE);
- return result;
- }
- }
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_set (result->value.real, x->value.real, GFC_RND_MODE);
+ simplify_tand (result->value.real);
- /* Let gfc_resolve_atan2d take care of the non-constant case. */
- return NULL;
+ return range_check (result, "TAND");
}
+
+/* Simplify COTAND(X) where X has the unit of degree. */
+
gfc_expr *
-gfc_simplify_cos (gfc_expr *x)
+gfc_simplify_cotand (gfc_expr *x)
{
gfc_expr *result;
if (x->expr_type != EXPR_CONSTANT)
return NULL;
+ /* Implement COTAND = -TAND(x+90).
+ TAND offers correct exact values for multiples of 30 degrees.
+ This implementation is also compatible with the behavior of some legacy
+ compilers. Keep this consistent with gfc_conv_intrinsic_cotand. */
result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_set (result->value.real, x->value.real, GFC_RND_MODE);
+ mpfr_add_ui (result->value.real, result->value.real, 90, GFC_RND_MODE);
+ simplify_tand (result->value.real);
+ mpfr_neg (result->value.real, result->value.real, GFC_RND_MODE);
- switch (x->ts.type)
- {
- case BT_REAL:
- mpfr_cos (result->value.real, x->value.real, GFC_RND_MODE);
- break;
-
- case BT_COMPLEX:
- gfc_set_model_kind (x->ts.kind);
- mpc_cos (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
- break;
-
- default:
- gfc_internal_error ("in gfc_simplify_cos(): Bad type");
- }
-
- return range_check (result, "COS");
+ return range_check (result, "COTAND");
}
}
+/* Simplify COTAN(X) where X has the unit of radian. */
+
gfc_expr *
gfc_simplify_cotan (gfc_expr *x)
{
/* There is no builtin mpc_cot, so compute cot = cos / sin. */
val = &result->value.complex;
mpc_init2 (swp, mpfr_get_default_prec ());
- mpc_cos (swp, x->value.complex, GFC_MPC_RND_MODE);
- mpc_sin (*val, x->value.complex, GFC_MPC_RND_MODE);
+ mpc_sin_cos (*val, swp, x->value.complex, GFC_MPC_RND_MODE,
+ GFC_MPC_RND_MODE);
mpc_div (*val, swp, *val, GFC_MPC_RND_MODE);
mpc_clear (swp);
break;
/* Functions in libgfortran. */
LIB_FUNCTION (ERFC_SCALED, "erfc_scaled", false),
+ LIB_FUNCTION (SIND, "sind", false),
+ LIB_FUNCTION (COSD, "cosd", false),
+ LIB_FUNCTION (TAND, "tand", false),
/* End the list. */
LIB_FUNCTION (NONE, NULL, false)
se->expr = resvar;
}
+
+/* Generate the constant 180 / pi, which is used in the conversion
+ of acosd(), asind(), atand(), atan2d(). */
+
+static tree
+rad2deg (int kind)
+{
+ tree retval;
+ mpfr_t pi, t0;
+
+ gfc_set_model_kind (kind);
+ mpfr_init (pi);
+ mpfr_init (t0);
+ mpfr_set_si (t0, 180, GFC_RND_MODE);
+ mpfr_const_pi (pi, GFC_RND_MODE);
+ mpfr_div (t0, t0, pi, GFC_RND_MODE);
+ retval = gfc_conv_mpfr_to_tree (t0, kind, 0);
+ mpfr_clear (t0);
+ mpfr_clear (pi);
+ return retval;
+}
+
+
+/* ACOSD(x) is translated into ACOS(x) * 180 / pi.
+ ASIND(x) is translated into ASIN(x) * 180 / pi.
+ ATAND(x) is translated into ATAN(x) * 180 / pi. */
+
+static void
+gfc_conv_intrinsic_atrigd (gfc_se * se, gfc_expr * expr, gfc_isym_id id)
+{
+ tree arg;
+ tree atrigd;
+ tree type;
+
+ type = gfc_typenode_for_spec (&expr->ts);
+
+ gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+
+ if (id == GFC_ISYM_ACOSD)
+ atrigd = gfc_builtin_decl_for_float_kind (BUILT_IN_ACOS, expr->ts.kind);
+ else if (id == GFC_ISYM_ASIND)
+ atrigd = gfc_builtin_decl_for_float_kind (BUILT_IN_ASIN, expr->ts.kind);
+ else if (id == GFC_ISYM_ATAND)
+ atrigd = gfc_builtin_decl_for_float_kind (BUILT_IN_ATAN, expr->ts.kind);
+ else
+ gcc_unreachable ();
+
+ atrigd = build_call_expr_loc (input_location, atrigd, 1, arg);
+
+ se->expr = fold_build2_loc (input_location, MULT_EXPR, type, atrigd,
+ fold_convert (type, rad2deg (expr->ts.kind)));
+}
+
+
+/* COTAN(X) is translated into -TAN(X+PI/2) for REAL argument and
+ COS(X) / SIN(X) for COMPLEX argument. */
+
+static void
+gfc_conv_intrinsic_cotan (gfc_se *se, gfc_expr *expr)
+{
+ gfc_intrinsic_map_t *m;
+ tree arg;
+ tree type;
+
+ type = gfc_typenode_for_spec (&expr->ts);
+ gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+
+ if (expr->ts.type == BT_REAL)
+ {
+ tree tan;
+ tree tmp;
+ mpfr_t pio2;
+
+ /* Create pi/2. */
+ gfc_set_model_kind (expr->ts.kind);
+ mpfr_init (pio2);
+ mpfr_const_pi (pio2, GFC_RND_MODE);
+ mpfr_div_ui (pio2, pio2, 2, GFC_RND_MODE);
+ tmp = gfc_conv_mpfr_to_tree (pio2, expr->ts.kind, 0);
+ mpfr_clear (pio2);
+
+ /* Find tan builtin function. */
+ m = gfc_intrinsic_map;
+ for (; m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++)
+ if (GFC_ISYM_TAN == m->id)
+ break;
+
+ tmp = fold_build2_loc (input_location, PLUS_EXPR, type, arg, tmp);
+ tan = gfc_get_intrinsic_lib_fndecl (m, expr);
+ tan = build_call_expr_loc (input_location, tan, 1, tmp);
+ se->expr = fold_build1_loc (input_location, NEGATE_EXPR, type, tan);
+ }
+ else
+ {
+ tree sin;
+ tree cos;
+
+ /* Find cos builtin function. */
+ m = gfc_intrinsic_map;
+ for (; m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++)
+ if (GFC_ISYM_COS == m->id)
+ break;
+
+ cos = gfc_get_intrinsic_lib_fndecl (m, expr);
+ cos = build_call_expr_loc (input_location, cos, 1, arg);
+
+ /* Find sin builtin function. */
+ m = gfc_intrinsic_map;
+ for (; m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++)
+ if (GFC_ISYM_SIN == m->id)
+ break;
+
+ sin = gfc_get_intrinsic_lib_fndecl (m, expr);
+ sin = build_call_expr_loc (input_location, sin, 1, arg);
+
+ /* Divide cos by sin. */
+ se->expr = fold_build2_loc (input_location, RDIV_EXPR, type, cos, sin);
+ }
+}
+
+
+/* COTAND(X) is translated into -TAND(X+90) for REAL argument. */
+
+static void
+gfc_conv_intrinsic_cotand (gfc_se *se, gfc_expr *expr)
+{
+ tree arg;
+ tree type;
+ tree ninety_tree;
+ mpfr_t ninety;
+
+ type = gfc_typenode_for_spec (&expr->ts);
+ gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
+
+ gfc_set_model_kind (expr->ts.kind);
+
+ /* Build the tree for x + 90. */
+ mpfr_init_set_ui (ninety, 90, GFC_RND_MODE);
+ ninety_tree = gfc_conv_mpfr_to_tree (ninety, expr->ts.kind, 0);
+ arg = fold_build2_loc (input_location, PLUS_EXPR, type, arg, ninety_tree);
+ mpfr_clear (ninety);
+
+ /* Find tand. */
+ gfc_intrinsic_map_t *m = gfc_intrinsic_map;
+ for (; m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++)
+ if (GFC_ISYM_TAND == m->id)
+ break;
+
+ tree tand = gfc_get_intrinsic_lib_fndecl (m, expr);
+ tand = build_call_expr_loc (input_location, tand, 1, arg);
+
+ se->expr = fold_build1_loc (input_location, NEGATE_EXPR, type, tand);
+}
+
+
+/* ATAN2D(Y,X) is translated into ATAN2(Y,X) * 180 / PI. */
+
+static void
+gfc_conv_intrinsic_atan2d (gfc_se *se, gfc_expr *expr)
+{
+ tree args[2];
+ tree atan2d;
+ tree type;
+
+ gfc_conv_intrinsic_function_args (se, expr, args, 2);
+ type = TREE_TYPE (args[0]);
+
+ atan2d = gfc_builtin_decl_for_float_kind (BUILT_IN_ATAN2, expr->ts.kind);
+ atan2d = build_call_expr_loc (input_location, atan2d, 2, args[0], args[1]);
+
+ se->expr = fold_build2_loc (input_location, MULT_EXPR, type, atan2d,
+ rad2deg (expr->ts.kind));
+}
+
+
/* COUNT(A) = Number of true elements in A. */
static void
gfc_conv_intrinsic_count (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_anyall (se, expr, NE_EXPR);
break;
+ case GFC_ISYM_ACOSD:
+ case GFC_ISYM_ASIND:
+ case GFC_ISYM_ATAND:
+ gfc_conv_intrinsic_atrigd (se, expr, expr->value.function.isym->id);
+ break;
+
+ case GFC_ISYM_COTAN:
+ gfc_conv_intrinsic_cotan (se, expr);
+ break;
+
+ case GFC_ISYM_COTAND:
+ gfc_conv_intrinsic_cotand (se, expr);
+ break;
+
+ case GFC_ISYM_ATAN2D:
+ gfc_conv_intrinsic_atan2d (se, expr);
+ break;
+
case GFC_ISYM_BTEST:
gfc_conv_intrinsic_btest (se, expr);
break;
--- /dev/null
+
+
+/* Stub for defining degree-valued trigonemetric functions using MPFR.
+ Copyright (C) 2000-2020 Free Software Foundation, Inc.
+ Contributed by Fritz Reese <foreese@gcc.gnu.org>
+ and Steven G. Kargl <kargl@gcc.gnu.org>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#define FTYPE mpfr_t
+#define RETTYPE void
+#define RETURN(x) do { } while (0)
+#define ITYPE mpz_t
+
+#define ISFINITE(x) mpfr_number_p(x)
+#define D2R(x) deg2rad(x)
+
+#define SIND simplify_sind
+#define COSD simplify_cosd
+#define TAND simplify_tand
+
+#ifdef HAVE_GFC_REAL_16
+#define COSD30 8.66025403784438646763723170752936183e-01Q
+#else
+#define COSD30 8.66025403784438646763723170752936183e-01L
+#endif
+
+#define SET_COSD30(x) mpfr_set_ld((x), COSD30, GFC_RND_MODE)
+
+static RETTYPE SIND (FTYPE);
+static RETTYPE COSD (FTYPE);
+static RETTYPE TAND (FTYPE);
+
+#include "../../libgfortran/intrinsics/trigd.inc"
+
+/* vim: set ft=c: */
+2020-04-01 Fritz Reese <foreese@gcc.gnu.org>
+
+ PR fortran/93871
+ * gfortran.dg/dec_math.f90: Extend coverage to real(10) and real(16).
