d_in : in Loadstore1ToDcacheType;
d_out : out DcacheToWritebackType;
+ stall_out : out std_ulogic;
+
wishbone_out : out wishbone_master_out;
wishbone_in : in wishbone_slave_out
);
STORE_WAIT_ACK, -- Store wait ack
NC_LOAD_WAIT_ACK);-- Non-cachable load wait ack
- type reg_internal_t is record
- req_latch : Loadstore1ToDcacheType;
-
- -- Cache hit state (Latches for 1 cycle BRAM access)
+
+ --
+ -- Dcache operations:
+ --
+ -- In order to make timing, we use the BRAMs with an output buffer,
+ -- which means that the BRAM output is delayed by an extra cycle.
+ --
+ -- Thus, the dcache has a 2-stage internal pipeline for cache hits
+ -- with no stalls.
+ --
+ -- All other operations are handled via stalling in the first stage.
+ --
+ -- The second stage can thus complete a hit at the same time as the
+ -- first stage emits a stall for a complex op.
+ --
+
+ -- First stage register, contains state for stage 1 of load hits
+ -- and for the state machine used by all other operations
+ --
+ type reg_stage_1_t is record
+ -- Latch the complete request from ls1
+ req : Loadstore1ToDcacheType;
+
+ -- Cache hit state
hit_way : way_t;
hit_load_valid : std_ulogic;
- -- 1-cycle delayed signals to account for the BRAM extra
- -- buffer that seems necessary to make timing on load hits
- --
- hit_way_delayed : way_t;
- hit_load_delayed : std_ulogic;
- hit_load_upd_delayed : std_ulogic;
- hit_load_reg_delayed : std_ulogic_vector(4 downto 0);
- hit_data_shift_delayed : std_ulogic_vector(2 downto 0);
- hit_dlength_delayed : std_ulogic_vector(3 downto 0);
- hit_sign_ext_delayed : std_ulogic;
- hit_byte_rev_delayed : std_ulogic;
-
-- Register update (load/store with update)
- update_valid : std_ulogic;
+ update_valid : std_ulogic;
-- Data buffer for "slow" read ops (load miss and NC loads).
- slow_data : std_ulogic_vector(63 downto 0);
- slow_valid : std_ulogic;
+ slow_data : std_ulogic_vector(63 downto 0);
+ slow_valid : std_ulogic;
-- Cache miss state (reload state machine)
state : state_t;
store_index : index_t;
end record;
- signal r : reg_internal_t;
+ signal r1 : reg_stage_1_t;
+
+ -- Second stage register, only used for load hits
+ --
+ type reg_stage_2_t is record
+ hit_way : way_t;
+ hit_load_valid : std_ulogic;
+ load_is_update : std_ulogic;
+ load_reg : std_ulogic_vector(4 downto 0);
+ data_shift : std_ulogic_vector(2 downto 0);
+ length : std_ulogic_vector(3 downto 0);
+ sign_extend : std_ulogic;
+ byte_reverse : std_ulogic;
+ end record;
+
+ signal r2 : reg_stage_2_t;
-- Async signals on incoming request
signal req_index : index_t;
signal bus_sel : wishbone_sel_type;
signal store_data : wishbone_data_type;
+ --
+ -- Helper functions to decode incoming requests
+ --
+
-- Return the cache line index (tag index) for an address
function get_index(addr: std_ulogic_vector(63 downto 0)) return index_t is
begin
req_op <= op;
- -- XXX GENERATE ERRORS
- -- err_nc_collision <= '1' when op = OP_BAD else '0';
+ end process;
- -- XXX Generate stalls
- -- stall_out <= r.state /= IDLE ?
