--- /dev/null
+/* Target-dependent code for the Texas Instruments MSP430 for GDB, the
+ GNU debugger.
+
+ Copyright (C) 2012, 2013 Free Software Foundation, Inc.
+
+ Contributed by Red Hat, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+#include "defs.h"
+#include "arch-utils.h"
+#include "prologue-value.h"
+#include "target.h"
+#include "regcache.h"
+#include "dis-asm.h"
+#include "gdbtypes.h"
+#include "frame.h"
+#include "frame-unwind.h"
+#include "frame-base.h"
+#include "value.h"
+#include "gdbcore.h"
+#include "dwarf2-frame.h"
+#include "reggroups.h"
+
+#include "elf/msp430.h"
+#include "opcode/msp430-decode.h"
+#include "elf-bfd.h"
+
+/* Register Numbers. */
+
+enum
+{
+ MSP430_PC_RAW_REGNUM,
+ MSP430_SP_RAW_REGNUM,
+ MSP430_SR_RAW_REGNUM,
+ MSP430_CG_RAW_REGNUM,
+ MSP430_R4_RAW_REGNUM,
+ MSP430_R5_RAW_REGNUM,
+ MSP430_R6_RAW_REGNUM,
+ MSP430_R7_RAW_REGNUM,
+ MSP430_R8_RAW_REGNUM,
+ MSP430_R9_RAW_REGNUM,
+ MSP430_R10_RAW_REGNUM,
+ MSP430_R11_RAW_REGNUM,
+ MSP430_R12_RAW_REGNUM,
+ MSP430_R13_RAW_REGNUM,
+ MSP430_R14_RAW_REGNUM,
+ MSP430_R15_RAW_REGNUM,
+
+ MSP430_NUM_REGS,
+
+ MSP430_PC_REGNUM = MSP430_NUM_REGS,
+ MSP430_SP_REGNUM,
+ MSP430_SR_REGNUM,
+ MSP430_CG_REGNUM,
+ MSP430_R4_REGNUM,
+ MSP430_R5_REGNUM,
+ MSP430_R6_REGNUM,
+ MSP430_R7_REGNUM,
+ MSP430_R8_REGNUM,
+ MSP430_R9_REGNUM,
+ MSP430_R10_REGNUM,
+ MSP430_R11_REGNUM,
+ MSP430_R12_REGNUM,
+ MSP430_R13_REGNUM,
+ MSP430_R14_REGNUM,
+ MSP430_R15_REGNUM,
+
+ MSP430_NUM_TOTAL_REGS,
+ MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
+};
+
+enum
+{
+ /* TI MSP430 Architecture. */
+ MSP_ISA_MSP430,
+
+ /* TI MSP430X Architecture. */
+ MSP_ISA_MSP430X
+};
+
+enum
+{
+ /* The small code model limits code addresses to 16 bits. */
+ MSP_SMALL_CODE_MODEL,
+
+ /* The large code model uses 20 bit addresses for function
+ pointers. These are stored in memory using four bytes (32 bits). */
+ MSP_LARGE_CODE_MODEL
+};
+
+/* Architecture specific data. */
+
+struct gdbarch_tdep
+{
+ /* The ELF header flags specify the multilib used. */
+ int elf_flags;
+
+ /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X. */
+ int isa;
+
+ /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL. If, at
+ some point, we support different data models too, we'll probably
+ structure things so that we can combine values using logical
+ "or". */
+ int code_model;
+};
+
+/* This structure holds the results of a prologue analysis. */
+
+struct msp430_prologue
+{
+ /* The offset from the frame base to the stack pointer --- always
+ zero or negative.