+ * gfortran.dg/dec_math_2.f90: New test.
+ * gfortran.dg/dec_math_3.f90: Likewise.
+ * gfortran.dg/dec_math_4.f90: Likewise.
+ * gfortran.dg/dec_math_5.f90: Likewise.
+
2020-04-07 Andre Vieira <andre.simoesdiasvieira@arm.com>
* g++.target/arm/mve.exp: New.
-! { dg-options "-fdec-math" }
+! { dg-options "-cpp -std=gnu" }
! { dg-do run }
!
-! Test extra math intrinsics offered by -fdec-math.
+! Test extra math intrinsics formerly offered by -fdec-math,
+! now included with -std=gnu or -std=legacy.
!
- subroutine cmpf(f1, f2, tolerance, str)
+module dec_math
+
+ implicit none
+
+ real(4), parameter :: pi_f = 3.14159274_4
+ real(8), parameter :: pi_d = 3.1415926535897931_8
+#ifdef __GFC_REAL_10__
+ real(10), parameter :: pi_l = 3.1415926535897932383_10
+#endif
+#ifdef __GFC_REAL_16__
+ real(16), parameter :: pi_q = 3.1415926535897932384626433832795028_16
+#endif
+
+ real(4), parameter :: r2d_f = 180.0_4 / pi_f
+ real(8), parameter :: r2d_d = 180.0_8 / pi_d
+#ifdef __GFC_REAL_10__
+ real(10), parameter :: r2d_l = 180.0_10 / pi_l
+#endif
+#ifdef __GFC_REAL_16__
+ real(16), parameter :: r2d_q = 180.0_16 / pi_q
+#endif
+
+contains
+
+ function d2rf(x)
+ implicit none
+ real(4), intent(in) :: x
+ real(4) :: d2rf
+ d2rf = (x * pi_f) / 180.0_4
+ endfunction
+
+ subroutine cmpf(x, f1, f2, tolerance, str)
implicit none
- real(4), intent(in) :: f1, f2, tolerance
+ real(4), intent(in) :: x, f1, f2, tolerance
character(len=*), intent(in) :: str
if ( abs(f2 - f1) .gt. tolerance ) then
- write (*, '(A,F12.6,F12.6)') str, f1, f2
+ write (*, '(A,A,F12.6,A,F12.6,F12.6)') str, "(", x, ")", f1, f2
STOP 1
endif
endsubroutine
- subroutine cmpd(d1, d2, tolerance, str)
+ function d2rd(x)
implicit none
- real(8), intent(in) :: d1, d2, tolerance
+ real(8), intent(in) :: x
+ real(8) :: d2rd
+ d2rd = (x * pi_d) / 180.0_8
+ endfunction
+
+ subroutine cmpd(x, d1, d2, tolerance, str)
+ implicit none
+ real(8), intent(in) :: x, d1, d2, tolerance
character(len=*), intent(in) :: str
if ( dabs(d2 - d1) .gt. tolerance ) then
- write (*, '(A,F12.6,F12.6)') str, d1, d2
+ write (*, '(A,A,F18.14,A,F18.14,F18.14)') str, "(", x, ")", d1, d2
STOP 2
endif
endsubroutine
-implicit none
+#ifdef __GFC_REAL_10__
+ function d2rl(x)
+ implicit none
+ real(10), intent(in) :: x
+ real(10) :: d2rl
+ d2rl = (x * pi_l) / 180.0_10
+ endfunction
- real(4), parameter :: pi_f = (4.0_4 * atan(1.0_4))
- real(8), parameter :: pi_d = (4.0_8 * datan(1.0_8))
- real(4), parameter :: r2d_f = 180.0_4 / pi_f
- real(8), parameter :: r2d_d = 180.0_8 / pi_d
- real(4), parameter :: d2r_f = pi_f / 180.0_4
- real(8), parameter :: d2r_d = pi_d / 180.0_8
+ subroutine cmpl(x, f1, f2, tolerance, str)
+ implicit none
+ real(10), intent(in) :: x, f1, f2, tolerance
+ character(len=*), intent(in) :: str
+ if ( abs(f2 - f1) .gt. tolerance ) then
+ write (*, '(A,A,F21.17,A,F21.17,F21.17)') str, "(", x, ")", f1, f2
+ STOP 1
+ endif
+ endsubroutine
+#endif
+
+#ifdef __GFC_REAL_16__
+ function d2rq(x)
+ implicit none
+ real(16), intent(in) :: x
+ real(16) :: d2rq
+ d2rq = (x * pi_q) / 180.0_16
+ endfunction
+
+ subroutine cmpq(x, f1, f2, tolerance, str)
+ implicit none
+ real(16), intent(in) :: x, f1, f2, tolerance
+ character(len=*), intent(in) :: str
+ if ( abs(f2 - f1) .gt. tolerance ) then
+ write (*, '(A,A,F34.30,A,F34.30,F34.30)') str, "(", x, ")", f1, f2
+ STOP 1
+ endif
+ endsubroutine
+#endif
+
+end module
+
+use dec_math
+
+implicit none
! inputs
real(4) :: f_i1, f_i2
real(4), volatile :: xf
real(8) :: d_i1, d_i2
real(8), volatile :: xd
+#ifdef __GFC_REAL_10__
+real(10) :: l_i1, l_i2
+real(10), volatile :: xl
+#endif
+#ifdef __GFC_REAL_16__
+real(16) :: q_i1, q_i2
+real(16), volatile :: xq
+#endif
! expected outputs from (oe) default (oxe) expression
real(4) :: f_oe, f_oxe
real(8) :: d_oe, d_oxe
+#ifdef __GFC_REAL_10__
+real(10) :: l_oe, l_oxe
+#endif
+#ifdef __GFC_REAL_16__
+real(16) :: q_oe, q_oxe
+#endif
! actual outputs from (oa) default (oc) constant (ox) expression
real(4) :: f_oa, f_oc, f_ox
real(8) :: d_oa, d_oc, d_ox
+#ifdef __GFC_REAL_10__
+real(10) :: l_oa, l_oc, l_ox
+#endif
+#ifdef __GFC_REAL_16__
+real(16) :: q_oa, q_oc, q_ox
+#endif
! tolerance of the answer: assert |exp-act| <= tol
-real(4) :: f_tol
-real(8) :: d_tol
-
-! equivalence tolerance
-f_tol = 5e-5_4
-d_tol = 5e-6_8
-
-! multiplication factors to test non-constant expressions
+! accept loss of ~four decimal places
+real(4), parameter :: f_tol = 5e-3_4
+real(8), parameter :: d_tol = 5e-10_8
+#ifdef __GFC_REAL_10__
+real(10), parameter :: l_tol = 5e-15_10
+#endif
+#ifdef __GFC_REAL_16__
+real(16), parameter :: q_tol = 5e-20_16
+#endif
+
+! volatile multiplication factors to test non-constant expressions
xf = 2.0_4
xd = 2.0_8
-
-! Input
-f_i1 = 0.68032123_4
-d_i1 = 0.68032123_8
-
-! Expected
-f_oe = r2d_f*acos (f_i1)
-f_oxe = xf*r2d_f*acos (f_i1)
-d_oe = r2d_d*dacos(d_i1)
-d_oxe = xd*r2d_d*dacos(d_i1)
+#ifdef __GFC_REAL_10__
+xl = 2.0_10
+#endif
+#ifdef __GFC_REAL_16__
+xq = 2.0_16
+#endif
+
+! Input -- cos(pi/4)
+f_i1 = 0.707107_4
+d_i1 = 0.707106781186548_8
+#ifdef __GFC_REAL_10__
+l_i1 = 0.707106781186547573_10
+#endif
+#ifdef __GFC_REAL_16__
+q_i1 = 0.707106781186547572737310929369414_16
+#endif
+
+! Expected -- pi/4
+f_oe = r2d_f * acos (f_i1)
+f_oxe = r2d_f * acos (xf * f_i1)
+d_oe = r2d_d * acos (d_i1)
+d_oxe = r2d_d * acos (xd * d_i1)
+#ifdef __GFC_REAL_10__
+l_oe = r2d_l * acos (l_i1)
+l_oxe = r2d_l * acos (xl * l_i1)
+#endif
+#ifdef __GFC_REAL_16__
+q_oe = r2d_q * acos (q_i1)
+q_oxe = r2d_q * acos (xq * q_i1)
+#endif
! Actual
f_oa = acosd (f_i1)
-f_oc = acosd (0.68032123_4)
-f_ox = xf*acosd (f_i1)
-d_oa = dacosd (d_i1)
-d_oc = dacosd (0.68032123_8)
-d_ox = xd*dacosd (0.68032123_8)
-
-call cmpf(f_oe, f_oa, f_tol, "( ) acosd")
-call cmpf(f_oe, f_oc, f_tol, "(c) acosd")
-call cmpf(f_oxe, f_ox, f_tol, "(x) acosd")
-call cmpd(d_oe, d_oa, d_tol, "( ) dacosd")
-call cmpd(d_oe, d_oc, d_tol, "(c) dacosd")
-call cmpd(d_oxe, d_ox, d_tol, "(x) dacosd")
+f_oc = acosd (0.707107_4)
+f_ox = acosd (xf * f_i1)
+d_oa = acosd (d_i1)
+d_oc = acosd (0.707106781186548_8)
+d_ox = acosd (xd * 0.707106781186548_8)
+#ifdef __GFC_REAL_10__
+l_oa = acosd (l_i1)
+l_oc = acosd (0.707106781186547573_10)
+l_ox = acosd (xl * l_i1)
+#endif
+#ifdef __GFC_REAL_16__
+q_oa = acosd (q_i1)
+q_oc = acosd (0.707106781186547572737310929369414_16)
+q_ox = acosd (xq * 0.707106781186547572737310929369414_16)
+#endif
+
+call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) facosd")
+call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) facosd")
+call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) facosd")
+call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dacosd")
+call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dacosd")
+call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) dacosd")
+#ifdef __GFC_REAL_10__
+call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) lacosd")
+call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) lacosd")
+call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) lacosd")
+#endif
+#ifdef __GFC_REAL_16__
+call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qacosd")
+call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qacosd")
+call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qacosd")
+#endif
! Input
f_i1 = 60.0_4
d_i1 = 60.0_8
+#ifdef __GFC_REAL_10__
+l_i1 = 60.0_10
+#endif
+#ifdef __GFC_REAL_16__
+q_i1 = 60.0_16
+#endif
! Expected
-f_oe = cos (d2r_f*f_i1)
-f_oxe = xf*cos (d2r_f*f_i1)
-d_oe = cos (d2r_d*d_i1)
-d_oxe = xd*cos (d2r_d*d_i1)
+f_oe = cos (d2rf(f_i1))
+f_oxe = cos (d2rf(xf * f_i1))
+d_oe = cos (d2rd(d_i1))
+d_oxe = cos (d2rd(xd * d_i1))
+#ifdef __GFC_REAL_10__
+l_oe = cos (d2rl(l_i1))
+l_oxe = cos (d2rl(xl * l_i1))
+#endif
+#ifdef __GFC_REAL_16__
+q_oe = cos (d2rq(q_i1))
+q_oxe = cos (d2rq(xq * q_i1))
+#endif
! Actual
-f_oa = cosd (f_i1)
-f_oc = cosd (60.0_4)
-f_ox = xf* cosd (f_i1)
-d_oa = dcosd (d_i1)
-d_oc = dcosd (60.0_8)
-d_ox = xd* cosd (d_i1)
-
-call cmpf(f_oe, f_oa, f_tol, "( ) cosd")
-call cmpf(f_oe, f_oc, f_tol, "(c) cosd")
-call cmpf(f_oxe, f_ox, f_tol, "(x) cosd")
-call cmpd(d_oe, d_oa, d_tol, "( ) dcosd")
-call cmpd(d_oe, d_oc, d_tol, "(c) dcosd")
-call cmpd(d_oxe, d_ox, d_tol, "(x) cosd")
-
-! Input
-f_i1 = 0.79345021_4
-d_i1 = 0.79345021_8
-
-! Expected
-f_oe = r2d_f*asin (f_i1)
-f_oxe = xf*r2d_f*asin (f_i1)
-d_oe = r2d_d*asin (d_i1)
-d_oxe = xd*r2d_d*asin (d_i1)
+f_oa = cosd (f_i1)
+f_oc = cosd (60.0_4)
+f_ox = cosd (xf * f_i1)
+d_oa = cosd (d_i1)
+d_oc = cosd (60.0_8)
+d_ox = cosd (xd * d_i1)
+#ifdef __GFC_REAL_10__
+l_oa = cosd (l_i1)