+ --
+ -- Misc signal assignments
+ --
- end process;
+ -- Wire up wishbone request latch out of stage 1
+ wishbone_out <= r1.wb;
+
+ -- Wishbone & BRAM write data formatting for stores (most of it already
+ -- happens in loadstore1, this is the remaining data shifting)
+ --
+ store_data <= std_logic_vector(shift_left(unsigned(d_in.data),
+ wishbone_data_shift(d_in.addr)));
+
+ -- Wishbone read and write and BRAM write sel bits generation
+ bus_sel <= wishbone_data_sel(d_in.length, d_in.addr);
+
+ -- TODO: Generate errors
+ -- err_nc_collision <= '1' when req_op = OP_BAD else '0';
- -- Wire up wishbone request latch
- wishbone_out <= r.wb;
+ -- Generate stalls from stage 1 state machine
+ stall_out <= '1' when r1.state /= IDLE else '0';
-- Writeback (loads and reg updates) & completion control logic
--
-- The mux on d_out.write reg defaults to the normal load hit case.
d_out.write_enable <= '0';
d_out.valid <= '0';
- d_out.write_reg <= r.hit_load_reg_delayed;
- d_out.write_data <= cache_out(r.hit_way_delayed);
- d_out.write_len <= r.hit_dlength_delayed;
- d_out.write_shift <= r.hit_data_shift_delayed;
- d_out.sign_extend <= r.hit_sign_ext_delayed;
- d_out.byte_reverse <= r.hit_byte_rev_delayed;
+ d_out.write_reg <= r2.load_reg;
+ d_out.write_data <= cache_out(r2.hit_way);
+ d_out.write_len <= r2.length;
+ d_out.write_shift <= r2.data_shift;
+ d_out.sign_extend <= r2.sign_extend;
+ d_out.byte_reverse <= r2.byte_reverse;
d_out.second_word <= '0';
-- We have a valid load or store hit or we just completed a slow
--
-- Sanity: Only one of these must be set in any given cycle
- assert (r.update_valid and r.hit_load_delayed) /= '1' report
+ assert (r1.update_valid and r2.hit_load_valid) /= '1' report
"unexpected hit_load_delayed collision with update_valid"
severity FAILURE;
- assert (r.slow_valid and r.hit_load_delayed) /= '1' report
+ assert (r1.slow_valid and r2.hit_load_valid) /= '1' report
"unexpected hit_load_delayed collision with slow_valid"
severity FAILURE;
- assert (r.slow_valid and r.update_valid) /= '1' report
+ assert (r1.slow_valid and r1.update_valid) /= '1' report
"unexpected update_valid collision with slow_valid"
severity FAILURE;
-- Delayed load hit case is the standard path
- if r.hit_load_delayed = '1' then
+ if r2.hit_load_valid = '1' then
d_out.write_enable <= '1';
-- If it's not a load with update, complete it now
- if r.hit_load_upd_delayed = '0' then
+ if r2.load_is_update = '0' then
d_out.valid <= '1';
end if;
end if;
-- Slow ops (load miss, NC, stores)
- if r.slow_valid = '1' then
+ if r1.slow_valid = '1' then
-- If it's a load, enable register writeback and switch
-- mux accordingly
--
- if r.req_latch.load then
- d_out.write_reg <= r.req_latch.write_reg;
+ if r1.req.load then
+ d_out.write_reg <= r1.req.write_reg;
d_out.write_enable <= '1';
-- Read data comes from the slow data latch, formatter
-- from the latched request.
--
- d_out.write_data <= r.slow_data;
- d_out.write_shift <= r.req_latch.addr(2 downto 0);
- d_out.sign_extend <= r.req_latch.sign_extend;
- d_out.byte_reverse <= r.req_latch.byte_reverse;
- d_out.write_len <= r.req_latch.length;
+ d_out.write_data <= r1.slow_data;
+ d_out.write_shift <= r1.req.addr(2 downto 0);
+ d_out.sign_extend <= r1.req.sign_extend;
+ d_out.byte_reverse <= r1.req.byte_reverse;
+ d_out.write_len <= r1.req.length;
end if;
-- If it's a store or a non-update load form, complete now
- if r.req_latch.load = '0' or r.req_latch.update = '0' then
+ if r1.req.load = '0' or r1.req.update = '0' then
d_out.valid <= '1';
end if;
end if;
-- We have a register update to do.