+
+ Calling this a "size" is a bit misleading, but given that the
+ stack grows downwards, using offsets for everything keeps one
+ from going completely sign-crazy: you never change anything's
+ sign for an ADD instruction; always change the second operand's
+ sign for a SUB instruction; and everything takes care of
+ itself. */
+ int frame_size;
+
+ /* Non-zero if this function has initialized the frame pointer from
+ the stack pointer, zero otherwise. */
+ int has_frame_ptr;
+
+ /* If has_frame_ptr is non-zero, this is the offset from the frame
+ base to where the frame pointer points. This is always zero or
+ negative. */
+ int frame_ptr_offset;
+
+ /* The address of the first instruction at which the frame has been
+ set up and the arguments are where the debug info says they are
+ --- as best as we can tell. */
+ CORE_ADDR prologue_end;
+
+ /* reg_offset[R] is the offset from the CFA at which register R is
+ saved, or 1 if register R has not been saved. (Real values are
+ always zero or negative.) */
+ int reg_offset[MSP430_NUM_TOTAL_REGS];
+};
+
+/* Implement the "register_type" gdbarch method. */
+
+static struct type *
+msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
+{
+ if (reg_nr < MSP430_NUM_REGS)
+ return builtin_type (gdbarch)->builtin_uint32;
+ else if (reg_nr == MSP430_PC_REGNUM)
+ return builtin_type (gdbarch)->builtin_func_ptr;
+ else
+ return builtin_type (gdbarch)->builtin_uint16;
+}
+
+/* Implement another version of the "register_type" gdbarch method
+ for msp430x. */
+
+static struct type *
+msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
+{
+ if (reg_nr < MSP430_NUM_REGS)
+ return builtin_type (gdbarch)->builtin_uint32;
+ else if (reg_nr == MSP430_PC_REGNUM)
+ return builtin_type (gdbarch)->builtin_func_ptr;
+ else
+ return builtin_type (gdbarch)->builtin_uint32;
+}
+
+/* Implement the "register_name" gdbarch method. */
+
+static const char *
+msp430_register_name (struct gdbarch *gdbarch, int regnr)
+{
+ static const char *const reg_names[] = {
+ /* Raw registers. */
+ "", "", "", "", "", "", "", "",
+ "", "", "", "", "", "", "", "",
+ /* Pseudo registers. */
+ "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+ };
+
+ return reg_names[regnr];
+}
+
+/* Implement the "register_reggroup_p" gdbarch method. */
+
+static int
+msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
+ struct reggroup *group)
+{
+ if (group == all_reggroup)
+ return 1;
+
+ /* All other registers are saved and restored. */
+ if (group == save_reggroup || group == restore_reggroup)
+ return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);
+
+ return group == general_reggroup;
+}
+
+/* Implement the "pseudo_register_read" gdbarch method. */
+
+static enum register_status
+msp430_pseudo_register_read (struct gdbarch *gdbarch,
+ struct regcache *regcache,
+ int regnum, gdb_byte *buffer)
+{
+ enum register_status status = REG_UNKNOWN;
+
+ if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
+ {
+ ULONGEST val;
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int regsize = register_size (gdbarch, regnum);
+ int raw_regnum = regnum - MSP430_NUM_REGS;
+
+ status = regcache_raw_read_unsigned (regcache, raw_regnum, &val);
+ if (status == REG_VALID)
+ store_unsigned_integer (buffer, regsize, byte_order, val);
+
+ }
+ else
+ gdb_assert_not_reached ("invalid pseudo register number");
+
+ return status;
+}
+
+/* Implement the "pseudo_register_write" gdbarch method. */
+
+static void
+msp430_pseudo_register_write (struct gdbarch *gdbarch,
+ struct regcache *regcache,
+ int regnum, const gdb_byte *buffer)
+{
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
+
+ {
+ ULONGEST val;
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int regsize = register_size (gdbarch, regnum);
+ int raw_regnum = regnum - MSP430_NUM_REGS;
+
+ val = extract_unsigned_integer (buffer, regsize, byte_order);
+ regcache_raw_write_unsigned (regcache, raw_regnum, val);
+
+ }
+ else
+ gdb_assert_not_reached ("invalid pseudo register number");
+}
+
+/* Implement the `register_sim_regno' gdbarch method. */
+
+static int
+msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
+{
+ gdb_assert (regnum < MSP430_NUM_REGS);
+
+ /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
+ just want to override the default here which disallows register
+ numbers which have no names. */
+ return regnum;
+}
+
+/* Implement the "breakpoint_from_pc" gdbarch method. */
+
+static const gdb_byte *
+msp430_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
+ int *lenptr)
+{
+ static gdb_byte breakpoint[] = { 0x43, 0x43 };
+
+ *lenptr = sizeof breakpoint;
+ return breakpoint;
+}
+
+/* Define a "handle" struct for fetching the next opcode. */
+
+struct msp430_get_opcode_byte_handle
+{
+ CORE_ADDR pc;
+};
+
+/* Fetch a byte on behalf of the opcode decoder. HANDLE contains
+ the memory address of the next byte to fetch. If successful,
+ the address in the handle is updated and the byte fetched is
+ returned as the value of the function. If not successful, -1
+ is returned. */
+
+static int
+msp430_get_opcode_byte (void *handle)
+{
+ struct msp430_get_opcode_byte_handle *opcdata = handle;
+ int status;
+ gdb_byte byte;
+
+ status = target_read_memory (opcdata->pc, &byte, 1);
+ if (status == 0)
+ {
+ opcdata->pc += 1;
+ return byte;
+ }
+ else
+ return -1;
+}
+
+/* Function for finding saved registers in a 'struct pv_area'; this
+ function is passed to pv_area_scan.