+l_oc = cosd (60.0_10)
+l_ox = cosd (xl * l_i1)
+#endif
+#ifdef __GFC_REAL_16__
+q_oa = cosd (q_i1)
+q_oc = cosd (60.0_16)
+q_ox = cosd (xq * q_i1)
+#endif
+
+call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fcosd")
+call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fcosd")
+call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fcosd")
+call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dcosd")
+call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dcosd")
+call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) cosd")
+#ifdef __GFC_REAL_10__
+call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) lcosd")
+call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) lcosd")
+call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) lcosd")
+#endif
+#ifdef __GFC_REAL_16__
+call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qcosd")
+call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qcosd")
+call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qcosd")
+#endif
+
+! Input -- sin(pi/4)
+f_i1 = 0.707107_4
+d_i1 = 0.707106781186548_8
+#ifdef __GFC_REAL_10__
+l_i1 = 0.707106781186547573_10
+#endif
+#ifdef __GFC_REAL_16__
+q_i1 = 0.707106781186547572737310929369414_16
+#endif
+
+! Expected -- pi/4
+f_oe = r2d_f * asin (f_i1)
+f_oxe = r2d_f * asin (xf * f_i1)
+d_oe = r2d_d * asin (d_i1)
+d_oxe = r2d_d * asin (xd * d_i1)
+#ifdef __GFC_REAL_10__
+l_oe = r2d_l * asin (l_i1)
+l_oxe = r2d_l * asin (xl * l_i1)
+#endif
+#ifdef __GFC_REAL_16__
+q_oe = r2d_q * asin (q_i1)
+q_oxe = r2d_q * asin (xq * q_i1)
+#endif
! Actual
-f_oa = asind (f_i1)
-f_oc = asind (0.79345021_4)
-f_ox = xf* asind (f_i1)
-d_oa = dasind (d_i1)
-d_oc = dasind (0.79345021_8)
-d_ox = xd* asind (d_i1)
-
-call cmpf(f_oe, f_oa, f_tol, "( ) asind")
-call cmpf(f_oe, f_oc, f_tol, "(c) asind")
-call cmpf(f_oxe, f_ox, f_tol, "(x) asind")
-call cmpd(d_oe, d_oa, d_tol, "( ) dasind")
-call cmpd(d_oe, d_oc, d_tol, "(c) dasind")
-call cmpd(d_oxe, d_ox, d_tol, "(x) asind")
+f_oa = asind (f_i1)
+f_oc = asind (0.707107_4)
+f_ox = asind (xf * f_i1)
+d_oa = asind (d_i1)
+d_oc = asind (0.707106781186548_8)
+d_ox = asind (xd * d_i1)
+#ifdef __GFC_REAL_10__
+l_oa = asind (l_i1)
+l_oc = asind (0.707106781186547573_10)
+l_ox = asind (xl * l_i1)
+#endif
+#ifdef __GFC_REAL_16__
+q_oa = asind (q_i1)
+q_oc = asind (0.707106781186547572737310929369414_16)
+q_ox = asind (xq * q_i1)
+#endif
+
+call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fasind")
+call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fasind")
+call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fasind")
+call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dasind")
+call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dasind")
+call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) asind")
+#ifdef __GFC_REAL_10__
+call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) lasind")
+call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) lasind")
+call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) lasind")
+#endif
+#ifdef __GFC_REAL_16__
+call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qasind")
+call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qasind")
+call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qasind")
+#endif
! Input
f_i1 = 60.0_4
d_i1 = 60.0_8
+#ifdef __GFC_REAL_10__
+l_i1 = 60.0_10
+#endif
+#ifdef __GFC_REAL_16__
+q_i1 = 60.0_16
+#endif
! Expected
-f_oe = sin (d2r_f*f_i1)
-f_oxe = xf*sin (d2r_f*f_i1)
-d_oe = sin (d2r_d*d_i1)
-d_oxe = xd*sin (d2r_d*d_i1)
+f_oe = sin (d2rf(f_i1))
+f_oxe = sin (d2rf(xf * f_i1))
+d_oe = sin (d2rd(d_i1))
+d_oxe = sin (d2rd(xd * d_i1))
+#ifdef __GFC_REAL_10__
+l_oe = sin (d2rl(l_i1))
+l_oxe = sin (d2rl(xl * l_i1))
+#endif
+#ifdef __GFC_REAL_16__
+q_oe = sin (d2rq(q_i1))
+q_oxe = sin (d2rq(xq * q_i1))
+#endif
! Actual
-f_oa = sind (f_i1)
-f_oc = sind (60.0_4)
-f_ox = xf* sind (f_i1)
-d_oa = dsind (d_i1)
-d_oc = dsind (60.0_8)
-d_ox = xd* sind (d_i1)
-
-call cmpf(f_oe, f_oa, f_tol, "( ) sind")
-call cmpf(f_oe, f_oc, f_tol, "(c) sind")
-call cmpf(f_oxe, f_ox, f_tol, "(x) sind")
-call cmpd(d_oe, d_oa, d_tol, "( ) dsind")
-call cmpd(d_oe, d_oc, d_tol, "(c) dsind")
-call cmpd(d_oxe, d_ox, d_tol, "(x) sind")
+f_oa = sind (f_i1)
+f_oc = sind (60.0_4)
+f_ox = sind (xf * f_i1)
+d_oa = sind (d_i1)
+d_oc = sind (60.0_8)
+d_ox = sind (xd * d_i1)
+#ifdef __GFC_REAL_10__
+l_oa = sind (l_i1)
+l_oc = sind (60.0_10)
+l_ox = sind (xl * l_i1)
+#endif
+#ifdef __GFC_REAL_16__
+q_oa = sind (q_i1)
+q_oc = sind (60.0_16)
+q_ox = sind (xq * q_i1)
+#endif
+
+call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fsind")
+call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fsind")
+call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fsind")
+call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dsind")
+call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dsind")
+call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) sind")
+#ifdef __GFC_REAL_10__
+call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) lsind")
+call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) lsind")
+call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) lsind")
+#endif
+#ifdef __GFC_REAL_16__
+call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qsind")
+call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qsind")
+call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qsind")
+#endif
! Input
-f_i1 = 2.679676_4
-f_i2 = 1.0_4
-d_i1 = 2.679676_8
-d_i2 = 1.0_8
+f_i1 = 1.0_4
+f_i2 = 2.0_4
+d_i1 = 1.0_8
+d_i2 = 2.0_8
+#ifdef __GFC_REAL_10__
+l_i1 = 1.0_10
+l_i2 = 2.0_10
+#endif
+#ifdef __GFC_REAL_16__
+q_i1 = 1.0_16
+q_i2 = 2.0_16
+#endif
! Expected
-f_oe = r2d_f*atan2 (f_i1, f_i2)
-f_oxe = xf*r2d_f*atan2 (f_i1, f_i2)
-d_oe = r2d_d*atan2 (d_i1, d_i2)
-d_oxe = xd*r2d_d*atan2 (d_i1, d_i2)
+f_oe = r2d_f * atan2 (f_i1, f_i2)
+f_oxe = r2d_f * atan2 (xf * f_i1, f_i2)
+d_oe = r2d_d * atan2 (d_i1, d_i2)
+d_oxe = r2d_d * atan2 (xd * d_i1, d_i2)
+#ifdef __GFC_REAL_10__
+l_oe = r2d_l * atan2 (l_i1, l_i2)
+l_oxe = r2d_l * atan2 (xl * l_i1, l_i2)
+#endif
+#ifdef __GFC_REAL_16__
+q_oe = r2d_q * atan2 (q_i1, q_i2)
+q_oxe = r2d_q * atan2 (xq * q_i1, q_i2)
+#endif
! Actual
-f_oa = atan2d (f_i1, f_i2)
-f_oc = atan2d (2.679676_4, 1.0_4)
-f_ox = xf* atan2d (f_i1, f_i2)
-d_oa = datan2d (d_i1, d_i2)
-d_oc = datan2d (2.679676_8, 1.0_8)
-d_ox = xd* atan2d (d_i1, d_i2)
-
-call cmpf(f_oe, f_oa, f_tol, "( ) atan2d")
-call cmpf(f_oe, f_oc, f_tol, "(c) atan2d")
-call cmpf(f_oxe, f_ox, f_tol, "(x) atan2d")
-call cmpd(d_oe, d_oa, d_tol, "( ) datan2d")
-call cmpd(d_oe, d_oc, d_tol, "(c) datan2d")
-call cmpd(d_oxe, d_ox, d_tol, "(x) atan2d")
+f_oa = atan2d (f_i1, f_i2)
+f_oc = atan2d (1.0_4, 2.0_4)
+f_ox = atan2d (xf * f_i1, f_i2)
+d_oa = atan2d (d_i1, d_i2)
+d_oc = atan2d (1.0_8, 2.0_8)
+d_ox = atan2d (xd * d_i1, d_i2)
+#ifdef __GFC_REAL_10__
+l_oa = atan2d (l_i1, l_i2)
+l_oc = atan2d (1.0_10, 2.0_10)
+l_ox = atan2d (xl * l_i1, l_i2)
+#endif
+#ifdef __GFC_REAL_16__
+q_oa = atan2d (q_i1, q_i2)
+q_oc = atan2d (1.0_16, 2.0_16)
+q_ox = atan2d (xq * q_i1, q_i2)
+#endif
+
+call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fatan2d")
+call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fatan2d")
+call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fatan2d")
+call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) datan2d")
+call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) datan2d")
+call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) atan2d")
+#ifdef __GFC_REAL_10__
+call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) latan2d")
+call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) latan2d")
+call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) latan2d")
+#endif
+#ifdef __GFC_REAL_16__
+call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qatan2d")
+call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qatan2d")
+call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qatan2d")
+#endif
! Input
-f_i1 = 1.5874993_4
-d_i1 = 1.5874993_8
+f_i1 = 1.55741_4
+d_i1 = 1.5574077246549_8
+#ifdef __GFC_REAL_10__
+l_i1 = 1.55740772465490229_10
+#endif
+#ifdef __GFC_REAL_16__
+q_i1 = 1.55740772465490229237161656783428_16
+#endif
! Expected
-f_oe = r2d_f*atan (f_i1)
-f_oxe = xf*r2d_f*atan (f_i1)
-d_oe = r2d_d*atan (d_i1)
-d_oxe = xd*r2d_d*atan (d_i1)
+f_oe = r2d_f * atan (f_i1)
+f_oxe = r2d_f * atan (xf * f_i1)
+d_oe = r2d_d * atan (d_i1)
+d_oxe = r2d_d * atan (xd * d_i1)
+#ifdef __GFC_REAL_10__
+l_oe = r2d_l * atan (l_i1)
+l_oxe = r2d_l * atan (xl * l_i1)
+#endif