- if r.update_valid = '1' then
+ if r1.update_valid = '1' then
d_out.write_enable <= '1';
- d_out.write_reg <= r.req_latch.update_reg;
+ d_out.write_reg <= r1.req.update_reg;
-- Change the read data mux to the address that's going into
-- the register and the formatter does nothing.
--
- d_out.write_data <= r.req_latch.addr;
+ d_out.write_data <= r1.req.addr;
d_out.write_shift <= "000";
d_out.write_len <= "1000";
d_out.sign_extend <= '0';
-- If it was a load, this completes the operation (load with
-- update case).
--
- if r.req_latch.load = '1' then
+ if r1.req.load = '1' then
d_out.valid <= '1';
end if;
end if;
end process;
- -- Misc data & sel signals
- misc: process(d_in)
- begin
- -- Wishbone & BRAM write data formatting for stores (most of it already
- -- happens in loadstore1, this is the remaining sel generation and shifting)
- --
- store_data <= std_logic_vector(shift_left(unsigned(d_in.data),
- wishbone_data_shift(d_in.addr)));
-
- -- Wishbone read and write and BRAM write sel bits generation
- bus_sel <= wishbone_data_sel(d_in.length, d_in.addr);
- end process;
-
+ --
-- Generate a cache RAM for each way. This handles the normal
-- reads, writes from reloads and the special store-hit update
-- path as well.
-- For timing, the mux on wr_data/sel/addr is not dependent on anything
-- other than the current state. Only the do_write signal is.
--
- if r.state = IDLE then
+ if r1.state = IDLE then
-- When IDLE, the only write path is the store-hit update case
wr_addr <= std_ulogic_vector(to_unsigned(req_row, ROW_BITS));
wr_data <= store_data;
-- Otherwise, we might be doing a reload
wr_data <= wishbone_in.dat;
wr_sel <= (others => '1');
- wr_addr <= std_ulogic_vector(to_unsigned(get_row(r.wb.adr), ROW_BITS));
+ wr_addr <= std_ulogic_vector(to_unsigned(get_row(r1.wb.adr), ROW_BITS));
end if;
-- The two actual write cases here
do_write <= '0';
- if r.state = RELOAD_WAIT_ACK and wishbone_in.ack = '1' and r.store_way = i then
+ if r1.state = RELOAD_WAIT_ACK and wishbone_in.ack = '1' and r1.store_way = i then
do_write <= '1';
end if;
if req_op = OP_STORE_HIT and req_hit_way = i then
- assert r.state /= RELOAD_WAIT_ACK report "Store hit while in state:" &
- state_t'image(r.state)
+ assert r1.state /= RELOAD_WAIT_ACK report "Store hit while in state:" &
+ state_t'image(r1.state)
severity FAILURE;
do_write <= '1';
end if;
end process;
end generate;
+ --
-- Cache hit synchronous machine for the easy case. This handles
- -- non-update form load hits.
+ -- non-update form load hits and stage 1 to stage 2 transfers
--
dcache_fast_hit : process(clk)
begin
if rising_edge(clk) then
- -- 1-cycle delayed signals for load hit response
- r.hit_load_delayed <= r.hit_load_valid;
- r.hit_way_delayed <= r.hit_way;
- r.hit_load_upd_delayed <= r.req_latch.update;
- r.hit_load_reg_delayed <= r.req_latch.write_reg;
- r.hit_data_shift_delayed <= r.req_latch.addr(2 downto 0);
- r.hit_sign_ext_delayed <= r.req_latch.sign_extend;
- r.hit_byte_rev_delayed <= r.req_latch.byte_reverse;
- r.hit_dlength_delayed <= r.req_latch.length;
-
- -- On-cycle pulse values get reset on every cycle
- r.hit_load_valid <= '0';
+ -- stage 1 -> stage 2
+ r2.hit_load_valid <= r1.hit_load_valid;
+ r2.hit_way <= r1.hit_way;
+ r2.load_is_update <= r1.req.update;
+ r2.load_reg <= r1.req.write_reg;
+ r2.data_shift <= r1.req.addr(2 downto 0);
+ r2.length <= r1.req.length;
+ r2.sign_extend <= r1.req.sign_extend;
+ r2.byte_reverse <= r1.req.byte_reverse;
-- If we have a request incoming, we have to latch it as d_in.valid
-- is only set for a single cycle. It's up to the control logic to
-- a stall output if necessary).