+
+ If VALUE is a saved register, ADDR says it was saved at a constant
+ offset from the frame base, and SIZE indicates that the whole
+ register was saved, record its offset. */
+
+static void
+check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
+{
+ struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;
+
+ if (value.kind == pvk_register
+ && value.k == 0
+ && pv_is_register (addr, MSP430_SP_REGNUM)
+ && size == register_size (target_gdbarch (), value.reg))
+ result->reg_offset[value.reg] = addr.k;
+}
+
+/* Analyze a prologue starting at START_PC, going no further than
+ LIMIT_PC. Fill in RESULT as appropriate. */
+
+static void
+msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
+ CORE_ADDR limit_pc, struct msp430_prologue *result)
+{
+ CORE_ADDR pc, next_pc;
+ int rn;
+ pv_t reg[MSP430_NUM_TOTAL_REGS];
+ struct pv_area *stack;
+ struct cleanup *back_to;
+ CORE_ADDR after_last_frame_setup_insn = start_pc;
+ int code_model = gdbarch_tdep (gdbarch)->code_model;
+ int sz;
+
+ memset (result, 0, sizeof (*result));
+
+ for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
+ {
+ reg[rn] = pv_register (rn, 0);
+ result->reg_offset[rn] = 1;
+ }
+
+ stack = make_pv_area (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));
+ back_to = make_cleanup_free_pv_area (stack);
+
+ /* The call instruction has saved the return address on the stack. */
+ sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
+ reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
+ pv_area_store (stack, reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);
+
+ pc = start_pc;
+ while (pc < limit_pc)
+ {
+ int bytes_read;
+ struct msp430_get_opcode_byte_handle opcode_handle;
+ MSP430_Opcode_Decoded opc;
+
+ opcode_handle.pc = pc;
+ bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
+ &opcode_handle);
+ next_pc = pc + bytes_read;
+
+ if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
+ {
+ int rsrc = opc.op[0].reg;
+
+ reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
+ pv_area_store (stack, reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
+ after_last_frame_setup_insn = next_pc;
+ }
+ else if (opc.id == MSO_push /* PUSHM */
+ && opc.op[0].type == MSP430_Operand_None
+ && opc.op[1].type == MSP430_Operand_Register)
+ {
+ int rsrc = opc.op[1].reg;
+ int count = opc.repeats + 1;
+ int size = opc.size == 16 ? 2 : 4;
+
+ while (count > 0)
+ {
+ reg[MSP430_SP_REGNUM]
+ = pv_add_constant (reg[MSP430_SP_REGNUM], -size);
+ pv_area_store (stack, reg[MSP430_SP_REGNUM], size, reg[rsrc]);
+ rsrc--;
+ count--;
+ }
+ after_last_frame_setup_insn = next_pc;
+ }
+ else if (opc.id == MSO_sub
+ && opc.op[0].type == MSP430_Operand_Register
+ && opc.op[0].reg == MSR_SP
+ && opc.op[1].type == MSP430_Operand_Immediate)
+ {
+ int addend = opc.op[1].addend;
+
+ reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
+ -addend);
+ after_last_frame_setup_insn = next_pc;
+ }
+ else if (opc.id == MSO_mov
+ && opc.op[0].type == MSP430_Operand_Immediate
+ && 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
+ after_last_frame_setup_insn = next_pc;
+ else
+ {
+ /* Terminate the prologue scan. */
+ break;
+ }
+
+ pc = next_pc;
+ }
+
+ /* Is the frame size (offset, really) a known constant? */
+ if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
+ result->frame_size = reg[MSP430_SP_REGNUM].k;
+
+ /* Record where all the registers were saved. */
+ pv_area_scan (stack, check_for_saved, result);
+
+ result->prologue_end = after_last_frame_setup_insn;
+
+ do_cleanups (back_to);
+}
+
+/* Implement the "skip_prologue" gdbarch method. */
+
+static CORE_ADDR
+msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+ const char *name;
+ CORE_ADDR func_addr, func_end;
+ struct msp430_prologue p;
+
+ /* Try to find the extent of the function that contains PC. */