+#ifdef __GFC_REAL_16__
+q_oe = r2d_q * atan (q_i1)
+q_oxe = r2d_q * atan (xq * q_i1)
+#endif
! Actual
-f_oa = atand (f_i1)
-f_oc = atand (1.5874993_4)
-f_ox = xf* atand (f_i1)
-d_oa = datand (d_i1)
-d_oc = datand (1.5874993_8)
-d_ox = xd* atand (d_i1)
-
-call cmpf(f_oe, f_oa, f_tol, "( ) atand")
-call cmpf(f_oe, f_oc, f_tol, "(c) atand")
-call cmpf(f_oxe, f_ox, f_tol, "(x) atand")
-call cmpd(d_oe, d_oa, d_tol, "( ) datand")
-call cmpd(d_oe, d_oc, d_tol, "(c) datand")
-call cmpd(d_oxe, d_ox, d_tol, "(x) atand")
+f_oa = atand (f_i1)
+f_oc = atand (1.55741_4)
+f_ox = atand (xf * f_i1)
+d_oa = atand (d_i1)
+d_oc = atand (1.5574077246549_8)
+d_ox = atand (xd * d_i1)
+#ifdef __GFC_REAL_10__
+l_oa = atand (l_i1)
+l_oc = atand (1.55740772465490229_10)
+l_ox = atand (xl * l_i1)
+#endif
+#ifdef __GFC_REAL_16__
+q_oa = atand (q_i1)
+q_oc = atand (1.55740772465490229237161656783428_16)
+q_ox = atand (xq * q_i1)
+#endif
+
+call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fatand")
+call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fatand")
+call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fatand")
+call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) datand")
+call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) datand")
+call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) atand")
+#ifdef __GFC_REAL_10__
+call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) latand")
+call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) latand")
+call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) latand")
+#endif
+#ifdef __GFC_REAL_16__
+call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qatand")
+call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qatand")
+call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qatand")
+#endif
! Input
-f_i1 = 0.6_4
-d_i1 = 0.6_8
+f_i1 = 34.3775_4
+d_i1 = 34.3774677078494_8
+#ifdef __GFC_REAL_10__
+l_i1 = 34.3774677078493909_10
+#endif
+#ifdef __GFC_REAL_16__
+q_i1 = 34.3774677078493908766176900826395_16
+#endif
! Expected
-f_oe = cotan (d2r_f*f_i1)
-f_oxe = xf*cotan (d2r_f*f_i1)
-d_oe = cotan (d2r_d*d_i1)
-d_oxe = xd*cotan (d2r_d*d_i1)
+f_oe = 1.0_4/tan (f_i1)
+f_oxe = 1.0_4/tan (xf * f_i1)
+d_oe = 1.0_8/tan (d_i1)
+d_oxe = 1.0_8/tan (xd * d_i1)
+#ifdef __GFC_REAL_10__
+l_oe = 1.0_10/tan (l_i1)
+l_oxe = 1.0_10/tan (xl * l_i1)
+#endif
+#ifdef __GFC_REAL_16__
+q_oe = 1.0_16/tan (q_i1)
+q_oxe = 1.0_16/tan (xq * q_i1)
+#endif
! Actual
-f_oa = cotand (f_i1)
-f_oc = cotand (0.6_4)
-f_ox = xf* cotand (f_i1)
-d_oa = dcotand (d_i1)
-d_oc = dcotand (0.6_8)
-d_ox = xd* cotand (d_i1)
-
-call cmpf(f_oe, f_oa, f_tol, "( ) cotand")
-call cmpf(f_oe, f_oc, f_tol, "(c) cotand")
-call cmpf(f_oxe, f_ox, f_tol, "(x) cotand")
-call cmpd(d_oe, d_oa, d_tol, "( ) dcotand")
-call cmpd(d_oe, d_oc, d_tol, "(c) dcotand")
-call cmpd(d_oxe, d_ox, d_tol, "(x) cotand")
+f_oa = cotan (f_i1)
+f_oc = cotan (34.3775_4)
+f_ox = cotan (xf * f_i1)
+d_oa = cotan (d_i1)
+d_oc = cotan (34.3774677078494_8)
+d_ox = cotan (xd * d_i1)
+#ifdef __GFC_REAL_10__
+l_oa = cotan (l_i1)
+l_oc = cotan (34.3774677078493909_10)
+l_ox = cotan (xl * l_i1)
+#endif
+#ifdef __GFC_REAL_16__
+q_oa = cotan (q_i1)
+q_oc = cotan (34.3774677078493908766176900826395_16)
+q_ox = cotan (xq * q_i1)
+#endif
+
+call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fcotan")
+call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fcotan")
+call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fcotan")
+call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dcotan")
+call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dcotan")
+call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) cotan")
+#ifdef __GFC_REAL_10__
+call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) lcotan")
+call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) lcotan")
+call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) lcotan")
+#endif
+#ifdef __GFC_REAL_16__
+call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qcotan")
+call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qcotan")
+call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qcotan")
+#endif
! Input
f_i1 = 0.6_4
d_i1 = 0.6_8
+#ifdef __GFC_REAL_10__
+l_i1 = 0.6_10
+#endif
+#ifdef __GFC_REAL_16__
+q_i1 = 0.6_16
+#endif
! Expected
-f_oe = 1.0_4/tan (f_i1)
-f_oxe = xf* 1.0_4/tan (f_i1)
-d_oe = 1.0_8/dtan (d_i1)
-d_oxe = xd*1.0_8/dtan (d_i1)
+f_oe = cotan (d2rf(f_i1))
+f_oxe = cotan (d2rf(xf * f_i1))
+d_oe = cotan (d2rd(d_i1))
+d_oxe = cotan (d2rd(xd * d_i1))
+#ifdef __GFC_REAL_10__
+l_oe = cotan (d2rl(l_i1))
+l_oxe = cotan (d2rl(xl * l_i1))
+#endif
+#ifdef __GFC_REAL_16__
+q_oe = cotan (d2rq(q_i1))
+q_oxe = cotan (d2rq(xq * q_i1))
+#endif
! Actual
-f_oa = cotan (f_i1)
-f_oc = cotan (0.6_4)
-f_ox = xf* cotan (f_i1)
-d_oa = dcotan (d_i1)
-d_oc = dcotan (0.6_8)
-d_ox = xd* cotan (d_i1)
-
-call cmpf(f_oe, f_oa, f_tol, "( ) cotan")
-call cmpf(f_oe, f_oc, f_tol, "(c) cotan")
-call cmpf(f_oxe, f_ox, f_tol, "(x) cotan")
-call cmpd(d_oe, d_oa, d_tol, "( ) dcotan")
-call cmpd(d_oe, d_oc, d_tol, "(c) dcotan")
-call cmpd(d_oxe, d_ox, d_tol, "(x) cotan")
+f_oa = cotand (f_i1)
+f_oc = cotand (0.6_4)
+f_ox = cotand (xf * f_i1)
+d_oa = cotand (d_i1)
+d_oc = cotand (0.6_8)
+d_ox = cotand (xd * d_i1)
+#ifdef __GFC_REAL_10__
+l_oa = cotand (l_i1)
+l_oc = cotand (0.6_10)
+l_ox = cotand (xl * l_i1)
+#endif
+#ifdef __GFC_REAL_16__
+q_oa = cotand (q_i1)
+q_oc = cotand (0.6_16)
+q_ox = cotand (xq * q_i1)
+#endif
+
+call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fcotand")
+call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fcotand")
+call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fcotand")
+call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dcotand")
+call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dcotand")
+call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) cotand")
+#ifdef __GFC_REAL_10__
+call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) lcotand")
+call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) lcotand")
+call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) lcotand")
+#endif
+#ifdef __GFC_REAL_16__
+call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qcotand")
+call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qcotand")
+call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qcotand")
+#endif
! Input
f_i1 = 60.0_4
d_i1 = 60.0_8
+#ifdef __GFC_REAL_10__
+l_i1 = 60.0_10
+#endif
+#ifdef __GFC_REAL_16__
+q_i1 = 60.0_16
+#endif
! Expected
-f_oe = tan (d2r_f*f_i1)
-f_oxe = xf*tan (d2r_f*f_i1)
-d_oe = tan (d2r_d*d_i1)
-d_oxe = xd*tan (d2r_d*d_i1)
+f_oe = tan (d2rf(f_i1))
+f_oxe = tan (d2rf(xf * f_i1))
+d_oe = tan (d2rd(d_i1))
+d_oxe = tan (d2rd(xd * d_i1))
+#ifdef __GFC_REAL_10__
+l_oe = tan (d2rl(l_i1))
+l_oxe = tan (d2rl(xl * l_i1))
+#endif
+#ifdef __GFC_REAL_16__
+q_oe = tan (d2rq(q_i1))
+q_oxe = tan (d2rq(xq * q_i1))
+#endif
! Actual
-f_oa = tand (f_i1)
-f_oc = tand (60.0_4)
-f_ox = xf* tand (f_i1)
-d_oa = dtand (d_i1)
-d_oc = dtand (60.0_8)
-d_ox = xd* tand (d_i1)
-
-call cmpf(f_oe, f_oa, f_tol, "( ) tand")
-call cmpf(f_oe, f_oc, f_tol, "(c) tand")
-call cmpf(f_oxe, f_ox, f_tol, "(x) tand")
-call cmpd(d_oe, d_oa, d_tol, "( ) dtand")
-call cmpd(d_oe, d_oc, d_tol, "(c) dtand")
-call cmpd(d_oxe, d_ox, d_tol, "(x) tand")
+f_oa = tand (f_i1)
+f_oc = tand (60.0_4)
+f_ox = tand (xf * f_i1)
+d_oa = tand (d_i1)
+d_oc = tand (60.0_8)
+d_ox = tand (xd * d_i1)
+#ifdef __GFC_REAL_10__
+l_oa = tand (l_i1)
+l_oc = tand (60.0_10)
+l_ox = tand (xl * l_i1)
+#endif
+#ifdef __GFC_REAL_16__
+q_oa = tand (q_i1)
+q_oc = tand (60.0_16)
+q_ox = tand (xq * q_i1)
+#endif
+
+call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) ftand")
+call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) ftand")
+call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) ftand")
+call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dtand")
+call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dtand")
+call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) dtand")
+#ifdef __GFC_REAL_10__
+call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) ltand")
+call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) ltand")
+call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) ltand")
+#endif
+#ifdef __GFC_REAL_16__
+call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qtand")
+call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qtand")
+call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qtand")
+#endif
end
--- /dev/null
+! { dg-options "-fdec-math" }
+! { dg-do compile }
+!