if d_in.valid = '1' then
- r.req_latch <= d_in;
+ r1.req <= d_in;
report "op:" & op_t'image(req_op) &
" addr:" & to_hstring(d_in.addr) &
-- Fast path for load/store hits. Set signals for the writeback controls.
if req_op = OP_LOAD_HIT then
- r.hit_way <= req_hit_way;
- r.hit_load_valid <= '1';
+ r1.hit_way <= req_hit_way;
+ r1.hit_load_valid <= '1';
+ else
+ r1.hit_load_valid <= '0';
end if;
end if;
end process;
+ --
-- Every other case is handled by this stage machine:
--
-- * Cache load miss/reload (in conjunction with "rams")
-- * Load hits for non-cachable forms
-- * Stores (the collision case is handled in "rams")
--
- -- All wishbone requests generation is done here
+ -- All wishbone requests generation is done here. This machine
+ -- operates at stage 1.
--
dcache_slow : process(clk)
variable way : integer range 0 to NUM_WAYS-1;
for i in index_t loop
cache_valids(i) <= (others => '0');
end loop;
- r.state <= IDLE;
- r.slow_valid <= '0';
- r.update_valid <= '0';
- r.wb.cyc <= '0';
- r.wb.stb <= '0';
+ r1.state <= IDLE;
+ r1.slow_valid <= '0';
+ r1.update_valid <= '0';
+ r1.wb.cyc <= '0';
+ r1.wb.stb <= '0';
-- Not useful normally but helps avoiding tons of sim warnings
- r.wb.adr <= (others => '0');
+ r1.wb.adr <= (others => '0');
else
-- One cycle pulses reset
- r.slow_valid <= '0';
- r.update_valid <= '0';
+ r1.slow_valid <= '0';
+ r1.update_valid <= '0';
-- We cannot currently process a new request when not idle
- assert req_op = OP_NONE or r.state = IDLE report "request " &
- op_t'image(req_op) & " while in state " & state_t'image(r.state)
+ assert req_op = OP_NONE or r1.state = IDLE report "request " &
+ op_t'image(req_op) & " while in state " & state_t'image(r1.state)
severity FAILURE;
-- Main state machine
- case r.state is
+ case r1.state is
when IDLE =>
case req_op is
when OP_LOAD_HIT =>
-- We have a load with update hit, we need the delayed update cycle
if d_in.update = '1' then
- r.state <= LOAD_UPDATE;
+ r1.state <= LOAD_UPDATE;
end if;
when OP_LOAD_MISS =>
end loop;
-- Keep track of our index and way for subsequent stores.