+ if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
+ return pc;
+
+ msp430_analyze_prologue (gdbarch, pc, func_end, &p);
+ return p.prologue_end;
+}
+
+/* Implement the "unwind_pc" gdbarch method. */
+
+static CORE_ADDR
+msp430_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
+{
+ return frame_unwind_register_unsigned (next_frame, MSP430_PC_REGNUM);
+}
+
+/* Implement the "unwind_sp" gdbarch method. */
+
+static CORE_ADDR
+msp430_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
+{
+ return frame_unwind_register_unsigned (next_frame, MSP430_SP_REGNUM);
+}
+
+/* Given a frame described by THIS_FRAME, decode the prologue of its
+ associated function if there is not cache entry as specified by
+ THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
+ return that struct as the value of this function. */
+
+static struct msp430_prologue *
+msp430_analyze_frame_prologue (struct frame_info *this_frame,
+ void **this_prologue_cache)
+{
+ if (!*this_prologue_cache)
+ {
+ CORE_ADDR func_start, stop_addr;
+
+ *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);
+
+ func_start = get_frame_func (this_frame);
+ stop_addr = get_frame_pc (this_frame);
+
+ /* If we couldn't find any function containing the PC, then
+ just initialize the prologue cache, but don't do anything. */
+ if (!func_start)
+ stop_addr = func_start;
+
+ msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
+ stop_addr, *this_prologue_cache);
+ }
+
+ return *this_prologue_cache;
+}
+
+/* Given a frame and a prologue cache, return this frame's base. */
+
+static CORE_ADDR
+msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
+{
+ struct msp430_prologue *p
+ = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
+ CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);
+
+ return sp - p->frame_size;
+}
+
+/* Implement the "frame_this_id" method for unwinding frames. */
+
+static void
+msp430_this_id (struct frame_info *this_frame,
+ void **this_prologue_cache, struct frame_id *this_id)
+{
+ *this_id = frame_id_build (msp430_frame_base (this_frame,
+ this_prologue_cache),
+ get_frame_func (this_frame));
+}
+
+/* Implement the "frame_prev_register" method for unwinding frames. */
+
+static struct value *
+msp430_prev_register (struct frame_info *this_frame,
+ void **this_prologue_cache, int regnum)
+{
+ struct msp430_prologue *p
+ = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
+ CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);
+
+ if (regnum == MSP430_SP_REGNUM)
+ return frame_unwind_got_constant (this_frame, regnum, frame_base);
+
+ /* If prologue analysis says we saved this register somewhere,
+ return a description of the stack slot holding it. */
+ else if (p->reg_offset[regnum] != 1)
+ {
+ struct value *rv = frame_unwind_got_memory (this_frame, regnum,
+ frame_base +
+ p->reg_offset[regnum]);
+
+ if (regnum == MSP430_PC_REGNUM)
+ {
+ ULONGEST pc = value_as_long (rv);
+
+ return frame_unwind_got_constant (this_frame, regnum, pc);
+ }
+ return rv;
+ }
+
+ /* Otherwise, presume we haven't changed the value of this
+ register, and get it from the next frame. */
+ else
+ return frame_unwind_got_register (this_frame, regnum, regnum);
+}
+
+static const struct frame_unwind msp430_unwind = {
+ NORMAL_FRAME,
+ default_frame_unwind_stop_reason,
+ msp430_this_id,
+ msp430_prev_register,
+ NULL,
+ default_frame_sniffer
+};
+
+/* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
+
+static int
+msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
+{
+ if (reg < MSP430_NUM_REGS)
+ return reg + MSP430_NUM_REGS;
+ else
+ {
+ warning (_("Unmapped DWARF Register #%d encountered."), reg);
+ return -1;
+ }
+}
+
+/* Implement the "return_value" gdbarch method. */
+
+static enum return_value_convention
+msp430_return_value (struct gdbarch *gdbarch,
+ struct value *function,