+! Ensure extra math intrinsics formerly offered by -fdec-math
+! are still available with -fdec-math.
+!
+
+print *, sind(0.0)
+print *, cosd(0.0)
+print *, tand(0.0)
+print *, cotan(1.0)
+print *, cotand(90.0)
+
+end
--- /dev/null
+! { dg-options "-std=gnu" }
+! { dg-do compile }
+
+! Former ICE when simplifying asind, plus wrong function name in error message
+real, parameter :: d = asind(1.1) ! { dg-error "Argument of ASIND at.*must be between -1 and 1" }
+print *, d
+
+end
--- /dev/null
+! { dg-options "-std=gnu" }
+! { dg-do compile }
+
+! Former ICE when simplifying complex cotan
+complex, parameter :: z = cotan((1., 1.))
+print *, z
+
+end
--- /dev/null
+! { dg-options "-cpp -std=gnu" }
+! { dg-do run }
+!
+! Test values for degree-valued trigonometric intrinsics.
+!
+
+module dec_math_5
+
+
+ ! Use the highest precision available.
+ ! Note however that if both __GFC_REAL_10__ and __GFC_REAL_16__ are defined,
+ ! the size of real(16) is actually that of REAL(10) (80 bits) in which case
+ ! we should not over-estimate the precision available, or the test will fail.
+#if defined(__GFC_REAL_10__)
+ integer, parameter :: real_kind = 10
+ real(real_kind), parameter :: eps = 5e-11_10
+
+ real(real_kind), parameter :: pi_2 = 1.57079632679489656_10
+ real(real_kind), parameter :: pi = 3.14159265358979312_10
+ real(real_kind), parameter :: tau = 6.28318530717958623_10
+
+#elif defined(__GFC_REAL_16__)
+ integer, parameter :: real_kind = 16
+ real(real_kind), parameter :: eps = 5e-16_16
+
+ real(real_kind), parameter :: pi_2 = 1.5707963267948966192313216916397514_16
+ real(real_kind), parameter :: pi = 3.1415926535897932384626433832795_16
+ real(real_kind), parameter :: tau = 6.28318530717958647692528676655900559_16
+
+#else
+ integer, parameter :: real_kind = 8
+ real(real_kind), parameter :: eps = 5e-10_8
+
+ real(real_kind), parameter :: pi_2 = 1.57079632679490_8
+ real(real_kind), parameter :: pi = 3.14159265358979_8
+ real(real_kind), parameter :: tau = 6.28318530717959_8
+
+#endif
+
+ ! Important angles in canonical form.
+
+ integer, parameter :: nangle = 16
+
+ real(real_kind), dimension(nangle), parameter :: degrees = (/ &
+ 0, & ! 180 * 0
+ 30, & ! 180 * 1/6
+ 45, & ! 180 * 1/4
+ 60, & ! 180 * 1/3
+ 90, & ! 180 * 1/2
+ 120, & ! 180 * 2/3
+ 135, & ! 180 * 3/4
+ 150, & ! 180 * 5/6
+ 180, & ! 180
+ 210, & ! 180 * 7/6
+ 225, & ! 180 * 5/4
+ 240, & ! 180 * 4/3
+ 270, & ! 180 * 3/2
+ 300, & ! 180 * 5/3
+ 315, & ! 180 * 7/4
+ 330 & ! 180 * 11/6
+ /)
+
+ real(real_kind), dimension(nangle), parameter :: radians = (/ &
+#ifdef __GFC_REAL_10__
+ 0.000000000000000000_10, & ! pi * 0
+ 0.523598775598298873_10, & ! pi * 1/6
+ 0.785398163397448310_10, & ! pi * 1/4
+ 1.047197551196597750_10, & ! pi * 1/3
+ 1.570796326794896620_10, & ! pi * 1/2
+ 2.094395102393195490_10, & ! pi * 2/3
+ 2.356194490192344930_10, & ! pi * 3/4
+ 2.617993877991494370_10, & ! pi * 5/6
+ 3.141592653589793240_10, & ! pi
+ 3.665191429188092110_10, & ! pi * 7/6
+ 3.926990816987241550_10, & ! pi * 5/4
+ 4.188790204786390980_10, & ! pi * 4/3
+ 4.712388980384689860_10, & ! pi * 3/2
+ 5.235987755982988730_10, & ! pi * 5/3
+ 5.497787143782138170_10, & ! pi * 7/4
+ 5.759586531581287600_10 & ! pi * 11/6
+
+#elif defined(__GFC_REAL_16__)
+ 0.000000000000000000000000000000000_16, & ! pi * 0
+ 0.523598775598298873077107230546584_16, & ! pi * 1/6
+ 0.785398163397448309615660845819876_16, & ! pi * 1/4
+ 1.047197551196597746154214461093170_16, & ! pi * 1/3
+ 1.570796326794896619231321691639750_16, & ! pi * 1/2
+ 2.094395102393195492308428922186330_16, & ! pi * 2/3
+ 2.356194490192344928846982537459630_16, & ! pi * 3/4
+ 2.617993877991494365385536152732920_16, & ! pi * 5/6
+ 3.141592653589793238462643383279500_16, & ! pi
+ 3.665191429188092111539750613826090_16, & ! pi * 7/6
+ 3.926990816987241548078304229099380_16, & ! pi * 5/4
+ 4.188790204786390984616857844372670_16, & ! pi * 4/3
+ 4.712388980384689857693965074919250_16, & ! pi * 3/2
+ 5.235987755982988730771072305465840_16, & ! pi * 5/3
+ 5.497787143782138167309625920739130_16, & ! pi * 7/4
+ 5.759586531581287603848179536012420_16 & ! pi * 11/6
+
+#else
+ 0.000000000000000_8, & ! pi * 0
+ 0.523598775598299_8, & ! pi * 1/6
+ 0.785398163397448_8, & ! pi * 1/4
+ 1.047197551196600_8, & ! pi * 1/3
+ 1.570796326794900_8, & ! pi * 1/2
+ 2.094395102393200_8, & ! pi * 2/3
+ 2.356194490192340_8, & ! pi * 3/4
+ 2.617993877991490_8, & ! pi * 5/6
+ 3.141592653589790_8, & ! pi
+ 3.665191429188090_8, & ! pi * 7/6
+ 3.926990816987240_8, & ! pi * 5/4
+ 4.188790204786390_8, & ! pi * 4/3
+ 4.712388980384690_8, & ! pi * 3/2
+ 5.235987755982990_8, & ! pi * 5/3
+ 5.497787143782140_8, & ! pi * 7/4
+ 5.759586531581290_8 & ! pi * 11/6
+#endif
+ /)
+
+ ! sind, cosd, tand, cotand
+
+ ! Ensure precision degrades minimally for large values.
+ integer, parameter :: nphase = 5
+
+ integer, dimension(nphase), parameter :: phases = (/ &
+ 0, 1, 5, 100, 10000 &
+ /)
+
+contains
+
+ subroutine compare(strl, xl_in, xl_out, strr, xr_in, xr_out, eps)
+ use ieee_arithmetic
+ implicit none
+ character(*), intent(in) :: strl, strr
+ real(real_kind), intent(in) :: xl_in, xl_out, xr_in, xr_out, eps
+
+ if ((ieee_is_nan(xl_out) .neqv. ieee_is_nan(xr_out)) &
+ .or. (ieee_is_finite(xl_out) .neqv. ieee_is_finite(xr_out)) &
+ .or. (abs(xl_out - xr_out) .gt. eps)) then
+ write (*, 100) strl, "(", xl_in, "): ", xl_out
+ write (*, 100) strr, "(", xr_in, "): ", xr_out
+
+ if ((ieee_is_nan(xl_out) .eqv. ieee_is_nan(xr_out)) &
+ .and. ieee_is_finite(xl_out) .and. ieee_is_finite(xr_out)) then
+ write (*, 300) "|xl - xr| = ", abs(xl_out - xr_out)
+ write (*, 300) " > eps = ", eps
+ endif
+
+ call abort()
+ endif
+
+#ifdef __GFC_REAL_16__
+ 100 format((A8,A,F34.30,A,F34.30,F34.30))
+ 200 format((A12,F34.30))
+ !500 format((A8,A,G34.29,A,G34.29,G34.29))
+#elif defined(__GFC_REAL_10__)
+ 100 format((A8,A,F21.17,A,F21.17,F21.17))
+ 200 format((A12,F21.17))
+ !500 format((A8,A,G21.16,A,G21.16,G21.16))
+#else
+ 100 format((A8,A,F18.14,A,F18.14,F18.14))
+ 200 format((A12,F18.14))
+ !500 format((A8,A,G18.13,A,G18.13,G18.13))
+#endif
+ 300 format((A12,G8.2))
+ endsubroutine
+
+endmodule
+
+use dec_math_5
+use ieee_arithmetic
+implicit none
+
+integer :: phase_index, angle_index, phase
+real(real_kind) :: deg_in, deg_out, deg_out2, rad_in, rad_out
+
+! Try every value in degrees, and make sure they are correct compared to the
+! corresponding radian function.