- r.store_index <= req_index;
- r.store_way <= way;
+ r1.store_index <= req_index;
+ r1.store_way <= way;
-- Prep for first wishbone read. We calculate the address of
-- the start of the cache line
--
- r.wb.adr <= d_in.addr(63 downto LINE_OFF_BITS) &
- (LINE_OFF_BITS-1 downto 0 => '0');
- r.wb.sel <= (others => '1');
- r.wb.we <= '0';
- r.wb.cyc <= '1';
- r.wb.stb <= '1';
- r.state <= RELOAD_WAIT_ACK;
+ r1.wb.adr <= d_in.addr(63 downto LINE_OFF_BITS) &
+ (LINE_OFF_BITS-1 downto 0 => '0');
+ r1.wb.sel <= (others => '1');
+ r1.wb.we <= '0';
+ r1.wb.cyc <= '1';
+ r1.wb.stb <= '1';
+ r1.state <= RELOAD_WAIT_ACK;
when OP_LOAD_NC =>
- r.wb.sel <= bus_sel;
- r.wb.adr <= d_in.addr(63 downto 3) & "000";
- r.wb.cyc <= '1';
- r.wb.stb <= '1';
- r.wb.we <= '0';
- r.state <= NC_LOAD_WAIT_ACK;
+ r1.wb.sel <= bus_sel;
+ r1.wb.adr <= d_in.addr(63 downto 3) & "000";
+ r1.wb.cyc <= '1';
+ r1.wb.stb <= '1';
+ r1.wb.we <= '0';
+ r1.state <= NC_LOAD_WAIT_ACK;
when OP_STORE_HIT | OP_STORE_MISS =>
-- For store-with-update do the register update
if d_in.update = '1' then
- r.update_valid <= '1';
+ r1.update_valid <= '1';
end if;
- r.wb.sel <= bus_sel;
- r.wb.adr <= d_in.addr(63 downto 3) & "000";
- r.wb.dat <= store_data;
- r.wb.cyc <= '1';
- r.wb.stb <= '1';
- r.wb.we <= '1';
- r.state <= STORE_WAIT_ACK;
+ r1.wb.sel <= bus_sel;
+ r1.wb.adr <= d_in.addr(63 downto 3) & "000";
+ r1.wb.dat <= store_data;
+ r1.wb.cyc <= '1';
+ r1.wb.stb <= '1';
+ r1.wb.we <= '1';
+ r1.state <= STORE_WAIT_ACK;
-- OP_NONE and OP_BAD do nothing
when OP_NONE =>
-- not idle, which we don't currently know how to deal
-- with.
--
- if r.wb.adr(LINE_OFF_BITS-1 downto ROW_OFF_BITS) =
- r.req_latch.addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS) then
- r.slow_data <= wishbone_in.dat;
+ if r1.wb.adr(LINE_OFF_BITS-1 downto ROW_OFF_BITS) =
+ r1.req.addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS) then
+ r1.slow_data <= wishbone_in.dat;
end if;
-- That was the last word ? We are done
- if is_last_row(r.wb.adr) then
- cache_valids(r.store_index)(way) <= '1';
- r.wb.cyc <= '0';
- r.wb.stb <= '0';
+ if is_last_row(r1.wb.adr) then
+ cache_valids(r1.store_index)(way) <= '1';
+ r1.wb.cyc <= '0';
+ r1.wb.stb <= '0';
-- Complete the load that missed. For load with update
-- we also need to do the deferred update cycle.
--
- r.slow_valid <= '1';
- if r.req_latch.load = '1' and r.req_latch.update = '1' then
- r.state <= LOAD_UPDATE;
+ r1.slow_valid <= '1';
+ if r1.req.load = '1' and r1.req.update = '1' then
+ r1.state <= LOAD_UPDATE;
report "completing miss with load-update !";
else
- r.state <= IDLE;
+ r1.state <= IDLE;
report "completing miss !";
end if;
else
-- Otherwise, calculate the next row address
- r.wb.adr <= next_row_addr(r.wb.adr);
+ r1.wb.adr <= next_row_addr(r1.wb.adr);
end if;
end if;
when LOAD_UPDATE =>
-- We need the extra cycle to complete a load with update
- r.state <= LOAD_UPDATE2;
+ r1.state <= LOAD_UPDATE2;
when LOAD_UPDATE2 =>
-- We need the extra cycle to complete a load with update
- r.update_valid <= '1';
- r.state <= IDLE;
+ r1.update_valid <= '1';
+ r1.state <= IDLE;
when STORE_WAIT_ACK | NC_LOAD_WAIT_ACK =>
if wishbone_in.ack = '1' then
- if r.state = NC_LOAD_WAIT_ACK then
- r.slow_data <= wishbone_in.dat;
+ if r1.state = NC_LOAD_WAIT_ACK then
+ r1.slow_data <= wishbone_in.dat;
end if;
- r.slow_valid <= '1';
- r.wb.cyc <= '0';
- r.wb.stb <= '0';
- r.state <= IDLE;
+ r1.slow_valid <= '1';
+ r1.wb.cyc <= '0';
+ r1.wb.stb <= '0';
+ r1.state <= IDLE;
end if;
end case;
end if;