+ struct type *valtype,
+ struct regcache *regcache,
+ gdb_byte *readbuf, const gdb_byte *writebuf)
+{
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ LONGEST valtype_len = TYPE_LENGTH (valtype);
+ int code_model = gdbarch_tdep (gdbarch)->code_model;
+
+ if (TYPE_LENGTH (valtype) > 8
+ || TYPE_CODE (valtype) == TYPE_CODE_STRUCT
+ || TYPE_CODE (valtype) == TYPE_CODE_UNION)
+ return RETURN_VALUE_STRUCT_CONVENTION;
+
+ if (readbuf)
+ {
+ ULONGEST u;
+ int argreg = MSP430_R12_REGNUM;
+ int offset = 0;
+
+ while (valtype_len > 0)
+ {
+ int size = 2;
+
+ if (code_model == MSP_LARGE_CODE_MODEL
+ && TYPE_CODE (valtype) == TYPE_CODE_PTR)
+ {
+ size = 4;
+ }
+
+ regcache_cooked_read_unsigned (regcache, argreg, &u);
+ store_unsigned_integer (readbuf + offset, size, byte_order, u);
+ valtype_len -= size;
+ offset += size;
+ argreg++;
+ }
+ }
+
+ if (writebuf)
+ {
+ ULONGEST u;
+ int argreg = MSP430_R12_REGNUM;
+ int offset = 0;
+
+ while (valtype_len > 0)
+ {
+ int size = 2;
+
+ if (code_model == MSP_LARGE_CODE_MODEL
+ && TYPE_CODE (valtype) == TYPE_CODE_PTR)
+ {
+ size = 4;
+ }
+
+ u = extract_unsigned_integer (writebuf + offset, size, byte_order);
+ regcache_cooked_write_unsigned (regcache, argreg, u);
+ valtype_len -= size;
+ offset += size;
+ argreg++;
+ }
+ }
+
+ return RETURN_VALUE_REGISTER_CONVENTION;
+}
+
+
+/* Implement the "frame_align" gdbarch method. */
+
+static CORE_ADDR
+msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
+{
+ return align_down (sp, 2);
+}
+
+
+/* Implement the "dummy_id" gdbarch method. */
+
+static struct frame_id
+msp430_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
+{
+ return
+ frame_id_build (get_frame_register_unsigned
+ (this_frame, MSP430_SP_REGNUM),
+ get_frame_pc (this_frame));
+}
+
+
+/* Implement the "push_dummy_call" gdbarch method. */
+
+static CORE_ADDR
+msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
+ struct regcache *regcache, CORE_ADDR bp_addr,
+ int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int write_pass;
+ int sp_off = 0;
+ CORE_ADDR cfa;
+ int code_model = gdbarch_tdep (gdbarch)->code_model;
+
+ struct type *func_type = value_type (function);
+
+ /* Dereference function pointer types. */
+ while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
+ func_type = TYPE_TARGET_TYPE (func_type);
+
+ /* The end result had better be a function or a method. */
+ gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
+ || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
+
+ /* We make two passes; the first does the stack allocation,
+ the second actually stores the arguments. */
+ for (write_pass = 0; write_pass <= 1; write_pass++)
+ {
+ int i;
+ int arg_reg = MSP430_R12_REGNUM;
+ int args_on_stack = 0;
+
+ if (write_pass)
+ sp = align_down (sp - sp_off, 4);
+ sp_off = 0;
+
+ if (struct_return)
+ {
+ if (write_pass)
+ regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
+ arg_reg++;
+ }
+
+ /* Push the arguments. */
+ for (i = 0; i < nargs; i++)
+ {
+ struct value *arg = args[i];
+ const gdb_byte *arg_bits = value_contents_all (arg);
+ struct type *arg_type = check_typedef (value_type (arg));
+ ULONGEST arg_size = TYPE_LENGTH (arg_type);
+ int offset;
+ int current_arg_on_stack;
+
+ current_arg_on_stack = 0;
+
+ if (TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
+ || TYPE_CODE (arg_type) == TYPE_CODE_UNION)
+ {
+ /* Aggregates of any size are passed by reference. */
+ gdb_byte struct_addr[4];
+
+ store_unsigned_integer (struct_addr, 4, byte_order,
+ value_address (arg));
+ arg_bits = struct_addr;
+ arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
+ }
+ else
+ {
+ /* Scalars bigger than 8 bytes such as complex doubles are passed
+ on the stack. */
+ if (arg_size > 8)
+ current_arg_on_stack = 1;
+ }
+
+
+ for (offset = 0; offset < arg_size; offset += 2)