+
+do phase_index = 1, size(phases)
+ phase = phases(phase_index)
+
+ do angle_index = 1, size(degrees)
+ ! eqv to degrees(angle_index) modulo 360
+ deg_in = degrees(angle_index) + phase * 360
+ rad_in = radians(angle_index) + phase * tau
+
+ ! sind vs. sin
+ deg_out = sind(deg_in)
+ rad_out = sin(rad_in)
+ call compare("sind", deg_in, deg_out, "sin", rad_in, rad_out, eps)
+
+ ! cosd vs. cos
+ deg_out = cosd(deg_in)
+ rad_out = cos(rad_in)
+ call compare("cosd", deg_in, deg_out, "cos", rad_in, rad_out, eps)
+
+ ! tand vs. tan
+ deg_out = tand(deg_in)
+ rad_out = tan(rad_in)
+ if ( ieee_is_finite(deg_out) ) then
+ call compare("tand", deg_in, deg_out, "tan", rad_in, rad_out, eps)
+ endif
+
+ ! cotand vs. cotan
+ deg_out = cotand(deg_in)
+ rad_out = cotan(rad_in)
+
+ ! Skip comparing infinity, because cotan does not return infinity
+ if ( ieee_is_finite(deg_out) ) then
+ call compare("cotand", deg_in, deg_out, "cotan", rad_in, rad_out, eps)
+
+ ! cotand vs. tand
+ deg_out = cotand(deg_in)
+ deg_out2 = -tand(deg_in + 90)
+
+ call compare("cotand", deg_in, deg_out, "-tand+90", deg_in, deg_out2, eps)
+ deg_out2 = 1 / tand(deg_in)
+ call compare("cotand", deg_in, deg_out, "1/tand", deg_in, deg_out2, eps)
+ endif
+
+ enddo
+
+
+enddo
+
+
+end
+2020-04-01 Fritz Reese <foreese@gcc.gnu.org>
+ Steven G. Kargl <kargl@gcc.gnu.org>
+
+ PR fortran/93871
+ * Makefile.am, Makefile.in: New make rule for intrinsics/trigd.c.
+ * gfortran.map: New routines for {sind, cosd, tand}X{r4, r8, r10, r16}.
+ * intrinsics/trigd.c, intrinsics/trigd_lib.inc, intrinsics/trigd.inc:
+ New files. Defines native degree-valued trig functions.
+
2020-02-18 Thomas Koenig <tkoenig@gcc.gnu.org>
PR fortran/93599
intrinsics/reshape_packed.c \
intrinsics/selected_int_kind.f90 \
intrinsics/selected_real_kind.f90 \
+intrinsics/trigd.c \
intrinsics/unpack_generic.c \
runtime/in_pack_generic.c \
runtime/in_unpack_generic.c
pack_generic.lo selected_char_kind.lo size.lo \
spread_generic.lo string_intrinsics.lo rand.lo random.lo \
reshape_generic.lo reshape_packed.lo selected_int_kind.lo \
- selected_real_kind.lo unpack_generic.lo in_pack_generic.lo \
- in_unpack_generic.lo $(am__objects_56) $(am__objects_57)
+ selected_real_kind.lo trigd.lo unpack_generic.lo \
+ in_pack_generic.lo in_unpack_generic.lo $(am__objects_56) \
+ $(am__objects_57)
@IEEE_SUPPORT_TRUE@am__objects_59 = ieee_arithmetic.lo \
@IEEE_SUPPORT_TRUE@ ieee_exceptions.lo ieee_features.lo
am__objects_60 =
intrinsics/rand.c intrinsics/random.c \
intrinsics/reshape_generic.c intrinsics/reshape_packed.c \
intrinsics/selected_int_kind.f90 \
- intrinsics/selected_real_kind.f90 intrinsics/unpack_generic.c \
- runtime/in_pack_generic.c runtime/in_unpack_generic.c \
- $(am__append_3) $(am__append_4)
+ intrinsics/selected_real_kind.f90 intrinsics/trigd.c \
+ intrinsics/unpack_generic.c runtime/in_pack_generic.c \
+ runtime/in_unpack_generic.c $(am__append_3) $(am__append_4)
@IEEE_SUPPORT_FALSE@gfor_ieee_src =
@IEEE_SUPPORT_TRUE@gfor_ieee_src = \
@IEEE_SUPPORT_TRUE@ieee/ieee_arithmetic.F90 \
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/time.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/transfer.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/transfer128.Plo@am__quote@
+@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/trigd.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/umask.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unit.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unix.Plo@am__quote@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o reshape_packed.lo `test -f 'intrinsics/reshape_packed.c' || echo '$(srcdir)/'`intrinsics/reshape_packed.c
+trigd.lo: intrinsics/trigd.c
+@am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT trigd.lo -MD -MP -MF $(DEPDIR)/trigd.Tpo -c -o trigd.lo `test -f 'intrinsics/trigd.c' || echo '$(srcdir)/'`intrinsics/trigd.c
+@am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/trigd.Tpo $(DEPDIR)/trigd.Plo
+@AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='intrinsics/trigd.c' object='trigd.lo' libtool=yes @AMDEPBACKSLASH@
+@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
+@am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o trigd.lo `test -f 'intrinsics/trigd.c' || echo '$(srcdir)/'`intrinsics/trigd.c
+
unpack_generic.lo: intrinsics/unpack_generic.c
@am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_generic.lo -MD -MP -MF $(DEPDIR)/unpack_generic.Tpo -c -o unpack_generic.lo `test -f 'intrinsics/unpack_generic.c' || echo '$(srcdir)/'`intrinsics/unpack_generic.c
@am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/unpack_generic.Tpo $(DEPDIR)/unpack_generic.Plo
GFORTRAN_10 {
global:
_gfortran_os_error_at;
+ _gfortran_sind_r4;
+ _gfortran_sind_r8;
+ _gfortran_sind_r10;
+ _gfortran_sind_r16;
+ _gfortran_cosd_r4;
+ _gfortran_cosd_r8;
+ _gfortran_cosd_r10;
+ _gfortran_cosd_r16;
+ _gfortran_tand_r4;
+ _gfortran_tand_r8;
+ _gfortran_tand_r10;
+ _gfortran_tand_r16;
} GFORTRAN_9.2;
--- /dev/null
+/* Implementation of the degree trignometric functions COSD, SIND, TAND.
+ Copyright (C) 2020 Free Software Foundation, Inc.
+ Contributed by Steven G. Kargl <kargl@gcc.gnu.org>
+
+This file is part of the GNU Fortran runtime library (libgfortran).
+
+Libgfortran is free software; you can redistribute it and/or
+modify it under the terms of the GNU General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+Libgfortran is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+#include "libgfortran.h"
+
+#include <math.h>
+
+
+/*
+ For real x, let {x}_P or x_P be the closest representible number in the
+ floating point representation which uses P binary bits of fractional
+ precision (with IEEE rounding semantics).
+
+ Similarly, let f_P(x) be shorthand for {f(x)}_P.
+
+ Let ulp_P(x) be the unit of least precision for x: in other words the
+ maximal value of |a_P - b_P| where a_P <= x <= b_P and a_P != b_P.
+
+ Let x ~= y <-> | x - y | < ulp_P(x - y).
+
+ Let deg(x) be the value of x radians in degrees.
+
+ Values for each precision P were selected as follows.
+
+
+ COSD_SMALL = 2**{-N} such that for all x <= COSD_SMALL:
+
+ * cos(deg(x)) ~= 1, or equivalently:
+
+ | 1 - cos(deg(x)) | < ulp_P(1).
+
+ Unfortunately for SIND (and therefore TAND) a similar relation is only
+ possible for REAL(4) and REAL(8). With REAL(10) and REAL(16), enough
+ precision is available such that sin_P(x) != x_P for some x less than any
+ value. (There are values where this equality holds, but the distance has
+ inflection points.)
+
+ For REAL(4) and REAL(8), we can select SIND_SMALL such that:
+
+ * sin(deg(x)) ~= deg(x), or equivalently:
+
+ | deg(x) - sin(deg(x)) | < ulp_P(deg(x)).
+
+ */
+
+/* Build _gfortran_sind_r4, _gfortran_cosd_r4, and _gfortran_tand_r4 */
+
+#define FTYPE GFC_REAL_4
+#define SIND sind_r4
+#define COSD cosd_r4
+#define TAND tand_r4
+#define SUFFIX(x) x ## f
+
+#define TINY 0x1.p-100f /* ~= 7.889e-31 */
+#define COSD_SMALL 0x1.p-7f /* = 7.8125e-3 */
+#define SIND_SMALL 0x1.p-5f /* = 3.125e-2 */
+#define COSD30 8.66025388e-01f
+
+#define PIO180H 1.74560547e-02f /* high 12 bits. */
+#define PIO180L -2.76216747e-06f /* Next 24 bits. */
+
+#include "trigd_lib.inc"
+
+#undef FTYPE
+#undef TINY
+#undef COSD_SMALL
+#undef SIND_SMALL
+#undef COSD30
+#undef PIO180H
+#undef PIO180L
+#undef SIND
+#undef COSD
+#undef TAND
+#undef SUFFIX
+
+
+/* Build _gfortran_sind_r8, _gfortran_cosd_r8, and _gfortran_tand_r8. */
+
+#define FTYPE GFC_REAL_8
+#define SIND sind_r8
+#define COSD cosd_r8
+#define TAND tand_r8
+#define SUFFIX(x) x
+
+#define TINY 0x1.p-1000 /* ~= 9.33e-302 (min exp -1074) */
+#define COSD_SMALL 0x1.p-21 /* ~= 4.768e-7 */
+#define SIND_SMALL 0x1.p-19 /* ~= 9.537e-7 */
+#define COSD30 8.6602540378443860e-01
+
+#define PIO180H 1.7453283071517944e-02 /* high 21 bits. */
+#define PIO180L 9.4484253514332993e-09 /* Next 53 bits. */
+
+#include "trigd_lib.inc"
+
+#undef FTYPE
+#undef TINY
+#undef COSD_SMALL
+#undef SIND_SMALL
+#undef COSD30
+#undef PIO180H
+#undef PIO180L
+#undef SIND
+#undef COSD
+#undef TAND
+#undef SUFFIX
+
+
+/* Build _gfortran_sind_r10, _gfortran_cosd_r10, and _gfortran_tand_r10. */
+
+#ifdef HAVE_GFC_REAL_10
+
+#define FTYPE GFC_REAL_10
+#define SIND sind_r10
+#define COSD cosd_r10
+#define TAND tand_r10
+#define SUFFIX(x) x ## l /* L */
+
+#define TINY 0x1.p-16400L /* ~= 1.28e-4937 (min exp -16494) */
+#define COSD_SMALL 0x1.p-26L /* ~= 1.490e-8 */
+#undef SIND_SMALL /* not precise */
+#define COSD30 8.66025403784438646787e-01L
+
+#define PIO180H 1.74532925229868851602e-02L /* high 32 bits */
+#define PIO180L -3.04358939097084072823e-12L /* Next 64 bits */
+
+#include "trigd_lib.inc"
+#undef FTYPE
+#undef TINY
+#undef COSD_SMALL
+#undef SIND_SMALL
+#undef COSD30
+#undef PIO180H
+#undef PIO180L
+#undef SIND
+#undef COSD
+#undef TAND
+#undef SUFFIX
+#endif /* HAVE_GFC_REAL_10 */
+
+
+/* Build _gfortran_sind_r16, _gfortran_cosd_r16, and _gfortran_tand_r16. */
+
+#ifdef HAVE_GFC_REAL_16
+
+#define FTYPE GFC_REAL_16
+#define SIND sind_r16
+#define COSD cosd_r16
+#define TAND tand_r16
+
+#ifdef GFC_REAL_16_IS_FLOAT128 /* libquadmath. */
+#define SUFFIX(x) x ## q
+#else
+#define SUFFIX(x) x ## l
+#endif /* GFC_REAL_16_IS_FLOAT128 */
+
+#define TINY SUFFIX(0x1.p-16400) /* ~= 1.28e-4937 */
+#define COSD_SMALL SUFFIX(0x1.p-51) /* ~= 4.441e-16 */
+#undef SIND_SMALL /* not precise */
+#define COSD30 SUFFIX(8.66025403784438646763723170752936183e-01)
+#define PIO180H SUFFIX(1.74532925199433197605003442731685936e-02)
+#define PIO180L SUFFIX(-2.39912634365882824665106671063098954e-17)
+
+#include "trigd_lib.inc"
+
+#undef FTYPE
+#undef COSD_SMALL
+#undef SIND_SMALL
+#undef COSD30
+#undef PIO180H
+#undef PIO180L
+#undef PIO180
+#undef D2R
+#undef CPYSGN
+#undef FABS
+#undef FMOD
+#undef SIN
+#undef COS
+#undef TAN
+#undef SIND
+#undef COSD
+#undef TAND
+#undef SUFFIX
+#endif /* HAVE_GFC_REAL_16 */
--- /dev/null
+/* Implementation of the degree trignometric functions COSD, SIND, TAND.