+ {
+ /* The condition below prevents 8 byte scalars from being split
+ between registers and memory (stack). It also prevents other
+ splits once the stack has been written to. */
+ if (!current_arg_on_stack
+ && (arg_reg
+ + ((arg_size == 8 || args_on_stack)
+ ? ((arg_size - offset) / 2 - 1)
+ : 0) <= MSP430_R15_REGNUM))
+ {
+ int size = 2;
+
+ if (code_model == MSP_LARGE_CODE_MODEL
+ && TYPE_CODE (arg_type) == TYPE_CODE_PTR)
+ {
+ /* Pointer arguments using large memory model are passed
+ using entire register. */
+ if (offset != 0)
+ continue;
+ size = 4;
+ }
+
+ if (write_pass)
+ regcache_cooked_write_unsigned (regcache, arg_reg,
+ extract_unsigned_integer
+ (arg_bits + offset, size,
+ byte_order));
+
+ arg_reg++;
+ }
+ else
+ {
+ if (write_pass)
+ write_memory (sp + sp_off, arg_bits + offset, 2);
+
+ sp_off += 2;
+ args_on_stack = 1;
+ current_arg_on_stack = 1;
+ }
+ }
+ }
+ }
+
+ /* Keep track of the stack address prior to pushing the return address.
+ This is the value that we'll return. */
+ cfa = sp;
+
+ /* Push the return address. */
+ {
+ int sz = (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL)
+ ? 2 : 4;
+ sp = sp - sz;
+ write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
+ }
+
+ /* Update the stack pointer. */
+ regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);
+
+ return cfa;
+}
+
+/* In order to keep code size small, the compiler may create epilogue
+ code through which more than one function epilogue is routed. I.e.
+ the epilogue and return may just be a branch to some common piece of
+ code which is responsible for tearing down the frame and performing
+ the return. These epilog (label) names will have the common prefix
+ defined here. */
+
+static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";
+
+/* Implement the "in_return_stub" gdbarch method. */
+
+static int
+msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
+ const char *name)
+{
+ return (name != NULL
+ && strncmp (msp430_epilog_name_prefix, name,
+ strlen (msp430_epilog_name_prefix)) == 0);
+}
+
+/* Implement the "skip_trampoline_code" gdbarch method. */
+static CORE_ADDR
+msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
+{
+ struct bound_minimal_symbol bms;
+ const char *stub_name;
+ struct gdbarch *gdbarch = get_frame_arch (frame);
+
+ bms = lookup_minimal_symbol_by_pc (pc);
+ if (!bms.minsym)
+ return pc;
+
+ stub_name = SYMBOL_LINKAGE_NAME (bms.minsym);
+
+ if (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL
+ && msp430_in_return_stub (gdbarch, pc, stub_name))
+ {
+ CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);
+
+ return read_memory_integer
+ (sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
+ 2, gdbarch_byte_order (gdbarch));
+ }
+
+ return pc;
+}
+
+/* Allocate and initialize a gdbarch object. */
+
+static struct gdbarch *
+msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ struct gdbarch *gdbarch;
+ struct gdbarch_tdep *tdep;
+ int elf_flags, isa, code_model;
+
+ /* Extract the elf_flags if available. */
+ if (info.abfd != NULL
+ && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
+ elf_flags = elf_elfheader (info.abfd)->e_flags;
+ else
+ elf_flags = 0;
+
+ if (info.abfd != NULL)
+ switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
+ OFBA_MSPABI_Tag_ISA))
+ {
+ case 1:
+ isa = MSP_ISA_MSP430;
+ code_model = MSP_SMALL_CODE_MODEL;
+ break;
+ case 2:
+ isa = MSP_ISA_MSP430X;
+ switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
+ OFBA_MSPABI_Tag_Code_Model))
+ {
+ case 1:
+ code_model = MSP_SMALL_CODE_MODEL;
+ break;
+ case 2:
+ code_model = MSP_LARGE_CODE_MODEL;
+ break;
+ default:
+ internal_error (__FILE__, __LINE__,
+ _("Unknown msp430x code memory model"));
+ break;
+ }
+ break;
+ case 0:
+ /* This can happen when loading a previously dumped data structure.
+ Use the ISA and code model from the current architecture, provided
+ it's compatible. */
+ {
+ struct gdbarch *ca = get_current_arch ();
+ if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
+ {
+ struct gdbarch_tdep *ca_tdep = gdbarch_tdep (ca);
+
+ elf_flags = ca_tdep->elf_flags;
+ isa = ca_tdep->isa;
+ code_model = ca_tdep->code_model;
+ break;
+ }
+ /* Otherwise, fall through... */
+ }
+ default:
+ error (_("Unknown msp430 isa"));
+ break;
+ }
+ else
+ {
+ isa = MSP_ISA_MSP430;
+ code_model = MSP_SMALL_CODE_MODEL;
+ }
+
+
+ /* Try to find the architecture in the list of already defined
+ architectures. */
+ for (arches = gdbarch_list_lookup_by_info (arches, &info);
+ arches != NULL;
+ arches = gdbarch_list_lookup_by_info (arches->next, &info))
+ {
+ struct gdbarch_tdep *candidate_tdep = gdbarch_tdep (arches->gdbarch);
+
+ if (candidate_tdep->elf_flags != elf_flags
+ || candidate_tdep->isa != isa
+ || candidate_tdep->code_model != code_model)
+ continue;
+
+ return arches->gdbarch;
+ }
+
+ /* None found, create a new architecture from the information
+ provided. */
+ tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
+ gdbarch = gdbarch_alloc (&info, tdep);
+ tdep->elf_flags = elf_flags;
+ tdep->isa = isa;
+ tdep->code_model = code_model;
+
+ /* Registers. */
+ set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
+ set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
+ set_gdbarch_register_name (gdbarch, msp430_register_name);
+ if (isa == MSP_ISA_MSP430)
+ set_gdbarch_register_type (gdbarch, msp430_register_type);
+ else
+ set_gdbarch_register_type (gdbarch, msp430x_register_type);
+ set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
+ set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
+ set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
+ set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
+ set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
+ set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
+ set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);
+
+ /* Data types. */
+ set_gdbarch_char_signed (gdbarch, 0);
+ set_gdbarch_short_bit (gdbarch, 16);
+ set_gdbarch_int_bit (gdbarch, 16);
+ set_gdbarch_long_bit (gdbarch, 32);
+ set_gdbarch_long_long_bit (gdbarch, 64);
+ if (code_model == MSP_SMALL_CODE_MODEL)
+ {
+ set_gdbarch_ptr_bit (gdbarch, 16);
+ set_gdbarch_addr_bit (gdbarch, 16);
+ }
+ else /* MSP_LARGE_CODE_MODEL */
+ {
+ set_gdbarch_ptr_bit (gdbarch, 32);
+ set_gdbarch_addr_bit (gdbarch, 32);
+ }
+ set_gdbarch_dwarf2_addr_size (gdbarch, 4);
+ set_gdbarch_float_bit (gdbarch, 32);
+ set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
+ set_gdbarch_double_bit (gdbarch, 64);
+ set_gdbarch_long_double_bit (gdbarch, 64);
+ set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
+ set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
+
+ /* Breakpoints. */
+ set_gdbarch_breakpoint_from_pc (gdbarch, msp430_breakpoint_from_pc);
+ set_gdbarch_decr_pc_after_break (gdbarch, 1);
+
+ /* Disassembly. */
+ set_gdbarch_print_insn (gdbarch, print_insn_msp430);
+
+ /* Frames, prologues, etc. */
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
+ set_gdbarch_unwind_pc (gdbarch, msp430_unwind_pc);
+ set_gdbarch_unwind_sp (gdbarch, msp430_unwind_sp);
+ set_gdbarch_frame_align (gdbarch, msp430_frame_align);
+ dwarf2_append_unwinders (gdbarch);
+ frame_unwind_append_unwinder (gdbarch, &msp430_unwind);
+
+ /* Dummy frames, return values. */
+ set_gdbarch_dummy_id (gdbarch, msp430_dummy_id);
+ set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
+ set_gdbarch_return_value (gdbarch, msp430_return_value);
+
+ /* Trampolines. */
+ set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
+ set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);
+
+ /* Virtual tables. */
+ set_gdbarch_vbit_in_delta (gdbarch, 0);
+
+ return gdbarch;
+}
+
+/* -Wmissing-prototypes */
+extern initialize_file_ftype _initialize_msp430_tdep;
+
+/* Register the initialization routine. */
+
+void
+_initialize_msp430_tdep (void)
+{
+ register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init);
+}