+ Copyright (C) 2020 Free Software Foundation, Inc.
+ Contributed by Steven G. Kargl <kargl@gcc.gnu.org>
+ and Fritz Reese <foreese@gcc.gnu.org>
+
+This file is part of the GNU Fortran runtime library (libgfortran).
+
+Libgfortran is free software; you can redistribute it and/or
+modify it under the terms of the GNU General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+Libgfortran is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+
+/*
+
+This file is included from both the FE and the runtime library code.
+Operations are generalized using GMP/MPFR functions. When included from
+libgfortran, these should be overridden using macros which will use native
+operations conforming to the same API. From the FE, the GMP/MPFR functions can
+be used as-is.
+
+The following macros and GMP/FMPR functions are used and must be defined.
+
+
+Types and names:
+
+FTYPE
+ Type name for the real-valued parameter.
+ Variables of this type are constructed/destroyed using mpfr_init()
+ and mpfr_clear.
+
+RETTYPE
+ Return type of the functions.
+
+RETURN(x)
+ Insert code to return a value.
+ The parameter x is the result variable, which was also the input parameter.
+
+ITYPE
+ Type name for integer types.
+
+SIND, COSD, TRIGD
+ Names for the degree-valued trig functions defined by this module.
+
+
+Literal values:
+
+TINY [optional]
+ Value subtracted from 1 to cause rase INEXACT for COSD(x)
+ for x << 1. If not set, COSD(x) for x <= COSD_SMALL simply returns 1.
+
+COSD_SMALL [optional]
+ Value such that x <= COSD_SMALL implies COSD(x) = 1 to within the
+ precision of FTYPE. If not set, this condition is not checked.
+
+SIND_SMALL [optional]
+ Value such that x <= SIND_SMALL implies SIND(x) = D2R(x) to within
+ the precision of FTYPE. If not set, this condition is not checked.
+
+COSD30
+ Value of SIND(60) and COSD(30).
+
+*/
+
+
+/* Compute sind(x) = sin(x * pi / 180). */
+
+RETTYPE
+SIND (FTYPE x)
+{
+ if (ISFINITE (x))
+ {
+ FTYPE s, one;
+
+ /* sin(-x) = - sin(x). */
+ mpfr_init (s);
+ mpfr_init_set_ui (one, 1, GFC_RND_MODE);
+ mpfr_copysign (s, one, x, GFC_RND_MODE);
+ mpfr_clear (one);
+
+#ifdef SIND_SMALL
+ /* sin(x) = x as x -> 0; but only for some precisions. */
+ FTYPE ax;
+ mpfr_init (ax);
+ mpfr_abs (ax, x, GFC_RND_MODE);
+ if (mpfr_cmp_ld (ax, SIND_SMALL) < 0)
+ {
+ D2R (x);
+ mpfr_clear (ax);
+ return x;
+ }
+
+ mpfr_swap (x, ax);
+ mpfr_clear (ax);
+
+#else
+ mpfr_abs (x, x, GFC_RND_MODE);
+#endif /* SIND_SMALL */
+
+ /* Reduce angle to x in [0,360]. */
+ FTYPE period;
+ mpfr_init_set_ui (period, 360, GFC_RND_MODE);
+ mpfr_fmod (x, x, period, GFC_RND_MODE);
+ mpfr_clear (period);
+
+ /* Special cases with exact results. */
+ ITYPE n;
+ mpz_init (n);
+ if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 30))
+ {
+ /* Flip sign for odd n*pi (x is % 360 so this is only for 180).
+ This respects sgn(sin(x)) = sgn(d/dx sin(x)) = sgn(cos(x)). */
+ if (mpz_divisible_ui_p (n, 180))
+ {
+ mpfr_set_ui (x, 0, GFC_RND_MODE);
+ if (mpz_cmp_ui (n, 180) == 0)
+ mpfr_neg (s, s, GFC_RND_MODE);
+ }
+ else if (mpz_divisible_ui_p (n, 90))
+ mpfr_set_si (x, (mpz_cmp_ui (n, 90) == 0 ? 1 : -1), GFC_RND_MODE);
+ else if (mpz_divisible_ui_p (n, 60))
+ {
+ SET_COSD30 (x);
+ if (mpz_cmp_ui (n, 180) >= 0)
+ mpfr_neg (x, x, GFC_RND_MODE);
+ }
+ else
+ mpfr_set_ld (x, (mpz_cmp_ui (n, 180) < 0 ? 0.5L : -0.5L),
+ GFC_RND_MODE);
+ }
+
+ /* Fold [0,360] into the range [0,45], and compute either SIN() or
+ COS() depending on symmetry of shifting into the [0,45] range. */
+ else
+ {
+ bool fold_cos = false;
+ if (mpfr_cmp_ui (x, 180) <= 0)
+ {
+ if (mpfr_cmp_ui (x, 90) <= 0)
+ {
+ if (mpfr_cmp_ui (x, 45) > 0)
+ {
+ /* x = COS(D2R(90 - x)) */
+ mpfr_ui_sub (x, 90, x, GFC_RND_MODE);
+ fold_cos = true;
+ }
+ }
+ else
+ {
+ if (mpfr_cmp_ui (x, 135) <= 0)
+ {
+ mpfr_sub_ui (x, x, 90, GFC_RND_MODE);
+ fold_cos = true;
+ }
+ else
+ mpfr_ui_sub (x, 180, x, GFC_RND_MODE);
+ }
+ }
+
+ else if (mpfr_cmp_ui (x, 270) <= 0)
+ {
+ if (mpfr_cmp_ui (x, 225) <= 0)
+ mpfr_sub_ui (x, x, 180, GFC_RND_MODE);
+ else
+ {
+ mpfr_ui_sub (x, 270, x, GFC_RND_MODE);
+ fold_cos = true;
+ }
+ mpfr_neg (s, s, GFC_RND_MODE);
+ }
+
+ else
+ {
+ if (mpfr_cmp_ui (x, 315) <= 0)
+ {
+ mpfr_sub_ui (x, x, 270, GFC_RND_MODE);
+ fold_cos = true;
+ }
+ else
+ mpfr_ui_sub (x, 360, x, GFC_RND_MODE);
+ mpfr_neg (s, s, GFC_RND_MODE);
+ }
+
+ D2R (x);
+
+ if (fold_cos)
+ mpfr_cos (x, x, GFC_RND_MODE);
+ else
+ mpfr_sin (x, x, GFC_RND_MODE);
+ }
+
+ mpfr_mul (x, x, s, GFC_RND_MODE);
+ mpz_clear (n);
+ mpfr_clear (s);
+ }
+
+ /* Return NaN for +-Inf and NaN and raise exception. */
+ else
+ mpfr_sub (x, x, x, GFC_RND_MODE);
+
+ RETURN (x);
+}
+
+
+/* Compute cosd(x) = cos(x * pi / 180). */
+
+RETTYPE
+COSD (FTYPE x)
+{
+#if defined(TINY) && defined(COSD_SMALL)
+ static const volatile FTYPE tiny = TINY;
+#endif
+
+ if (ISFINITE (x))
+ {
+#ifdef COSD_SMALL
+ FTYPE ax;
+ mpfr_init (ax);
+
+ mpfr_abs (ax, x, GFC_RND_MODE);
+ /* No spurious underflows!. In radians, cos(x) = 1-x*x/2 as x -> 0. */
+ if (mpfr_cmp_ld (ax, COSD_SMALL) <= 0)
+ {
+ mpfr_set_ui (x, 1, GFC_RND_MODE);
+#ifdef TINY
+ /* Cause INEXACT. */
+ if (!mpfr_zero_p (ax))
+ mpfr_sub_d (x, x, tiny, GFC_RND_MODE);
+#endif
+
+ mpfr_clear (ax);
+ return x;
+ }
+
+ mpfr_swap (x, ax);
+ mpfr_clear (ax);
+#else
+ mpfr_abs (x, x, GFC_RND_MODE);
+#endif /* COSD_SMALL */
+
+ /* Reduce angle to ax in [0,360]. */
+ FTYPE period;
+ mpfr_init_set_ui (period, 360, GFC_RND_MODE);
+ mpfr_fmod (x, x, period, GFC_RND_MODE);
+ mpfr_clear (period);
+
+ /* Special cases with exact results.
+ Return negative zero for cosd(270) for consistency with libm cos(). */
+ ITYPE n;
+ mpz_init (n);
+ if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 30))
+ {
+ if (mpz_divisible_ui_p (n, 180))
+ mpfr_set_si (x, (mpz_cmp_ui (n, 180) == 0 ? -1 : 1),
+ GFC_RND_MODE);
+ else if (mpz_divisible_ui_p (n, 90))
+ mpfr_set_zero (x, 0);
+ else if (mpz_divisible_ui_p (n, 60))
+ {
+ mpfr_set_ld (x, 0.5, GFC_RND_MODE);
+ if (mpz_cmp_ui (n, 60) != 0 && mpz_cmp_ui (n, 300) != 0)
+ mpfr_neg (x, x, GFC_RND_MODE);
+ }
+ else
+ {
+ SET_COSD30 (x);
+ if (mpz_cmp_ui (n, 30) != 0 && mpz_cmp_ui (n, 330) != 0)
+ mpfr_neg (x, x, GFC_RND_MODE);
+ }
+ }
+
+ /* Fold [0,360] into the range [0,45], and compute either SIN() or
+ COS() depending on symmetry of shifting into the [0,45] range. */
+ else
+ {
+ bool neg = false;
+ bool fold_sin = false;
+ if (mpfr_cmp_ui (x, 180) <= 0)
+ {
+ if (mpfr_cmp_ui (x, 90) <= 0)
+ {
+ if (mpfr_cmp_ui (x, 45) > 0)
+ {
+ mpfr_ui_sub (x, 90, x, GFC_RND_MODE);
+ fold_sin = true;
+ }
+ }
+ else
+ {
+ if (mpfr_cmp_ui (x, 135) <= 0)
+ {
+ mpfr_sub_ui (x, x, 90, GFC_RND_MODE);
+ fold_sin = true;
+ }
+ else
+ mpfr_ui_sub (x, 180, x, GFC_RND_MODE);
+ neg = true;
+ }
+ }
+
+ else if (mpfr_cmp_ui (x, 270) <= 0)
+ {
+ if (mpfr_cmp_ui (x, 225) <= 0)
+ mpfr_sub_ui (x, x, 180, GFC_RND_MODE);
+ else
+ {
+ mpfr_ui_sub (x, 270, x, GFC_RND_MODE);
+ fold_sin = true;
+ }
+ neg = true;
+ }
+
+ else
+ {
+ if (mpfr_cmp_ui (x, 315) <= 0)
+ {
+ mpfr_sub_ui (x, x, 270, GFC_RND_MODE);
+ fold_sin = true;
+ }
+ else
+ mpfr_ui_sub (x, 360, x, GFC_RND_MODE);
+ }
+
+ D2R (x);
+
+ if (fold_sin)
+ mpfr_sin (x, x, GFC_RND_MODE);
+ else
+ mpfr_cos (x, x, GFC_RND_MODE);
+
+ if (neg)
+ mpfr_neg (x, x, GFC_RND_MODE);
+ }
+
+ mpz_clear (n);
+ }
+
+ /* Return NaN for +-Inf and NaN and raise exception. */
+ else
+ mpfr_sub (x, x, x, GFC_RND_MODE);
+
+ RETURN (x);
+}
+
+
+/* Compute tand(x) = tan(x * pi / 180). */
+
+RETTYPE
+TAND (FTYPE x)
+{
+ if (ISFINITE (x))
+ {
+ FTYPE s, one;
+
+ /* tan(-x) = - tan(x). */
+ mpfr_init (s);
+ mpfr_init_set_ui (one, 1, GFC_RND_MODE);
+ mpfr_copysign (s, one, x, GFC_RND_MODE);
+ mpfr_clear (one);
+
+#ifdef SIND_SMALL
+ /* tan(x) = x as x -> 0; but only for some precisions. */
+ FTYPE ax;
+ mpfr_init (ax);
+ mpfr_abs (ax, x, GFC_RND_MODE);
+ if (mpfr_cmp_ld (ax, SIND_SMALL) < 0)
+ {
+ D2R (x);
+ mpfr_clear (ax);
+ return x;
+ }
+
+ mpfr_swap (x, ax);
+ mpfr_clear (ax);
+
+#else
+ mpfr_abs (x, x, GFC_RND_MODE);
+#endif /* SIND_SMALL */
+
+ /* Reduce angle to x in [0,360]. */
+ FTYPE period;
+ mpfr_init_set_ui (period, 360, GFC_RND_MODE);
+ mpfr_fmod (x, x, period, GFC_RND_MODE);
+ mpfr_clear (period);
+
+ /* Special cases with exact results. */
+ ITYPE n;
+ mpz_init (n);
+ if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 45))
+ {
+ if (mpz_divisible_ui_p (n, 180))
+ mpfr_set_zero (x, 0);
+
+ /* Though mathematically NaN is more appropriate for tan(n*90),
+ returning +/-Inf offers the advantage that 1/tan(n*90) returns 0,
+ which is mathematically sound. In fact we rely on this behavior
+ to implement COTAND(x) = 1 / TAND(x).
+ */
+ else if (mpz_divisible_ui_p (n, 90))
+ mpfr_set_inf (x, mpz_cmp_ui (n, 90) == 0 ? 0 : 1);
+
+ else
+ {
+ mpfr_set_ui (x, 1, GFC_RND_MODE);
+ if (mpz_cmp_ui (n, 45) != 0 && mpz_cmp_ui (n, 225) != 0)
+ mpfr_neg (x, x, GFC_RND_MODE);
+ }
+ }
+
+ else
+ {
+ /* Fold [0,360] into the range [0,90], and compute TAN(). */
+ if (mpfr_cmp_ui (x, 180) <= 0)
+ {
+ if (mpfr_cmp_ui (x, 90) > 0)
+ {
+ mpfr_ui_sub (x, 180, x, GFC_RND_MODE);
+ mpfr_neg (s, s, GFC_RND_MODE);
+ }
+ }
+ else
+ {
+ if (mpfr_cmp_ui (x, 270) <= 0)
+ {
+ mpfr_sub_ui (x, x, 180, GFC_RND_MODE);
+ }
+ else
+ {
+ mpfr_ui_sub (x, 360, x, GFC_RND_MODE);
+ mpfr_neg (s, s, GFC_RND_MODE);
+ }
+ }
+
+ D2R (x);
+ mpfr_tan (x, x, GFC_RND_MODE);
+ }
+
+ mpfr_mul (x, x, s, GFC_RND_MODE);
+ mpz_clear (n);
+ mpfr_clear (s);
+ }
+
+ /* Return NaN for +-Inf and NaN and raise exception. */
+ else
+ mpfr_sub (x, x, x, GFC_RND_MODE);
+
+ RETURN (x);
+}
+
+/* vim: set ft=c: */
--- /dev/null
+/* Stub for defining degree-valued trigonometric functions in libgfortran.
+ Copyright (C) 2020 Free Software Foundation, Inc.
+ Contributed by Steven G. Kargl <kargl@gcc.gnu.org>
+ and Fritz Reese <foreese@gcc.gnu.org>
+
+This file is part of the GNU Fortran runtime library (libgfortran).
+
+Libgfortran is free software; you can redistribute it and/or
+modify it under the terms of the GNU General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+Libgfortran is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+/*
+This replaces all GMP/MPFR functions used by trigd.inc with native versions.
+The precision is defined by FTYPE defined before including this file.
+The module which includes this file must define the following:
+
+FTYPE -- floating point type
+SIND, COSD, TAND -- names of the functions to define
+SUFFIX(x) -- add a literal suffix for floating point constants (f, ...)
+
+COSD_SMALL [optional] -- for x <= COSD_SMALL, COSD(x) = 1 if set
+TINY [optional] -- subtract from 1 under the above condition if set
+SIND_SMALL [optional] -- for x <= SIND_SMALL, SIND(x) = D2R(x) if set
+COSD30 -- literal value of COSD(30) to the precision of FTYPE
+PIO180H -- upper bits of pi/180 for FMA
+PIO180L -- lower bits of pi/180 for FMA
+
+ */
+
+#define ITYPE int
+#define GFC_RND_MODE 0
+#define RETTYPE FTYPE
+#define RETURN(x) return (x)
+
+#define ISFINITE(x) isfinite(x)
+#define mpfr_init(x) do { } while (0)
+#define mpfr_init_set_ui(x, v, rnd) (x = (v))
+#define mpfr_clear(x) do { } while (0)
+#define mpfr_swap(x, y) do { FTYPE z = y; y = x; x = z; } while (0)
+#define mpfr_copysign(rop, op1, op2, rnd) rop = SUFFIX(copysign)((op1), (op2))
+#define mpfr_fmod(rop, x, d, rnd) (rop = SUFFIX(fmod)((x), (d)))
+#define mpfr_abs(rop, op, rnd) (rop = SUFFIX(fabs)(op))
+#define mpfr_cmp_ld(x, y) ((x) - (y))
+#define mpfr_cmp_ui(x, n) ((x) - (n))
+#define mpfr_zero_p(x) ((x) == 0)
+#define mpfr_set(rop, x, rnd) (rop = (x))
+#define mpfr_set_zero(rop, s) (rop = SUFFIX(copysign)(0, (s)))
+#define mpfr_set_inf(rop, s) (rop = ((s)*-2 + 1) * INFINITY)
+#define mpfr_set_ui(rop, n, rnd) (rop = (n))
+#define mpfr_set_si(rop, n, rnd) (rop = (n))
+#define mpfr_set_ld(rop, x, rnd) (rop = (x))
+#define mpfr_set_si_2exp(rop, op, exp, rnd) (rop = (0x1.p##exp))
+#define mpfr_get_z(rop, x, rnd) ((rop = (int)(x)), (rop - (x)))
+#define mpfr_mul(rop, op1, op2, rnd) (rop = ((op1) * (op2)))
+#define mpfr_sub_d(rop, op1, op2, rnd) (rop = ((op1) - (op2)))
+#define mpfr_sub_ui(rop, op1, op2, rnd) (rop = ((op1) - (op2)))
+#define mpfr_sub(rop, op1, op2, rnd) (rop = ((op1) - (op2)))
+#define mpfr_ui_sub(rop, op1, op2, rnd) (rop = ((op1) - (op2)))
+#define mpfr_neg(rop, op, rnd) (rop = -(op))
+#define mpfr_sin(rop, x, rnd) (rop = SUFFIX(sin)(x))
+#define mpfr_cos(rop, x, rnd) (rop = SUFFIX(cos)(x))
+#define mpfr_tan(rop, x, rnd) (rop = SUFFIX(tan)(x))
+
+#define mpz_init(n) do { } while (0)
+#define mpz_clear(x) do { } while (0)
+#define mpz_cmp_ui(x, y) ((x) - (y))
+#define mpz_divisible_ui_p(n, d) ((n) % (d) == 0)
+
+#define FMA(x,y,z) SUFFIX(fma)((x), (y), (z))
+#define D2R(x) (x = FMA((x), PIO180H, (x) * PIO180L))
+
+#define SET_COSD30(x) (x = COSD30)
+
+
+extern FTYPE SIND (FTYPE);
+export_proto (SIND);
+
+extern FTYPE COSD (FTYPE);
+export_proto (COSD);
+
+extern FTYPE TAND (FTYPE);
+export_proto (TAND);
+
+#include "trigd.inc"
+
+#undef ITYPE
+#undef GFC_RND_MODE
+#undef RETTYPE
+#undef RETURN
+
+#undef ISFINITE
+#undef mpfr_signbit
+
+#undef mpfr_init
+#undef mpfr_init_set_ui
+#undef mpfr_clear
+#undef mpfr_swap
+#undef mpfr_fmod
+#undef mpfr_abs
+#undef mpfr_cmp_ld
+#undef mpfr_cmp_ui
+#undef mpfr_zero_p
+#undef mpfr_set
+#undef mpfr_set_zero
+#undef mpfr_set_inf
+#undef mpfr_set_ui
+#undef mpfr_set_si
+#undef mpfr_set_ld
+#undef mpfr_set_si_2exp
+#undef mpfr_get_z
+#undef mpfr_mul_si
+#undef mpfr_sub_d
+#undef mpfr_sub_ui
+#undef mpfr_sub
+#undef mpfr_ui_sub
+#undef mpfr_neg
+#undef mpfr_sin
+#undef mpfr_cos
+#undef mpfr_tan
+
+#undef mpz_init
+#undef mpz_clear
+#undef mpz_cmp_ui
+#undef mpz_divisible_ui_p
+
+#undef FMA
+#undef D2R
+
+#undef SET_COSD30
+
+
+/* vim: set ft=c: */